Technical Support Document:

CHEMICAL RECOVERY COMBUSTION SOURCES AT KRAFT AND SODA PULP MILLS

Emission Standards Division

U. S. ENVIRONMENTAL PROTECTION AGENCY
Office of Air and Radiation
Office of Air Quality Planning and Standards
Research Triangle Park, NC 27711

October 1996

This report has been reviewed by the Emission Standards Division of the Office of Air Quality Planning and Standards, EPA, and approved for publication. Mention of trade names or commercial products is not intended to constitute endorsement or recommendation for use. Copies of this report are available through the Library Services Office (MD-35), U. S. Environmental Protection Agency, Research Triangle Park, NC 27711. (919) 541-2777, or from National Technical Information Services, 5285 Port Royal Road, Springfield, VA 22161, (703) 487-4650.

TABLE OF CONTENTS

			<u>Page</u>
1.0	INTR 1.1 1.2	ORGANIZATION OF THE TECHNICAL SUPPORT	1-1 1-1
		DOCUMENT	1-1
2.0		BUSTION PROCESSES IN THE KRAFT PULP INDUSTRY	2-1
	2.1		2-1
	2.2	COMBUSTION PROCESSES AND EQUIPMENT	2-9
		2.2.1 Recovery Furnaces	2-9
		2.2.2 Smelt Dissolving Tanks	2-21
		2.2.3 Black Liquor Oxidation Systems	2-24
		2.2.4 Lime Kilns	2-28
	2.3	BASELINE EMISSIONS	2-34
	_,,	2.3.1 Federal and State Regulations Affecting	
		Kraft Pulp Mill Combustion Sources	2-34
		2.3.2 Baseline Emission Estimates	2-36
	2 4	REFERENCES FOR CHAPTER 2	2-44
	2.1	REPERENCED FOR CHAITER Z	2 11
3.0	EMIS	SSION CONTROL TECHNIQUES	3-1
	3.1	ADD-ON CONTROLS	3-1
		3.1.1 Electrostatic Precipitators	3-1
		3.1.2 Wet Scrubbers	3-18
		3.1.3 BLO Control	3-43
	3.2		3-45
	J. Z	3.2.1 Elimination of Black Liquor used in	3 13
		NDCE Recovery Furnace ESP Control	2 45
		Systems	3-45
		Furnace System to an NDCE Recovery	
		Furnace	3-50
	3.3	REFERENCES FOR CHAPTER 3	3-60
4.0	MODE	L PROCESS UNITS, CONTROL OPTIONS, AND ENHANCED	
1.0		TORING OPTIONS	4-1
	Δ 1	MODEL PROCESS UNITS	$\frac{1}{4} - 1$
		4.1.1 Recovery Furnace Models	4-1
		4.1.2 Smelt Dissolving Tank Models	4-11
			4-11
		<u>-</u>	
	4 0	4.1.4 Lime Kiln Models	4-17
	4.2	CONTROL OPTIONS	4-21
		4.2.1 Recovery Furnace Control Options	4-21
		4.2.2 SDT Control Options	4-28
		4.2.3 BLO Unit Control Option	4-34
		4.2.4 Lime Kiln Control Options	4-34
	4.3	ENHANCED MONITORING OPTIONS	4-38
		4.3.1 Recovery Furnace Enhanced Monitoring	4-41
		4.3.2 Smelt Dissolving Tank Enhanced	4 4 2
		Monitoring	4-43

TABLE OF CONTENTS (continued)

			<u>Page</u>
		4.3.3 Black Liquor Oxidation Unit Enhanced Monitoring	4 - 44
	4.4	REFERENCES FOR CHAPTER 4	4-46
5.0	MODE	L PROCESS UNIT ENVIRONMENTAL AND ENERGY	
	IMPA	CTS	5-1
	5.1	GENERAL APPROACH	5-1
		5.1.1 Air Pollution Impacts	
		5.1.2 Energy Impacts	
		5.1.3 Water Pollution Impacts	
		5.1.4 Solid Waste Disposal Impacts	
		5.1.5 Other Impacts	5-8
	5.2	RECOVERY FURNACE CONTROL OPTIONS	5-9
		5.2.1 PM Controls	
		5.2.2 Wet to Dry ESP System Conversion	5-14
		5.2.3 Conversion of a DCE Recovery Furnace	
		System to an NDCE Recovery Furnace	
		5.2.4 Addition of Packed-Bed Scrubber	
	5.3	BLACK LIQUOR OXIDATION UNIT CONTROL OPTION	
		5.3.1 Air Pollution Impacts	5-28
		5.3.2 Energy Impacts	5-29
		5.3.3 Water Pollution Impacts	
		5.3.4 Solid Waste Disposal Impacts	5-30
		5.3.5 Other Impacts	5-30
	5.4		
		5.4.1 PM Controls	5-31
	5.5	LIME KILN CONTROL OPTIONS	5-35
		5.5.1 PM Controls	
	5.6	REFERENCES FOR CHAPTER 5	5-98
6.0	MODE	L PROCESS UNIT CONTROL AND ENHANCED MONITORING	
0.0		S	6 1
	0.1	CONTROL OPTION COSTS	
		6.1.1 General Costing Approach	
		6.1.2 Recovery Furnace Control Options	6-7
		6.1.3 Black Liquor Oxidation Unit Control	6-40
		Options	
		6.1.4 Smelt Dissolving Tank Control Options .	6-43
	<i>c</i> 2	6.1.5 Lime Kiln Control Options	6-47
	6.2	ENHANCED MONITORING COSTS	6-52
		6.2.1 Recovery Furnace Enhanced	<i>c</i>
		Monitoring	6-53
		6.2.2 Black Liquor Oxidation Unit Enhanced	<i>c</i> = -
		Monitoring	6-58

TABLE OF CONTENTS (continued)

										Page
	6.2.3	Smelt Dia								6-59
6.3		Lime Kili	n Enhanc	ed Mo	nito	ring	j ,			6-60
	B. EMI	LUTION OF SSION MEAS	SUREMENT	' AND	CONT	INUC	DUS	MO		

LIST OF FIGURES

			<u>Page</u>
Figure	2-1	Distribution of U.S. kraft and soda pulp	
_		mills	2-2
Figure	2-2	Relationship of the chemical recovery	
		cycle to the pulping and product forming	
_		processes	2-4
Figure	2-3	Kraft processchemical recovery area	
		(DCE recovery furnace)	2-5
Figure	2-4	Soda processchemical recovery area	
_		(DCE recovery furnace)	2-6
Figure	2-5	Schematic of NDCE recovery furnace and	
		associated equipment	2-11
Figure	2-6	Schematic of DCE recovery furnace and	
		associated equipment	2-12
Figure		Cascade design evaporator	2-13
Figure		Cyclone design evaporator	2-14
Figure		Recovery furnace zones and air stages	2-16
Figure		DCE recovery furnace age distribution	2-18
Figure	2-10b	NDCE recovery furnace age distribution	2-18
Figure	2-11a	DCE recovery furnace size distribution	2-20
Figure	2-11b	NDCE recovery furnace size distribution .	2-20
Figure	2-12	Smelt dissolving tank and wet scrubber	2-22
Figure	2-13	Two-stage air-sparging black liquor	
		oxidation system	2-26
Figure	2-14	Schematic of a lime kiln used at kraft	
		pulp mills	2-30
Figure	2-13	Schematic of a lime kiln used at kraft	
ے		pulp mills	2-29
Figure	3-1	Rigid-electrode ESP	3-5
Figure		PM emission data for recovery furnace	
5	_	No. 3 at Mill A	3-10
Figure	3-3	PM emission data for recovery furnace	0 _0
119416	3 3	No. 4 at Mill B	3-11
Figure	3-4	PM emission data for recovery furnace	3 11
rrgare	5 1	No. 3 at Mill B	3-12
Figure	3-5	PM emission data for lime kiln No. 5 at	5 12
riguic	5 5	Mill C	3-17
Figure	3-6	PM emission data for lime kiln No. 1 at	3 11
rigure	3-0	Mill D	3-19
Figuro	2 _ 7	Acid gas control system configuration on	3-19
Figure	3-7		3-21
T-1	2 0	recovery furnace exhaust gases	3-21
Figure	3-8	Schematic of a counterflow packed-bed	2 22
- '	2 0	scrubber	3-22
Figure	3-9	Schematic of a cross-flow packed-bed	2 02
	2 10	scrubber	3-23
Figure		Schematic of a venturi scrubber	3-34
Figure		PM emission data for lime kiln at Mill A .	3-38
Figure	3-12	PM emission data for lime kiln No. 4 at	<u> </u>
		Mill B	3-39
Figure	3-13	PM emission data for SDT No. 3 at Mill B .	3-40

LIST OF FIGURES (continued)

			<u> Page</u>
Figure Figure	3-15	PM emission data for SDT No. 4 at Mill B . PM emission data for SDT No. 22 at Mill C	3-41 3-42
Figure		Methanol emissions for NDCE recovery furnaces	3-51
Figure	3-17	Methanol emissions for DCE recovery furnace systems and NDCE recovery	2 56
Figure	3-18	furnaces	3-56
Figure	3-19	furnace system	3-58
Figure	4-1a	furnace	3-59
Figure	4-1b	furnaces	4-6
Figure	4-2a	furnaces	4-6 4-7
Figure		NDCE recovery furnace model size ranges	4-7
Figure		Size distribution for lime kilns	4-19
Figure		Particulate matter emissions from model	1 17
rigare	J 1	NDCE recovery furnaces	5-41
Figure	5-2	Particulate matter emissions from model	3 11
5 %- 0	-	DCE recovery furnaces	5-42
Figure	5-3	Gaseous organic HAP emissions from model	
5		recovery furnaces	5-43
Figure	5-4	Total reduced sulfur emissions from	
J		model recovery furnace systems	5-44
Figure	5-5	Hydrochloric acid emissions from model	
_		recovery furnaces	5-45
Figure	5-6	Sulfur dioxide emissions from model	
		recovery furnaces	5-46
Figure	5-7	Gaseous organic HAP emissions from model	
		BLO units	5-47
Figure	5-8	Total reduced sulfur emissions from	
		model BLO units	5-48
Figure	5-9	Particulate matter emissions from model	
		smelt dissolving tanks	5-49
Figure	5-10	Particulate matter emissions from model	
		lime kilns	5-50

LIST OF TABLES

			<u>Page</u>
TABLE	2-1	BLACK LIQUOR OXIDATION SYSTEMS: EQUIPMENT	
		TYPES	2-28
TABLE	2-2	CHEMICAL COMPOSITION OF LIME MUD FEED	2-31
TABLE	2-3	NSPS AND EMISSION GUIDELINES FOR KRAFT PULP	
		MILL COMBUSTION SOURCES	2-35
TABLE		HAP EMISSION FACTORS	2-38
TABLE	2-5a	(METRIC). NATIONWIDE BASELINE GASEOUS HAP	
		EMISSION ESTIMATES	2-43
TABLE	2-5b	(English). NATIONWIDE BASELINE GASEOUS HAP	
		EMISSION ESTIMATES	2-43
TABLE	2-6	NATIONWIDE BASELINE PM, PM HAP, AND TRS	
		EMISSIONS	2-44
TABLE		PARTICULATE MATTER HAP CONTROL TECHNIQUES .	
TABLE		GASEOUS HAP CONTROL TECHNIQUES	3-2
TABLE	3-3	SUMMARY OF DATA ON KRAFT RECOVERY FURNACE	
		COMBUSTION GAS CHARACTERISTICS	3-28
TABLE	3-4	SUMMARY OF ACID GAS SCRUBBER PERFORMANCE	
		DATA	3-30
TABLE		HAP EMISSIONS FOR BLO UNITS	3-46
TABLE		HAP EMISSIONS FOR NDCE RECOVERY FURNACES .	3-49
TABLE	3-7	HAP EMISSIONS FOR DCE RECOVERY FURNACE	
		SYSTEMS AND NDCE RECOVERY FURNACES	3-55
TABLE	4-1a	(METRIC). RECOVERY FURNACE MODEL PROCESS	
		UNITS AND PROCESS PARAMETERS	4-2
TABLE	4-1b		
		UNITS AND PROCESS PARAMETERS	4-3
TABLE	4-2a	(METRIC). SMELT DISSOLVING TANK MODEL	
	4 01	PROCESS UNITS AND PROCESS PARAMETERS	4-12
TABLE	4-2b	(ENGLISH). SMELT DISSOLVING TANK MODEL	
		PROCESS UNITS AND PROCESS PARAMETERS	4-12
TABLE	4-3a	(METRIC). BLACK LIQUOR OXIDATION UNIT	4 1 5
	4 01	MODEL PROCESS UNITS AND PROCESS PARAMETERS	4-15
TABLE	4-3b	(ENGLISH). BLACK LIQUOR OXIDATION UNIT	4 1 5
	4 4	MODEL PROCESS UNITS AND PROCESS PARAMETERS	4-15
TABLE	4-4a	(METRIC). LIME KILN MODEL PROCESS UNITS	4 10
	4 41-	AND PROCESS PARAMETERS	4-18
LABLE	4-4b	(ENGLISH). LIME KILN MODEL PROCESS UNITS	4 10
	4 5	AND PROCESS PARAMETERS	4-18
	4-5	RECOVERY FURNACE CONTROL OPTIONS	4-22
LABLE	4-6a	(METRIC). RECOVERY FURNACE MODELS:	
		LOW-ODOR CONVERSION CONTROL OPTION	
		(INCLUDES WET TO DRY ESP SYSTEM CONVERSION	4 0 4
	4 (1-	AND PM CONTROL TO NSPS LEVEL)	4-24
TARLE	4-6b	(ENGLISH). RECOVERY FURNACE MODELS:	
		LOW-ODOR CONVERSION CONTROL OPTION	
		(INCLUDES WET TO DRY ESP SYSTEM CONVERSION	4 0 4
		AND PM CONTROL TO NSPS LEVEL)	4-24

			<u>Page</u>
TABLE	4-7a	(METRIC). RECOVERY FURNACE MODELS: LOW- ODOR CONVERSION CONTROL OPTION (INCLUDING WET TO DRY ESP SYSTEM CONVERSION AND PM	
TABLE	4-7b	CONTROL TO 0.034 G/DSCM)	4-25
TABLE	4-8a	CONTROL TO 0.015 GR/DSCF)	4-25
TABLE	4-8b	DRY ESP SYSTEM CONVERSION CONTROL OPTION . (ENGLISH). RECOVERY FURNACE MODELS: WET TO DRY ESP SYSTEM CONVERSION CONTROL	4-26
TABLE	4-9a	OPTION	4-26 4-27
TABLE	4-9b	(ENGLISH). RECOVERY FURNACE MODELS: PM CONTROL OPTIONS (0.044 GR/DSCF)	4-27
TABLE	4-10a	(METRIC). RECOVERY FURNACE MODELS: PM CONTROL OPTIONS (0.034 G/DSCM)	4-29
TABLE	4-10b	(ENGLISH). RECOVERY FURNACE MODELS: PM CONTROL OPTIONS (0.015 GR/DSCF)	4-30
TABLE	4-11a	(METRIC). RECOVERY FURNACE MODELS: HCl CONTROL OPTION (PACKED-BED SCRUBBER)	4-31
TABLE	4-11b	(ENGLISH). RECOVERY FURNACE MODELS: HCl CONTROL OPTION (PACKED-BED SCRUBBER)	4-31
TABLE	4-12a	(METRIC). RECOVERY FURNACE MODELS: HCl CONTROL OPTION (PACKED-BED SCRUBBER AFTER	
TABLE	4-12b	LOW-ODOR CONVERSION)	4-32
TABLE	4-13a	LOW-ODOR CONVERSION)	4-32 4-33
TABLE	4-13b	PM CONTROL OPTIONS(0.10 KG/MG BLS) (ENGLISH). SMELT DISSOLVING TANK MODELS: PM CONTROL OPTIONS (0.20 LB/TON BLS)	4-33
TABLE	4-14a	(METRIC). SMELT DISSOLVING TANK MODELS: PM CONTROL OPTIONS (0.06 KG/MG BLS)	4-35
TABLE	4-14b	(ENGLISH). SMELT DISSOLVING TANK MODELS: PM CONTROL OPTIONS (0.12 LB/TON BLS)	4-35
TABLE	4-15a	(METRIC). BLACK LIQUOR OXIDATION UNIT MODELS: METHANOL CONTROL OPTION	4-33
TABLE	4-15b	(INCINERATION)	4-36
TABLE	4-16a	(INCINERATION)	4-36
TABLE	4-16b	OPTIONS (0.15 G/DSCM)	4-37 4-37

			<u>Page</u>
TABLE	4-17a	(METRIC). LIME KILN MODELS: PM CONTROL	
		OPTIONS (0.023 G/DSCM)	4-39
TABLE	4-17b	(ENGLISH). LIME KILN MODELS: PM CONTROL	
		OPTIONS (0.010 GR/DSCF)	4-39
TABLE	4-18	ENHANCED MONITORING OPTIONS	4-40
TABLE	5-1a	(METRIC). MODEL NDCE RECOVERY FURNACE	
		PARAMETERS	5-51
TABLE	5-1b	(ENGLISH). MODEL NDCE RECOVERY FURNACE	
		PARAMETERS	5-52
TABLE	5-2a	(METRIC). MODEL DCE RECOVERY FURNACE	
	3 2 3.	PARAMETERS	5-53
TARLE	5-2b	(ENGLISH). MODEL DCE RECOVERY FURNACE	0 00
111011	3 22	PARAMETERS	5-54
TARLE	5-3a	(METRIC). MODEL NDCE RECOVERY FURNACE	5 5 1
1110111	3 3a	CONCENTRATIONS AND EMISSION FACTORS	5-55
TABLE	5-3h	(ENGLISH). MODEL NDCE RECOVERY FURNACE	5 55
тарий	5 50	CONCENTRATIONS AND EMISSION FACTORS	5-56
TABLE	5_12	(METRIC). MODEL DCE RECOVERY FURNACE	5 50
тирпп	J- 1 a	CONCENTRATIONS AND EMISSION FACTORS	5-57
TABLE	E 1h	(ENGLISH). MODEL DCE RECOVERY FURNACE	5-57
IADLL	5-4D	CONCENTRATIONS AND EMISSION FACTORS	5-58
шартп	г г-		5-56
TABLE	5-5a	(METRIC). PRIMARY PM AND PM HAP EMISSIONS	5-59
	E E1-	FOR MODEL RECOVERY FURNACES	5-59
TABLE	2-50	(ENGLISH). PRIMARY PM AND PM HAP EMISSIONS	5 60
		FOR MODEL RECOVERY FURNACES	5-60
TABLE	5-6a	(METRIC). SECONDARY EMISSIONS FOR PM	
	1	CONTROL FOR MODEL RECOVERY FURNACES	5-61
TABLE	5-6b	(ENGLISH). SECONDARY EMISSIONS FOR PM	
		CONTROL FOR MODEL RECOVERY FURNACES	5-62
TABLE	5-7	ENERGY IMPACTS FOR PM CONTROL FOR MODEL	
		RECOVERY FURNACES	5-63
TABLE	5-8a	(METRIC). PRIMARY GASEOUS ORGANIC HAP	
		EMISSIONS FOR MODEL RECOVERY FURNACES	5-64
TABLE	5-8b	(ENGLISH). PRIMARY GASEOUS ORGANIC HAP	
		EMISSIONS FOR MODEL RECOVERY FURNACES	5-65
TABLE	5-9a	(METRIC). TOTAL REDUCED SULFUR COMPOUND	
		EMISSIONS FOR MODEL RECOVERY FURNACES	5-66
TABLE	5-9b	(ENGLISH). TOTAL REDUCED SULFUR COMPOUND	
		EMISSIONS FOR MODEL RECOVERY FURNACES	5-67
TABLE	5-10a	(METRIC). SECONDARY EMISSIONS FOR	
		LOW-ODOR CONVERSION FOR MODEL DCE RECOVERY	
		FURNACES	5-68
TABLE	5-10b	(ENGLISH). SECONDARY EMISSIONS FOR	
		LOW-ODOR CONVERSION FOR MODEL DCE RECOVERY	
		FURNACES	5-69
TABLE	5-11a	(METRIC). ENERGY IMPACTS FOR LOW-ODOR	
		CONVERSION FOR MODEL DCE RECOVERY	
		FURNACES	5-70
			_ , 0

			<u>Page</u>
TABLE	5-11b	(ENGLISH). ENERGY IMPACTS FOR LOW-ODOR CONVERSION FOR MODEL DCE RECOVERY FURNACES	5-71
TABLE	5-12a	(METRIC). PRIMARY ACID GAS EMISSIONS FOR MODEL RECOVERY FURNACES	5-72
TABLE	5-12b	(ENGLISH). PRIMARY ACID GAS EMISSIONS FOR MODEL RECOVERY FURNACES	5-73
TABLE	5-13a	(METRIC). SECONDARY EMISSIONS FOR HCL CONTROL FOR MODEL RECOVERY FURNACES	5-74
TABLE	5-13b	(ENGLISH). SECONDARY EMISSIONS FOR HCL	
TABLE	5-14	CONTROL FOR MODEL RECOVERY FURNACES ENERGY IMPACTS FOR HCL CONTROL FOR MODEL	5-75
TABLE	5-15a	RECOVERY FURNACES	5-76
TABLE	5-15b	CONTROL FOR MODEL RECOVERY FURNACES (ENGLISH). WASTEWATER IMPACTS FOR HCL	5-77
TABLE	5-16a	CONTROL FOR MODEL RECOVERY FURNACES (METRIC). MODEL BLACK LIQUOR OXIDATION	5-78
TABLE	5-16b	UNIT PARAMETERS AND EMISSION FACTORS (ENGLISH). MODEL BLACK LIQUOR OXIDATION	5-79
		UNIT PARAMETERS AND EMISSION FACTORS (METRIC). PRIMARY GASEOUS ORGANIC HAP	5-79
111000	<i>3</i> 17 a	EMISSIONS FOR MODEL BLACK LIQUOR OXIDATION UNITS	5-80
TABLE	5-17b	(ENGLISH). PRIMARY GASEOUS ORGANIC HAP EMISSIONS FOR MODEL BLACK LIQUOR OXIDATION	
TABLE	5-18a	UNITS	5-80
TABLE	5-18b	BLACK LIQUOR OXIDATION UNITS (ENGLISH). SECONDARY EMISSIONS FOR MODEL	5-81
TABLE	5-19	BLACK LIQUOR OXIDATION UNITS	5-81
TABLE	5-20a	OXIDATION UNITS	5-82
TABLE	5-20b	UNITS	5-83
TABLE	5-21a	UNITS	5-83
TABLE	5-21b	PARAMETERS AND PM EMISSION FACTORS (ENGLISH). MODEL SMELT DISSOLVING TANK	5-84
TABLE	5-22a	PARAMETERS AND PM EMISSION FACTORS (METRIC). PRIMARY PM AND PM HAP EMISSIONS	5-85
TABLE	5-22b	FOR MODEL SMELT DISSOLVING TANKS (ENGLISH). PRIMARY PM AND PM HAP EMISSIONS	5-86
TABLE	5-23a	FOR MODEL SMELT DISSOLVING TANKS (METRIC). SECONDARY EMISSIONS FOR MODEL	5-87
		SMELT DISSOLVING TANKS	5-88

			<u>Page</u>
		(ENGLISH). SECONDARY EMISSIONS FOR MODEL SMELT DISSOLVING TANKS	5-88
TABLE	5-24	ENERGY REQUIREMENTS FOR MODEL SMELT DISSOLVING TANKS	5-89
TABLE	5-25b	(ENGLISH). MODEL LIME KILN PARAMETERS AND PM CONCENTRATIONS	5-91
TABLE	5-26a	(METRIC). PRIMARY PM AND PM HAP EMISSIONS	
TABLE	5-26b	FOR MODEL LIME KILNS	5-92
TABLE	5-27a	FOR MODEL LIME KILNS	5-93
TARLE	5-27b	LIME KILNS	5-94
		LIME KILNS	5-95
	5-28 5-29a	ENERGY IMPACTS FOR MODEL LIME KILNS (METRIC). WASTEWATER IMPACTS FOR MODEL	5-96
TABLE	5-29b	LIME KILNS	5-97
	6-1a	LIME KILNS	5-97
IADUE	0-1a	CONTROL PM TO 0.10 G/DSCM FOR MODEL RECOVERY FURNACES (EXCLUDING PULP	
TABLE	6-2a	PRODUCTION LOSSES)	6-62
TABLE	6-2b	PRODUCTION LOSSES)	
TABLE	6-3	PRODUCTION LOSSES)	6-65 6-66
TABLE	6-4a	COSTS	6-66
TABLE	6-4b	PRODUCTION LOSSES)	6-67
		PRODUCTION LOSSES)	6-68

			<u>Page</u>
TABLE	6-5a	(METRIC). COSTS OF SCHEDULE 2 ESP UPGRADE TO CONTROL PM TO 0.10 G/DSCM FOR MODEL RECOVERY FURNACES (EXCLUDING PULP	
TABLE	6-5b	PRODUCTION LOSSES)	6-69
		RECOVERY FURNACES (EXCLUDING PULP PRODUCTION LOSSES)	6-70
TABLE	6-6a	(METRIC). COSTS OF SCHEDULE 1 ESP UPGRADE TO CONTROL PM TO 0.10 G/DSCM FOR MODEL RECOVERY FURNACES (INCLUDING PULP	
TABLE	6-6b	PRODUCTION LOSSES)	6-71
TABLE	6-7a	PRODUCTION LOSSES)	6-72
TABLE	6-7b	RECOVERY FURNACES (INCLUDING PULP PRODUCTION LOSSES)	6-73
TABLE	6-8a	RECOVERY FURNACES (INCLUDING PULP PRODUCTION LOSSES)	6-74
TABLE	6-8b	MODEL RECOVERY FURNACES (EXCLUDING PULP PRODUCTION LOSSES)	6-75
TABLE	6-9a	PRODUCTION LOSSES)	6-76
TABLE	6-9b	PRODUCTION LOSSES)	6-77
TABLE	6-10a	PRODUCTION LOSSES)	6-78
TABLE	6-10b	CONVERSION COSTS FOR MODEL NDCE RECOVERY FURNACES	6-79
	5.5	CONVERSION COSTS FOR MODEL NDCE RECOVERY FURNACES	6-80

			<u>Page</u>
TABLE	6-11a	(METRIC). CAPITAL COSTS OF LOW-ODOR CONVERSION (INCLUDING ESP UPGRADE TO CONTROL PM TO 0.10 G/DSCM) FOR MODEL DCE RECOVERY FURNACES (EXCLUDING PULP	
TABLE	6-11b	PRODUCTION LOSSES)	6-81
TABLE	6-12a	PRODUCTION LOSSES)	6-82
TABLE	6-12b	PRODUCTION LOSSES)	6-83
TABLE	6-13a	PRODUCTION LOSSES)	6-84
TABLE	6-13b	PRODUCTION LOSSES)	6-85
TABLE	6-14a	PRODUCTION LOSSES)	6-86
TABLE	6-14b	PRODUCTION LOSSES)	
TABLE	6-15a	PRODUCTION LOSSES)	6-88 6-89
TABLE	6-15b	(ENGLISH). MODEL DCE RECOVERY FURNACE/ESP	
TABLE	6-16	DESIGN PARAMETERS	6-90
		ANNUALIZED PULP PRODUCTION LOSSES)	6-91

			<u>Page</u>
TABLE	6-17	CONVERSION (INCLUDING ESP UPGRADE TO CONTROL PM TO 0.10 G/DSCM [0.044 GR/DSCF])	
TABLE	6-18	FOR MODEL DCE RECOVERY FURNACES (INCLUDING BLEACHED PULP PRODUCTION LOSSES) SCENARIO 3: ANNUAL COSTS OF LOW-ODOR CONVERSION (INCLUDING ESP UPGRADE TO CONTROL PM TO 0.10 G/DSCM [0.044 GR/DSCF])	6-92
ጥለ ይፒ. ፑ	6-19	FOR MODEL DCE RECOVERY FURNACES (INCLUDING UNBLEACHED PULP PRODUCTION LOSSES) SCENARIO 1: ANNUAL COSTS OF LOW-ODOR	6-93
IADLE	0-19	CONVERSION (INCLUDING ESP UPGRADE TO CONTROL PM TO 0.034 G/DSCM [0.015 GR/DSCF]) FOR MODEL DCE RECOVERY FURNACES (EXCLUDING	
TABLE	6-20	ANNUALIZED PULP PRODUCTION LOSSES) SCENARIO 2: ANNUAL COSTS OF LOW-ODOR CONVERSION (INCLUDING ESP UPGRADE TO CONTROL PM TO 0.034 G/DSCM [0.015 GR/DSCF])	6-94
TARI.E	6-21	FOR MODEL DCE RECOVERY FURNACES (INCLUDING BLEACHED PULP PRODUCTION LOSSES) SCENARIO 3: ANNUAL COSTS OF LOW-ODOR	6-95
TADLE	0 21	CONVERSION (INCLUDING ESP UPGRADE TO CONTROL PM TO 0.034 G/DSCM [0.015 GR/DSCF]) FOR MODEL DCE RECOVERY FURNACES (INCLUDING	
TABLE	6-22a	UNBLEACHED PULP PRODUCTION LOSSES) (METRIC). GAS AND LIQUID STREAM PARAMETERS FOR RECOVERY FURNACE MODEL PROCESS UNITS .	6-96 6-97
TABLE	6-22b	(ENGLISH). GAS AND LIQUID STREAM PARAMETERS FOR RECOVERY FURNACE MODEL	
TABLE	6-23a	PROCESS UNITS	
TABLE	6-23b	(ENGLISH). PACKED-BED SCRUBBER DESIGN AND OPERATING PARAMETERS	
TABLE	6-24a	(METRIC). UNIT COSTS FOR PACKED-BED SCRUBBER	6-101
TABLE	6-24b	(ENGLISH). UNIT COSTS FOR PACKED-BED SCRUBBER	
TABLE	6-25		
TABLE	6-26	PACKED-BED SCRUBBER ANNUAL COSTS FOR MODEL RECOVERY FURANCES	6-103
TABLE	6-27a	(ENGLISH). MODEL BLACK LIQUOR OXIDATION UNIT DESIGN PARAMETERS	
TABLE		(ENGLISH). MODEL BLACK LIQUOR OXIDATION UNIT DESIGN PARAMETERS	
TABLE	6-28	CAPITAL AND ANNUAL COSTS OF COLLECTION AND INCINERATION OF BLO VENT GASES FOR	c 10c
		MODEL BLACK LIQUOR OXIDATION UNITS	6-T06

			<u>Page</u>
TABLE	6-29a	(METRIC). SCRUBBER REPLACEMENT COSTS FOR MODEL SDT'S	6-107
TABLE	6-29b	(ENGLISH). SCRUBBER REPLACEMENT COSTS FOR MODEL SDT'S	6-108
TABLE	6-30a	(METRIC). MODEL SDT/SCRUBBER DESIGN PARAMETERS	
TABLE	6-30b	(ENGLISH). MODEL SDT/SCRUBBER DESIGN PARAMETERS	
TABLE	6-31	CAPITAL AND ANNUAL COSTS TO REPLACE MIST ELIMINATORS WITH SCRUBBERS FOR MODEL SDT'S	
TABLE	6-32a	(METRIC). COSTS TO REPLACE SCRUBBERS WITH ESP'S TO CONTROL PM TO 0.15 G/DSCM	
TABLE	6-32b	FOR MODEL LIME KILNS	
TABLE	6-33a	MODEL LIME KILNS	
TABLE	6-33b	MODEL LIME KILNS	
TABLE	6-34a	FOR MODEL LIME KILNS	
TABLE	6-34b	(ENGLISH). MODEL LIME KILN/SCRUBBER DESIGN PARAMETERS	
TABLE	6-35	ANNUAL COSTS FOR EXISTING LIME KILN SCRUBBERS	
TABLE	6-36a	(METRIC). MODEL LIME KILN/ESP DESIGN PARAMETERS	
TABLE	6-36b	(ENGLISH). MODEL LIME KILN/ESP DESIGN PARAMETERS	
TABLE	6-37	ANNUAL COSTS FOR NEW LIME KILN ESP'S CONTROLLING PM TO 0.15 G/DSCM	
TABLE	6-38	(0.067 GR/DSCF)	6-121
TABLE	6-39a	(0.010 GR/DSCF)	6-122
TABLE	6-39b	KILNS	6-123
יי זכו עייי	6 40	KILNS	6-124 6-125
	6-40 6-41	OPACITY AND HCL CONTINUOUS EMISSION MONITOR	
		COSTS	6-126

LIST OF ACRONYMS AND UNITS OF MEASURE

```
a.c.
                  alternating current
acfm
                  actual cubic foot (feet) per minute
                  actual cubic meter(s) per minute
acmm
ADMBP/d
                  air-dried megagram(s) of bleached pulp per day
                  air-dried megagram(s) ton of pulp air-dried megagram(s) of unbleached pulp per day
ADMP
ADMUP/d
ADTBP/d
                  air-dried ton(s) of bleached pulp per day
ADTP
                  air-dried ton(s) of pulp
ADTUP/d
                  air-dried ton(s) of unbleached pulp per day
                  air pollution control device
APCD
                  arsenic
As
                  beryllium
Ве
                  black liquor oxidation
BLO
                  Black Liquor Recovery Boiler Advisory Committee
BLRBAC
                  British thermal unit per pound
Btu/lb
Ca(OH)<sub>2</sub>
                  calcium hydroxide
                  Clean Air Act as amended in 1990
CAA
CaCO<sub>3</sub>
                  calcium carbonate
CaO
                  calcium oxide
Cd
                  cadmium
CEM
                  continuous emission monitor
                  Code of Federal Regulations
CFR
cm
                  centimeter(s)
                  cobalt
Co
                  carbon monoxide
CO
{\rm CO}_2
                  carbon dioxide
Cr
                  chromium
CRF
                  capital recovery factor
CS<sub>2</sub>
                  carbon disulfide
                  day(s) per year
d/ÿr
                  direct current
d.c.
DAC
                  direct annual cost(s)
DAS
                  data acquisition system
DCE
                  direct contact evaporator
                  N, N-dimethylformamide
EMTIC
                  Emission Measurement Technical Information
                  Center
EPA
                  U. S. Environmental Protection Agency
ESP
                  electrostatic precipitator
FID
                  flame ionization detector
                  foot (feet)
ft^2/1,000 acfm
                  square foot (feet) per 1,000 actual cubic feet
                  per minute
ft<sup>2</sup>
                  square foot (feet)
FTIR
                  fourier transform infrared
q/L
                  gram(s) per liter
                  gram(s) per dry standard cubic meter
q/dscm
gal
                  gallon(s)
gal/acf
                  gallon(s) per actual cubic foot
gal/yr
                  gallon(s) per year
                  gas chromatography
GC
GFC
                  gas filter correlation
gpm
                  gallon(s) per minute
gr/dscf
                  grain(s) per dry standard cubic foot
```

```
H20
                  water
H<sub>2</sub>S
                  hydrogen sulfide
ΗÁΡ
                  hazardous air pollutant
HCl
                  hydrochloric acid
Ηq
                  mercury
HOMER
                  hazardous organic mass emission rate
hp
                  horsepower
hr/d
                  hour(s) per day
HSCSST
                  heated summa canister source sampling train
                  high-volume, low-concentration
HVLC
IWH
                  hazardous waste incinerator
IAC
                  indirect annual cost(s)
IMS
                  ion mobility spectroscopy
                  inch(es)
in.
in. H_2O
                  inch(es) of water
                  incremental total annual cost(s)
ITAC
                  potassium chloride
KCl
kg BLS/d
                  kilogram(s) of black liquor solids per day
                  kilogram(s) per air-dried megagram of pulp
kg/ADMP
                 kilogram(s) per megagram
kg/Mg
                 kilogram(s) of PM per megawatt-hour
kg PM/MWh
kJ/kq
                 kilojoule(s) per kilogram
kW
                  kilowatt(s)
kWh
                  kilowatt-hour(s)
L/min
                  liter(s) per minute
                  liter(s)
L
L/yr
                  liter(s) per year
                  liter(s) per actual cubic meter
L/acm
L/G
                  liquid-to-gas
lb PM/MM Btu
                  pound(s) of PM per million Btu
                 pound(s) of black liquor solids per day
lb BLS/d
lb/gal
                 pound(s) per gallon
                 pound(s) per air-dried ton of pulp
lb/ADTP
                 pound(s) per ton
lb/ton
LOO
                  limit of quantitation
LVHC
                  low-volume, high-concentration
                  meter(s)
  /(m^3/sec)
                  square meter(s) per cubic meter per second
m^2
m^3
m^3/sec
                  square meter(s)
                  cubic meter(s)
                  cubic meter(s) per second
MACT
                  maximum achievable control technology
MEE
                  multiple-effect evaporators
                  milligram(s)
                  megagram(s) per year
Mg/yr
                 minute(s)
min
MJ/yr
                  megajoule(s) per year
                  milliliter(s)
ml
                  millimeter(s) of mercury
mm Hg
MM Btu/yr
                 million Btu per year
                 million(s)
MM
Mn
                 manganese
                 mass selective detector
MSD
MST
                  Methanol Sampling Train
                 medical waste incinerator
MWI
```

sodium carbonate

Na₂CO₃

NCASI National Council of the Paper Industry for

Air and Stream Improvement, Inc.

NCG noncondensible gases

NDCE nondirect contact evaporator

NESHAP national emission standards for hazardous air

pollutants
nanogram(s)

Ni nickel

nq

NO, nitrogen oxides

NSPS new source performance standards NSSC neutral sulfite semichemical

 0_2 oxygen

OÁQPS Office of Air Quality Planning and Standards

Pb lead

PCDD/PCDF polychlorinated dibenzo-p-dioxins

and dibenzofurans

PM particulate matter

ppb part(s) per billion

ppm part(s) per million

ppmdv part(s) per million dry volume ppmv part(s) per million by volume QA/QC quality assurance/quality control

RRF relative response factor

Sb antimony

SCA specific collecting area SDT smelt dissolving tank

Se selenium sec second(s)

SIE specific ion electrodes

SO₂ sulfur dioxide

T-R transformer-rectifier total annual costs

TCI total capital investment total dissolved solids

THC total hydrocarbon

Tl thallium

ton/yr ton(s) per year

TPIEC Texas Paper Industry Environmental Committee

TRS total reduced sulfur

TSD technical support document

μm micrometer(s)
UV ultraviolet

VOC volatile organic compound

1. REPORT NO. EPA-453/R-96-012	2.	3. RECIPIENT'S ACCESSION NO.
4. TITLE AND SUBTITLE Technical Support Docume	5. REPORT DATE October 1996	
Sources at Kraft and Soda Pu	6. PERFORMING ORGANIZATION CODE	
7. AUTHOR(S)	8. PERFORMING ORGANIZATION REPORT NO.	
9. PERFORMING ORGANIZATION NAME AN	10. PROGRAM ELEMENT NO.	
Office of Air Quality Plann	ning and Standards	
U. S. Environmental Protect	11. CONTRACT/GRANT NO.	
Research Triangle Park, NO	68-D1-0115	
12. SPONSORING AGENCY NAME AND ADD	13. TYPE OF REPORT AND PERIOD COVERED	
Office of Air and Radiation	Interim Final (1991-1996)	
U. S. Environmental Protect Washington, D.C. 20460	tion Agency	14. SPONSORING AGENCY CODE

15. SUPPLEMENTARY NOTES

16. ABSTRACT

National emission standards for hazardous air pollutants (NESHAP) are being proposed for the pulp and paper industry under authority of Section 112(d) of the Clean Air Act as amended in 1990. This technical support document provides technical data and information such as industry and equipment descriptions, analyses of effectiveness and costs of emission control systems, and estimates of environmental impacts of emission control options, that were used in the development of the proposed NESHAP for chemical recovery combustion sources at kraft and soda pulp mills. A NESHAP for noncombustion sources in the pulp and paper industry is being developed concurrently, and information on these sources is contained in separate documents.

17. KEY WORDS AND DOCUMENT ANALYSIS						
a. DESCRIP	TORS	b. IDENTIFIERS/OPEN ENDED TERMS	c. COSATI Field/Group			
black liquor black liquor oxidation chemical recovery combustion source hazardous air pollutants kraft pulp mill	lime kiln particulate matter recovery furnace smelt dissolving tank soda pulp mill	NESHAP air pollution control pulp and paper mills				
18. DISTRIBUTION STATEMENT		19. SECURITY CLASS (Report) Unclassified	21. NO. OF PAGES 471			
Unlimited		20. SECURITY CLASS (Page) Unclassified	22. PRICE			