pmc logo imageJournal ListSearchpmc logo image
Logo of embojJournal URL: redirect3.cgi?&&auth=0-EXmcP3o_7JMdANuPmpxRPhoD1PCiMne89OsUQla&reftype=publisher&artid=1170808&article-id=1170808&iid=120165&issue-id=120165&jid=78&journal-id=78&FROM=Article|Banner&TO=Publisher|Other|N%2FA&rendering-type=normal&&http://www.embojournal.org
EMBO J. 1998 August 17; 17(16): 4790–4797.
doi: 10.1093/emboj/17.16.4790.
PMCID: PMC1170808
Ribosomes inhibit an RNase E cleavage which induces the decay of the rpsO mRNA of Escherichia coli.
F Braun, J Le Derout, and P Régnier
Institut de Biologie-Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France.
Abstract
The hypothesis generally proposed to explain the stabilizing effect of translation on many bacterial mRNAs is that ribosomes mask endoribonuclease sites which control the mRNA decay rate. We present the first demonstration that ribosomes interfere with a particular RNase E processing event responsible for mRNA decay. These experiments used an rpsO mRNA deleted of the translational operator where ribosomal protein S15 autoregulates its synthesis. We demonstrate that ribosomes inhibit the RNase E cleavage, 10 nucleotides downstream of the rpsO coding sequence, responsible for triggering the exonucleolytic decay of the message mediated by polynucleotide phosphorylase. Early termination codons and insertions which increase the length of ribosome-free mRNA between the UAA termination codon and this RNase E site destabilize the translated mRNA and facilitate RNase E cleavage, suggesting that ribosomes sterically inhibit RNase E access to the processing site. Accordingly, a mutation which reduces the distance between these two sites stabilizes the mRNA. Moreover, an experiment showing that a 10 nucleotide insertion which destabilizes the untranslated mRNA does not affect mRNA stability when it is inserted in the coding sequence of a translated mRNA demonstrates that ribosomes can mask an RNA feature, 10-20 nucleotides upstream of the processing site, which contributes to the RNase E cleavage efficiency.
Full Text
The Full Text of this article is available as a PDF (298K).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
  • Arraiano, CM; Yancey, SD; Kushner, SR. Stabilization of discrete mRNA breakdown products in ams pnp rnb multiple mutants of Escherichia coli K-12. J Bacteriol. 1988 Oct;170(10):4625–4633. [PubMed]
  • Baumeister, R; Flache, P; Melefors, O; von Gabain, A; Hillen, W. Lack of a 5' non-coding region in Tn1721 encoded tetR mRNA is associated with a low efficiency of translation and a short half-life in Escherichia coli. Nucleic Acids Res. 1991 Sep 11;19(17):4595–4600. [PubMed]
  • Bouvet, P; Belasco, JG. Control of RNase E-mediated RNA degradation by 5'-terminal base pairing in E. coli. Nature. 1992 Dec 3;360(6403):488–491. [PubMed]
  • Braun, F; Hajnsdorf, E; Régnier, P. Polynucleotide phosphorylase is required for the rapid degradation of the RNase E-processed rpsO mRNA of Escherichia coli devoid of its 3' hairpin. Mol Microbiol. 1996 Mar;19(5):997–1005. [PubMed]
  • Carpousis, AJ; Van Houwe, G; Ehretsmann, C; Krisch, HM. Copurification of E. coli RNAase E and PNPase: evidence for a specific association between two enzymes important in RNA processing and degradation. Cell. 1994 Mar 11;76(5):889–900. [PubMed]
  • Cohen, SN; McDowall, KJ. RNase E: still a wonderfully mysterious enzyme. Mol Microbiol. 1997 Mar;23(6):1099–1106. [PubMed]
  • Cole, JR; Nomura, M. Changes in the half-life of ribosomal protein messenger RNA caused by translational repression. J Mol Biol. 1986 Apr 5;188(3):383–392. [PubMed]
  • Dotto, GP; Enea, V; Zinder, ND. Functional analysis of bacteriophage f1 intergenic region. Virology. 1981 Oct 30;114(2):463–473. [PubMed]
  • Emory, SA; Bouvet, P; Belasco, JG. A 5'-terminal stem-loop structure can stabilize mRNA in Escherichia coli. Genes Dev. 1992 Jan;6(1):135–148. [PubMed]
  • Hajnsdorf, E; Steier, O; Coscoy, L; Teysset, L; Régnier, P. Roles of RNase E, RNase II and PNPase in the degradation of the rpsO transcripts of Escherichia coli: stabilizing function of RNase II and evidence for efficient degradation in an ams pnp rnb mutant. EMBO J. 1994 Jul 15;13(14):3368–3377. [PubMed]
  • Hajnsdorf, E; Braun, F; Haugel-Nielsen, J; Régnier, P. Polyadenylylation destabilizes the rpsO mRNA of Escherichia coli. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):3973–3977. [PubMed]
  • Hajnsdorf, E; Braun, F; Haugel-Nielsen, J; Le Derout, J; Régnier, P. Multiple degradation pathways of the rpsO mRNA of Escherichia coli. RNase E interacts with the 5' and 3' extremities of the primary transcript. Biochimie. 1996;78(6):416–424. [PubMed]
  • Hartz, D; McPheeters, DS; Green, L; Gold, L. Detection of Escherichia coli ribosome binding at translation initiation sites in the absence of tRNA. J Mol Biol. 1991 Mar 5;218(1):99–105. [PubMed]
  • Haugel-Nielsen, J; Hajnsdorf, E; Regnier, P. The rpsO mRNA of Escherichia coli is polyadenylated at multiple sites resulting from endonucleolytic processing and exonucleolytic degradation. EMBO J. 1996 Jun 17;15(12):3144–3152. [PubMed]
  • Huang, H; Liao, J; Cohen, SN. Poly(A)- and poly(U)-specific RNA 3' tail shortening by E. coli ribonuclease E. Nature. 1998 Jan 1;391(6662):99–102. [PubMed]
  • Iost, I; Dreyfus, M. The stability of Escherichia coli lacZ mRNA depends upon the simultaneity of its synthesis and translation. EMBO J. 1995 Jul 3;14(13):3252–3261. [PubMed]
  • Jain, C; Kleckner, N. IS10 mRNA stability and steady state levels in Escherichia coli: indirect effects of translation and role of rne function. Mol Microbiol. 1993 Jul;9(2):233–247. [PubMed]
  • Keiler, KC; Waller, PR; Sauer, RT. Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA. Science. 1996 Feb 16;271(5251):990–993. [PubMed]
  • Kunkel, TA; Roberts, JD; Zakour, RA. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. [PubMed]
  • Lerner, CG; Inouye, M. Low copy number plasmids for regulated low-level expression of cloned genes in Escherichia coli with blue/white insert screening capability. Nucleic Acids Res. 1990 Aug 11;18(15):4631–4631. [PubMed]
  • Mackie, GA. Posttranscriptional regulation of ribosomal protein S20 and stability of the S20 mRNA species. J Bacteriol. 1987 Jun;169(6):2697–2701. [PubMed]
  • Mackie, GA; Genereaux, JL. The role of RNA structure in determining RNase E-dependent cleavage sites in the mRNA for ribosomal protein S20 in vitro. J Mol Biol. 1993 Dec 20;234(4):998–1012. [PubMed]
  • Mackie, GA; Genereaux, JL; Masterman, SK. Modulation of the activity of RNase E in vitro by RNA sequences and secondary structures 5' to cleavage sites. J Biol Chem. 1997 Jan 3;272(1):609–616. [PubMed]
  • Makarova, OV; Makarov, EM; Sousa, R; Dreyfus, M. Transcribing of Escherichia coli genes with mutant T7 RNA polymerases: stability of lacZ mRNA inversely correlates with polymerase speed. Proc Natl Acad Sci U S A. 1995 Dec 19;92(26):12250–12254. [PubMed]
  • McDowall, KJ; Kaberdin, VR; Wu, SW; Cohen, SN; Lin-Chao, S. Site-specific RNase E cleavage of oligonucleotides and inhibition by stem-loops. Nature. 1995 Mar 16;374(6519):287–290. [PubMed]
  • Naureckiene, S; Uhlin, BE. In vitro analysis of mRNA processing by RNase E in the pap operon of Escherichia coli. Mol Microbiol. 1996 Jul;21(1):55–68. [PubMed]
  • Nilsson, G; Belasco, JG; Cohen, SN; von Gabain, A. Effect of premature termination of translation on mRNA stability depends on the site of ribosome release. Proc Natl Acad Sci U S A. 1987 Jul;84(14):4890–4894. [PubMed]
  • Nilsson, P; Naureckiene, S; Uhlin, BE. Mutations affecting mRNA processing and fimbrial biogenesis in the Escherichia coli pap operon. J Bacteriol. 1996 Feb;178(3):683–690. [PubMed]
  • O'Hara, EB; Chekanova, JA; Ingle, CA; Kushner, ZR; Peters, E; Kushner, SR. Polyadenylylation helps regulate mRNA decay in Escherichia coli. Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):1807–1811. [PubMed]
  • Philippe, C; Eyermann, F; Bénard, L; Portier, C; Ehresmann, B; Ehresmann, C. Ribosomal protein S15 from Escherichia coli modulates its own translation by trapping the ribosome on the mRNA initiation loading site. Proc Natl Acad Sci U S A. 1993 May 15;90(10):4394–4398. [PubMed]
  • Plumbridge, JA; Dondon, J; Nakamura, Y; Grunberg-Manago, M. Effect of NusA protein on expression of the nusA,infB operon in E. coli. Nucleic Acids Res. 1985 May 10;13(9):3371–3388. [PubMed]
  • Portier, C; Dondon, L; Grunberg-Manago, M. Translational autocontrol of the Escherichia coli ribosomal protein S15. J Mol Biol. 1990 Jan 20;211(2):407–414. [PubMed]
  • Py, B; Higgins, CF; Krisch, HM; Carpousis, AJ. A DEAD-box RNA helicase in the Escherichia coli RNA degradosome. Nature. 1996 May 9;381(6578):169–172. [PubMed]
  • Rapaport, LR; Mackie, GA. Influence of translational efficiency on the stability of the mRNA for ribosomal protein S20 in Escherichia coli. J Bacteriol. 1994 Feb;176(4):992–998. [PubMed]
  • Régnier, P; Hajnsdorf, E. Decay of mRNA encoding ribosomal protein S15 of Escherichia coli is initiated by an RNase E-dependent endonucleolytic cleavage that removes the 3' stabilizing stem and loop structure. J Mol Biol. 1991 Jan 20;217(2):283–292. [PubMed]
  • Régnier, P; Portier, C. Initiation, attenuation and RNase III processing of transcripts from the Escherichia coli operon encoding ribosomal protein S15 and polynucleotide phosphorylase. J Mol Biol. 1986 Jan 5;187(1):23–32. [PubMed]
  • Régnier, P; Grunberg-Manago, M; Portier, C. Nucleotide sequence of the pnp gene of Escherichia coli encoding polynucleotide phosphorylase. Homology of the primary structure of the protein with the RNA-binding domain of ribosomal protein S1. J Biol Chem. 1987 Jan 5;262(1):63–68. [PubMed]
  • Simons, RW; Houman, F; Kleckner, N. Improved single and multicopy lac-based cloning vectors for protein and operon fusions. Gene. 1987;53(1):85–96. [PubMed]
  • Singer, P; Nomura, M. Stability of ribosomal protein mRNA and translational feedback regulation in Escherichia coli. Mol Gen Genet. 1985;199(3):543–546. [PubMed]
  • Springer, M; Plumbridge, JA; Butler, JS; Graffe, M; Dondon, J; Mayaux, JF; Fayat, G; Lestienne, P; Blanquet, S; Grunberg-Manago, M. Autogenous control of Escherichia coli threonyl-tRNA synthetase expression in vivo. J Mol Biol. 1985 Sep 5;185(1):93–104. [PubMed]
  • Steitz, JA. Polypeptide chain initiation: nucleotide sequences of the three ribosomal binding sites in bacteriophage R17 RNA. Nature. 1969 Dec 6;224(5223):957–964. [PubMed]
  • Xu, F; Lin-Chao, S; Cohen, SN. The Escherichia coli pcnB gene promotes adenylylation of antisense RNAI of ColE1-type plasmids in vivo and degradation of RNAI decay intermediates. Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6756–6760. [PubMed]
  • Yano, R; Yura, T. Suppression of the Escherichia coli rpoH opal mutation by ribosomes lacking S15 protein. J Bacteriol. 1989 Mar;171(3):1712–1717. [PubMed]
  • Yarchuk, O; Iost, I; Dreyfus, M. The relation between translation and mRNA degradation in the lacZ gene. Biochimie. 1991 Dec;73(12):1533–1541. [PubMed]
  • Zilhão, R; Camelo, L; Arraiano, CM. DNA sequencing and expression of the gene rnb encoding Escherichia coli ribonuclease II. Mol Microbiol. 1993 Apr;8(1):43–51. [PubMed]
  • Zilhão, R; Plumbridge, J; Hajnsdorf, E; Régnier, P; Arraiano, CM. Escherichia coli RNase II: characterization of the promoters involved in the transcription of rnb. Microbiology. 1996 Feb;142 (:367–375. [PubMed]