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Abstract

For the past few years, a joint ISO/CCITT committee
known as JPEG (Joint Photographic Experts Group)
has been working to establish the first international
compression standard for continuous-tone still images,
both grayscale and color.  JPEG’s proposed standard
aims to be generic, to support a wide variety of
applications for continuous-tone images. To meet the
differing needs of many applications, the JPEG
standard includes two basic compression methods, each
with various modes of operation. A DCT-based method
is specified for “lossy’’ compression, and a predictive
method for “lossless’’ compression.  JPEG features a
simple lossy technique known as the Baseline method,
a subset of the other DCT-based modes of operation.
The Baseline method has been by far the most widely
implemented JPEG method to date, and is sufficient in
its own right for a large number of applications. This
article provides an overview of the JPEG standard, and
focuses in detail on the Baseline method.

1  Introduction

Advances over the past decade in many aspects of
digital technology - especially devices for image
acquisition, data storage, and bitmapped printing and
display - have brought about many applications of
digital imaging.  However, these applications tend to be
specialized due to their relatively high cost.  With the
possible exception of facsimile, digital images are not
commonplace in general-purpose computing systems
the way text and geometric graphics are.   The majority
of modern business and consumer usage of photographs
and other types of images takes place through more
traditional analog means.

The key obstacle for many applications is the vast
amount of data required to represent a digital image
directly.  A digitized version of a single, color picture
at TV resolution contains on the order of one million
bytes; 35mm resolution requires ten times that amount. 
Use of digital images often is not viable due to high
storage or transmission costs, even when image capture
and display devices are quite affordable.

Modern image compression technology offers a
possible solution.  State-of-the-art techniques can
compress typical images from 1/10 to 1/50 their
uncompressed size without visibly affecting image
quality.  But compression technology alone is not
sufficient.  For digital image applications involving
storage or transmission to become widespread in
today’s marketplace, a standard image compression
method is needed to enable interoperability of
equipment from different manufacturers.  The CCITT
recommendation for today’s ubiquitous Group 3 fax
machines [17] is a dramatic example of how a standard
compression method can enable an important image
application.  The Group 3 method, however, deals with
bilevel images only and does not address photographic
image compression.

For the past few years, a standardization effort known
by the acronym JPEG, for Joint Photographic Experts
Group, has been working toward establishing the first
international digital image compression standard for
continuous-tone (multilevel) still images, both
grayscale and color.  The “joint” in JPEG refers to a
collaboration between CCITT and ISO.  JPEG
convenes officially as the ISO committee designated
JTC1/SC2/WG10, but operates in close informal
collaboration with CCITT SGVIII.  JPEG will be both
an ISO Standard and a CCITT Recommendation.  The
text of both will be identical.

Photovideotex, desktop publishing, graphic arts, color
facsimile, newspaper wirephoto transmission, medical
imaging, and many other continuous-tone image
applications require a compression standard in order to
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develop significantly beyond their present state.  JPEG
has undertaken the ambitious task of developing a
general-purpose compression standard to meet the
needs of almost all continuous-tone still-image
applications.

If this goal proves attainable, not only will individual
applications flourish, but exchange of images across
application boundaries will be facilitated.  This latter
feature will become increasingly important as more
image applications are implemented on general-purpose
computing systems, which are themselves becoming
increasingly interoperable and internetworked.  For
applications which require specialized VLSI to meet
their compression and decompression speed
requirements, a common method will provide
economies of scale not possible within a single
application. 

This article gives an overview of JPEG’s proposed
image-compression standard.  Readers without prior
knowledge of JPEG or compression based on the
Discrete Cosine Transform (DCT) are encouraged to
study first the detailed description of the Baseline
sequential codec, which is the basis for all of the
DCT-based decoders.  While this article provides many
details, many more are necessarily omitted.  The reader
should refer to the ISO draft standard [2] before
attempting implementation.

Some of the earliest industry attention to the JPEG
proposal has been focused on the Baseline sequential
codec as a motion image compression method - of the
‘‘intraframe’’ class, where each frame is encoded as a
separate image.  This class of motion image coding,
while providing less compression than ‘‘interframe’’
methods like MPEG, has greater flexibility for video
editing.  While this paper focuses only on JPEG as a
still picture standard (as ISO intended), it is interesting
to note that JPEG is likely to become a ‘‘de facto’’
intraframe motion standard as well.

2  Background:  Requirements and Selec-
tion Process

JPEG’s goal has been to develop a method for
continuous-tone image compression which meets the
following requirements:

1) be at or near the state of the art with regard to
compression rate and accompanying image
fidelity, over a wide range of image quality ratings,
and especially in the range where visual fidelity to
the original is characterized as “very good” to
“excellent”; also, the encoder should be
parameterizable, so that the application (or user)
can set the desired compression/quality tradeoff;

2) be applicable to practically any kind of
continuous-tone digital source image (i.e. for most
practical purposes not be restricted to images of
certain dimensions, color spaces, pixel aspect
ratios, etc.) and not be limited to classes of imagery
with restrictions on scene content, such as
complexity, range of colors, or statistical
properties;

3) have tractable computational complexity, to make
feasible software implementations with viable
performance on a range of CPU’s, as well as
hardware implementations with viable cost for
applications requiring high performance;

4)  have the following modes of operation:

• Sequential encoding: each image component is
encoded in a single left-to-right, top-to-bottom
scan;

• Progressive encoding: the image is encoded in
multiple scans for applications in which
transmission time is long, and the viewer
prefers to watch the image build up in multiple
coarse-to-clear passes;

• Lossless encoding: the image is encoded to
guarantee exact recovery of every source
image sample value (even though the result is
low compression compared to the lossy
modes);

• Hierarchical encoding: the image is encoded at
multiple resolutions so that lower-resolution
versions may be accessed without first having
to decompress the image at its full resolution.

In June 1987, JPEG conducted a selection process
based on a blind assessment of subjective picture
quality, and narrowed 12 proposed methods to three. 
Three informal working groups formed to refine them,
and in January 1988, a second, more rigorous selection
process [19] revealed that the “ADCT” proposal [11],
based on the 8x8 DCT, had produced the best picture
quality.

At the time of its selection, the DCT-based method was
only partially defined for some of the modes of
operation.  From 1988 through 1990, JPEG undertook
the sizable task of defining, documenting, simulating,
testing, validating, and simply agreeing on the plethora
of details necessary for genuine interoperability and
universality.  Further history of the JPEG effort is
contained in [6, 7, 9, 18].
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3  Architecture of the Proposed Standard

The proposed standard contains the four “modes of
operation” identified previously.  For each mode, one
or more distinct codecs are specified.  Codecs within a
mode differ according to the precision of source image
samples they can handle or the entropy coding method
they use.  Although the word codec (encoder/decoder)
is used frequently in this article, there is no requirement
that implementations must include both an encoder and
a decoder.  Many applications will have systems or
devices which require only one or the other.

The four modes of operation and their various codecs
have resulted from JPEG’s goal of being generic and
from the diversity of image formats across applications. 
The multiple pieces can give the impression of
undesirable complexity, but they should actually be
regarded as a comprehensive “toolkit” which can span a
wide range of continuous-tone image applications.  It is
unlikely that many implementations will utilize every
tool -- indeed, most of the early implementations now
on the market (even before final ISO approval) have
implemented only the Baseline sequential codec.

The Baseline sequential codec is inherently a rich and
sophisticated compression method which will be
sufficient for many applications.  Getting this minimum
JPEG capability implemented properly and
interoperably will provide the industry with an
important initial capability for exchange of images
across vendors and applications.

4  Processing Steps for DCT-Based Coding

Figures 1 and 2 show the key processing steps which
are the heart of the DCT-based modes of operation. 
These figures illustrate the special case of
single-component (grayscale) image compression.  The
reader can grasp the essentials of DCT-based
compression by thinking of it as essentially
compression of a stream of 8x8 blocks of grayscale
image samples.  Color image compression can then be
approximately regarded as compression of multiple
grayscale images, which are either compressed entirely
one at a time, or are compressed by alternately
interleaving 8x8 sample blocks from each in turn.

For DCT sequential-mode codecs, which include the
Baseline sequential codec, the simplified diagrams
indicate how single-component compression works in a 
fairly complete way.  Each 8x8 block is input, makes
its way through each processing step, and yields output
in compressed form into the data stream.  For DCT
progressive-mode codecs, an image buffer exists prior
to the entropy coding step, so that an image can be
stored and then parceled out in multiple scans with suc-
cessively improving quality.  For the hierarchical mode

of operation, the steps shown are used as building
blocks within a larger framework.

4.1  8x8 FDCT and IDCT

At the input to the encoder, source image samples are
grouped into 8x8 blocks, shifted from unsigned integers
with range [0, 2P - 1] to signed integers with range
[-2P-1, 2P-1-1], and input to the Forward DCT (FDCT). 
At the output from the decoder, the Inverse DCT
(IDCT) outputs 8x8 sample blocks to form the
reconstructed image.  The following equations are the
idealized mathematical definitions of the 8x8 FDCT
and 8x8 IDCT:

The DCT is related to the Discrete Fourier Transform
(DFT).  Some simple intuition for DCT-based
compression can be obtained by viewing the FDCT as a
harmonic analyzer and the IDCT as a harmonic
synthesizer.  Each 8x8 block of source image samples
is effectively a 64-point discrete signal which is a
function of the two spatial dimensions x and y.  The
FDCT takes such a signal as its input and decomposes
it into 64 orthogonal basis signals.  Each contains one
of the 64 unique two-dimensional (2D) “spatial
frequencies’’ which comprise the input signal’s
“spectrum.”  The ouput of the FDCT is the set of 64
basis-signal amplitudes or “DCT coefficients” whose
values are uniquely determined by the particular
64-point input signal.

The DCT coefficient values can thus be regarded as the
relative amount of the 2D spatial frequencies contained
in the 64-point input signal.  The coefficient with zero
frequency in both dimensions is called the “DC
coefficient” and the remaining 63 coefficients are
called the “AC coefficients.’’  Because sample values
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typically vary slowly from point to point across an
image, the FDCT processing step lays the foundation
for achieving data compression by concentrating most
of the signal in the lower spatial frequencies.  For a
typical 8x8 sample block from a typical source image,
most of the spatial frequencies have zero or near-zero
amplitude and need not be encoded.

At the decoder the IDCT reverses this processing step. 
It takes the 64 DCT coefficients (which at that point
have been quantized) and reconstructs a 64-point ouput
image signal by summing the basis signals. 
Mathematically, the DCT is one-to-one mapping for
64-point vectors between the image and the frequency
domains.  If the FDCT and IDCT could be computed
with perfect accuracy and if the DCT coefficients were
not quantized as in the following description, the
original 64-point signal could be exactly recovered.  In
principle, the DCT introduces no loss to the source
image samples; it merely transforms them to a domain
in which they can be more efficiently encoded. 

Some properties of practical FDCT and IDCT
implementations raise the issue of what precisely
should be required by the JPEG standard.  A
fundamental property is that the FDCT and IDCT
equations contain transcendental functions. 
Consequently, no physical implementation can
compute them with perfect accuracy.  Because of the
DCT’s application importance and its relationship to
the DFT, many different algorithms by which the

FDCT and IDCT may be approximately computed have
been devised [16].  Indeed, research in fast DCT
algorithms is ongoing and no single algorithm is
optimal for all implementations.  What is optimal in
software for a general-purpose CPU is unlikely to be
optimal in firmware for a programmable DSP and is
certain to be suboptimal for dedicated VLSI.

Even in light of the finite precision of the DCT inputs
and outputs, independently designed implementations
of the very same FDCT or IDCT algorithm which differ
even minutely in the precision by which they represent
cosine terms or intermediate results, or in the way they
sum and round fractional values, will eventually
produce slightly different outputs from identical inputs.

To preserve freedom for innovation and customization
within implementations, JPEG has chosen to specify
neither a unique FDCT algorithm or a unique IDCT
algorithm in its proposed standard.  This makes
compliance somewhat more difficult to confirm,
because two compliant encoders (or decoders)
generally will not produce identical outputs given
identical inputs.  The JPEG standard will address this
issue by specifying an accuracy test as part of its
compliance tests for all DCT-based encoders and
decoders; this is to ensure against crudely inaccurate
cosine basis functions which would degrade image
quality.

   8x8 blocks                                           DCT-Based Encoder

FDCT                 Quantizer  Entropy
  Encoder

     Source                                              Table                          Table                      Compressed

•

Specifications               Image Data SpecificationsImage Data

  Entropy
   Decoder

 Dequantizer                IDCT

DCT-Based Decoder

    Table                             Table
 Specifications               Specifications

Compressed
Image Data

     Reconstructed
   Image Data

Figure 1.  DCT-Based Encoder Processing Steps

Figure 2.  DCT-Based Decoder Processing Steps
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For each DCT-based mode of operation, the JPEG
proposal specifies separate codecs for images with 8-bit
and 12-bit (per component) source image samples.  The
12-bit codecs, needed to accommodate certain types of
medical and other images, require greater
computational resources to achieve the required FDCT
or IDCT accuracy.  Images with other sample
precisions can usually be accommodated by either an
8-bit or 12-bit codec, but this must be done outside the
JPEG standard.  For example, it would be the
responsibility of an application to decide how to fit or
pad a 6-bit sample into the 8-bit encoder’s input
interface, how to unpack it at the decoder’s output, and
how to encode any necessary related information.

4.2  Quantization

After output from the FDCT, each of the 64 DCT
coefficients is uniformly quantized in conjunction with
a 64-element Quantization Table, which must be
specified by the application (or user) as an input to the
encoder.  Each element can be any integer value from 1
to 255, which specifies the step size of the quantizer for
its corresponding DCT coefficient.  The purpose of
quantization is to achieve further compression by
representing DCT coefficients with no greater precision
than is necessary to achieve the desired image quality. 
Stated another way, the goal of this processing step is
to discard information which is not visually significant.
Quantization is a many-to-one mapping, and therefore
is fundamentally lossy.  It is the principal source of
lossiness in DCT-based encoders.

Quantization is defined as division of each DCT
coefficient by its corresponding quantizer step size,
followed by rounding to the nearest integer:

F
Q
(u,v) =  Integer Round (

 F(u,v)
Q(u,v) 

) (3)

This output value is normalized by the quantizer step
size.  Dequantization is the inverse function, which in
this case means simply that the normalization is
removed by multiplying by the step size, which returns
the result to a representation appropriate for input to the
IDCT:

When the aim is to compress the image as much as
possible without visible artifacts, each step size ideally
should be chosen as the perceptual threshold or “just
noticeable difference” for the visual contribution of its
corresponding cosine basis function.  These thresholds
are also functions of the source image characteristics,
display characteristics and viewing distance.  For
applications in which these variables can be reasonably
well defined, psychovisual experiments can be
performed to determine the best thresholds.  The
experiment described in [12] has led to a set of
Quantization Tables for CCIR-601 [4] images and
displays.  These have been used experimentally by
JPEG members and will appear in the ISO standard as a
matter of information, but not as a requirement.

4.3  DC Coding and Zig-Zag Sequence

After quantization, the DC coefficient is treated
separately from the 63 AC coefficients.  The DC
coefficient is a measure of the average value of the 64
image samples.  Because there is usually strong
correlation between the DC coefficients of adjacent 8x8
blocks, the quantized DC coefficient is encoded as the
difference from the DC term of the previous block in
the encoding order (defined in the following), as shown
in Figure 3.  This special treatment is worthwhile, as
DC coefficients frequently contain a significant fraction
of the total image energy.

F
Q ′

(u,v) = F
Q
(u,v) Q(u,v)* (4)

. . .

DIFF = DCi - DCi-1

  DCi-1       DCi
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •

Differential DC encoding                                       Zig−zag sequence

blocki-1 blocki. . .

DC   AC01

AC77

        AC07

AC70

Figure 3.  Preparation of Quantized Coefficients for Entropy Coding
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Finally, all of the quantized coefficients are ordered
into the “zig-zag” sequence, also shown in Figure 3. 
This ordering helps to facilitate entropy coding by
placing low-frequency coefficients (which are more
likely to be nonzero) before high-frequency
coefficients.

4.4  Entropy Coding

The final DCT-based encoder processing step is
entropy coding.  This step achieves additional
compression losslessly by encoding the quantized DCT
coefficients more compactly based on their statistical
characteristics.  The JPEG proposal specifies two
entropy coding methods - Huffman coding [8] and
arithmetic coding [15].  The Baseline sequential codec
uses Huffman coding, but codecs with both methods
are specified for all modes of operation.

It is useful to consider entropy coding as a 2-step
process.  The first step converts the zig-zag sequence of
quantized coefficients into an intermediate sequence of
symbols.  The second step converts the symbols to a
data stream in which the symbols no longer have
externally identifiable boundaries.  The form and
definition of the intermediate symbols is dependent on
both the DCT-based mode of operation and the entropy
coding method.

Huffman coding requires that one or more sets of
Huffman code tables be specified by the application. 
The same tables used to compress an image are needed
to decompress it.  Huffman tables may be predefined
and used within an application as defaults, or computed
specifically for a given image in an initial
statistics-gathering pass prior to compression.  Such
choices are the business of the applications which use
JPEG; the JPEG proposal specifies no required
Huffman tables.  Huffman coding for the Baseline
sequential encoder is described in detail in section 7.

By contrast, the particular arithmetic coding method
specified in the JPEG proposal [2] requires no tables to
be externally input, because it is able to adapt to the
image statistics as it encodes the image.  (If desired,
statistical conditioning tables can be used as inputs for
slightly better efficiency, but this is not required.) 
Arithmetic coding has produced 5-10% better
compression than Huffman for many of the images
which JPEG members have tested.  However, some feel
it is more complex than Huffman coding for certain
implementations, for example, the highest-speed
hardware implementations.  (Throughout JPEG’s
history, “complexity” has proved to be most elusive as
a practical metric for comparing compression methods.)

If the only difference between two JPEG codecs is the
entropy coding method, transcoding between the two is

possible by simply entropy decoding with one method
and entropy recoding with the other.

4.5  Compression and Picture Quality

For color images with moderately complex scenes, all
DCT-based modes of operation typically produce the
following levels of picture quality for the indicated
ranges of compression.  These levels are only a
guideline - quality and compression can vary
significantly according to source image characteristics
and scene content.  (The units “bits/pixel” here mean
the total number of bits in the compressed image -
including the chrominance components - divided by the
number of samples in the luminance component.)

• 0.25-0.5 bits/pixel: moderate to good quality,
sufficient for some applications;

• 0.5-0.75 bits/pixel: good to very good quality,
sufficient for many applications;

• 0.75-1/5 bits/pixel: excellent quality, sufficient for
most applications;

• 1.5-2.0 bits/pixel: usually indistinguishable from
the original, sufficient for the most demanding
applications.

5  Processing Steps for Predictive Lossless
Coding

After its selection of a DCT-based method in 1988,
JPEG discovered that a DCT-based lossless mode was
difficult to define as a practical standard against which
encoders and decoders could be independently
implemented, without placing severe constraints on
both encoder and decoder implementations.

JPEG, to meet its requirement for a lossless mode of
operation, has chosen a simple predictive method
which is wholly independent of the DCT processing
described previously.  Selection of this method was not
the result of rigorous competitive evaluation as was the
DCT-based method.  Nevertheless, the JPEG lossless
method produces results which, in light of its
simplicity, are surprisingly close to the state of the art
for lossless continuous-tone compression, as indicated
by a recent technical report [5].

Figure 4 shows the main processing steps for a
single-component image.  A predictor combines the
values of up to three neighboring samples (A, B, and C)
to form a prediction of the sample indicated by X in
Figure 5.  This prediction is then subtracted from the
actual value of sample X, and the difference is encoded
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losslessly by either of the entropy coding methods -
Huffman or arithmetic.  Any one of the eight predictors 
listed in Table 1 (under “selection-value”) can be used.

Selections 1, 2, and 3 are one-dimensional predictors
and selections 4, 5, 6 and 7 are two-dimensional
predictors.  Selection-value 0 can only be used for
differential coding in the hierarchical mode of
operation.  The entropy coding is nearly identical to
that used for the DC coefficient as described in section
7.1 (for Huffman coding).

For the lossless mode of operation, two different codecs
are specified - one for each entropy coding method. 
The encoders can use any source image precision from
2 to 16 bits/sample, and can use any of the predictors
except selection-value 0.  The decoders must handle
any of the sample precisions and any of the predictors. 
Lossless codecs typically produce around 2:1
compression for color images with moderately complex
scenes.

Figure 5.  3-Sample Prediction Neighborhood

C      B

A      X 6  Multiple-Component Images

The previous sections discussed the key processing
steps of the DCT-based and predictive lossless codecs
for the case of single-component source images.  These
steps accomplish the image data compression.  But a
good deal of the JPEG proposal is also concerned with
the handling and control of color (or other) images with
multiple components.  JPEG’s aim for a generic
compression standard requires its proposal to
accommodate a variety of source image formats.

6.1  Source Image Formats

The source image model used in the JPEG proposal is
an abstraction from a variety of image types and
applications and consists of only what is necessary to
compress and reconstruct digital image data.  The
reader should recognize that the JPEG compressed data
format does not encode enough information to serve as
a complete image representation.  For example, JPEG
does not specify or encode any information on pixel
aspect ratio, color space, or image acquisition
characteristics.

Table 1.  Predictors for Lossless Coding

selection-
value prediction

0 no prediction
1
2
3
4
5
6
7

A
B
C
A+B-C
A+((B-C)/2)
B+((A-C)/2)
(A+B)/2

Predictor
Entropy
Encoder

Lossless Encoder

  Source 
Image Data

   Table
 Specifications

Compressed
  Image Data

Figure 4.  Lossless Mode Encoder Processing Steps
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Figure 6 illustrates the JPEG source image model.  A
source image contains from 1 to 255 image
components, sometimes called color or spectral bands
or channels.  Each component consists of a rectangular
array of samples.  A sample is defined to be an
unsigned integer with precision P bits, with any value
in the range [0, 2P-1].  All samples of all components
within the same source image must have the same
precision P.  P can be 8 or 12 for DCT-based codecs,
and 2 to 16 for predictive codecs.

The ith component has sample dimensions xi by yi.  To
accommodate formats in which some image
components are sampled at different rates than others,
components can have different dimensions.  The
dimensions must have a mutual integral relationship
defined by Hi and Vi, the relative horizontal and
vertical sampling factors, which must be specified for
each component.  Overall image dimensions X and Y
are defined as the maximum xi and yi for all
components in the image, and can be any number up to
216.  H and V are allowed only the integer values 1
through 4.  The encoded parameters are X, Y, and His
and Vis for each components.  The decoder reconstructs
the dimensions xi and yi for each component, according
to the following relationship shown in Equation 5:

where     is the ceiling function.

6.2  Encoding Order and Interleaving

A practical image compression standard must address
how systems will need to handle the data during the
process of decompression.  Many applications need to
pipeline the process of displaying or printing
multiple-component images in parallel with the process

xi = X      Hi
H    and               

yi = Y
Vi

Vm


ax

max

 ×

×

(5)

of decompression.  For many systems, this is only
feasible if the components are interleaved together
within the compressed data stream.

To make the same interleaving machinery applicable to
both DCT-based and predictive codecs, the JPEG
proposal has defined the concept of “data unit.”  A data
unit is a sample in predictive codecs and an 8x8 block
of samples in DCT-based codecs.

The order in which compressed data units are placed in
the compressed data stream is a generalization of
raster-scan order.  Generally, data units are ordered
from left-to-right and top-to-bottom according to the
orientation shown in Figure 6.  (It is the responsibility
of applications to define which edges of a source image
are top, bottom, left and right.)  If an image component
is noninterleaved (i.e., compressed without being
interleaved with other components), compressed data
units are ordered in a pure raster scan as shown in
Figure 7.

When two or more components are interleaved, each
component Ci is partitioned into rectangular regions of
Hi by Vi data units, as shown in the generalized
example of Figure 8.  Regions are ordered within a
component from left-to-right and top-to-bottom, and
within a region, data units are ordered from left-to-right
and top-to-bottom.  The JPEG proposal defines the
term Minimum Coded Unit (MCU) to be the smallest

top

right

bottom

left

Figure 7.  Noninterleaved Data Ordering
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• • • • • • •
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xi

yi
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(a) Source image with multiple components   

.
..

Ci

Figure 6.  JPEG Source Image Model
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group of interleaved data units.  For the example
shown, MCU1 consists of data units taken first from the
top-left-most region of C1, followed by data units from
the same region of C2, and likewise for C3 and C4. 
MCU2 continues the pattern as shown.

Thus, interleaved data is an ordered sequence of MCUs,
and the number of data units contained in an MCU is
determined by the number of components interleaved
and their relative sampling factors.  The maximum
number of components which can be interleaved is 4
and the maximum number of data units in an MCU is
10.  The latter restriction is expressed as shown in
Equation 6, where the summation is over the
interleaved components:

Because of this restriction, not every combination of 4
components which can be represented in noninterleaved
order within a JPEG-compressed image is allowed to
be interleaved.  Also, note that the JPEG proposal
allows some components to be interleaved and some to
be noninterleaved within the same compressed image.

∑   Hi × Vi ≤ 10
all i in
interleave (6)

6.3  Multiple Tables

In addition to the interleaving control discussed
previously, JPEG codecs must control application of
the proper table data to the proper components.  The
same quantization table and the same entropy coding
table (or set of tables) must be used to encode all
samples within a component.

JPEG decoders can store up to 4 different quantization
tables and up to 4 different (sets of) entropy coding
tables simultaneously.  (The Baseline sequential
decoder is the exception; it can only store up to 2 sets
of entropy coding tables.)  This is necessary for
switching between different tables during
decompression of a scan containing multiple
(interleaved) components, in order to apply the proper
table to the proper component.  (Tables cannot be
loaded during decompression of a scan.)  Figure 9
illustrates the table-switching control that must be
managed in conjunction with multiple-component
interleaving for the encoder side.  (This simplified view
does not distinguish between quantization and entropy
coding tables.)
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7  Baseline and Other DCT Sequential
Codecs

The DCT sequential mode of operation consists of the
FDCT and Quantization steps from section 4, and the
multiple-component control from section 6.3.  In
addition to the Baseline sequential codec, other DCT
sequential codecs are defined to accommodate the two
different sample precisions (8 and 12 bits) and the two
different types of entropy coding methods (Huffman
and arithmetic).

Baseline sequential coding is for images with 8-bit
samples and uses Huffman coding only.  It also differs
from the other sequential DCT codecs in that its
decoder can store only two sets of Huffman tables (one
AC table and DC table per set).  This restriction means
that, for images with three or four interleaved
components, at least one set of Huffman tables must be
shared by two components.  This restriction poses no
limitation at all for noninterleaved components; a new
set of tables can be loaded into the decoder before
decompression of a noninterleaved component begins.

For many applications which do need to interleave
three color components, this restriction is hardly a
limitation at all.  Color spaces (YUV, CIELUV,
CIELAB, and others) which represent the chromatic
(‘‘color’’) information in two components and the
achromatic (‘‘grayscale’’) information in a third are
more efficient for compression than spaces like RGB. 
One Huffman table set can be used for the achromatic
component and one for the chrominance components. 
DCT coefficient statistics are similar for the
chrominance components of most images, and one set
of Huffman tables can encode both almost as optimally
as two.

The committee also felt that early availability of
single-chip implementations at commodity prices
would encourage early acceptance of the JPEG
proposal in a variety of applications.  In 1988 when

Encoding 
 Process
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 C

Table      Table 

•
•

• ••

Compressed 
  Image Data

Figure 9.  Component-Interleave and 
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   Image Data Spec. 1 Spec. 2

•
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Baseline sequential was defined, the committee’s VLSI
experts felt that current technology made the feasibility
of crowding four sets of loadable Huffman tables - in
addition to four sets of Quantization tables - onto a
single commodity-priced codec chip a risky
proposition.

The FDCT, Quantization, DC differencing, and zig-zag
ordering processing steps for the Baseline sequential
codec proceed just as described in section 4.  Prior to
entropy coding, there usually are few nonzero and
many zero-valued coefficients.  The task of entropy
coding is to encode these few coefficients efficiently. 
The description of Baseline sequential entropy coding
is given in two steps: conversion of the quantized DCT
coefficients into an intermediate sequence of symbols
and assignment of variable-length codes to the
symbols.

7.1 Intermediate Entropy Coding Representations

In the intermediate symbol sequence, each nonzero AC
coefficient is represented in combination with the
‘‘runlength’’ (consecutive number) of zero-valued AC
coefficients which precede it in the zig-zag sequence. 
Each such runlength/nonzero-coefficient combination is
(usually) represented by a pair of symbols:

symbol-1 symbol-2
(RUNLENGTH, SIZE) (AMPLITUDE)

Symbol-1 represents two pieces of information, 
RUNLENGTH and SIZE. Symbol-2 represents the
single piece of information designated AMPLITUDE,
which is simply the amplitude of the nonzero AC
coefficient. RUNLENGTH is the number of
consecutive zero-valued AC coefficients in the zig-zag
sequence preceding the nonzero AC coefficient being
represented. SIZE is the number of bits used to encode
AMPLITUDE - that is, to encoded symbol-2, by the
signed-integer encoding used with JPEG’s particular
method of Huffman coding. 

RUNLENGTH represents zero-runs of length 0 to 15.
Actual zero-runs in the zig-zag sequence can be greater
than 15, so the symbol-1 value (15, 0) is interpreted as
the extension symbol with runlength=16. There can be
up to three consecutive (15, 0) extensions before the
terminating symbol-1 whose RUNLENGTH value
completes the actual runlength. The terminating
symbol-1 is always followed by a single symbol-2,
except for the case in which the last run of zeros
includes the last (63d) AC coefficient. In this frequent
case, the special symbol-1 value (0,0) means EOB (end
of block), and can be viewed as an ‘‘escape’’ symbol
which terminates the 8x8 sample block.
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Thus, for each 8x8 block of samples, the zig-zag
sequence of 63 quantized AC coefficients is
represented as a sequence of symbol-1, symbol-2
symbol pairs, though each ‘‘pair’’ can have repetitions
of symbol-1 in the case of a long run-length or only one
symbol-1 in the case of an EOB.

The possible range of quantized AC coefficients
determines the range of values which both the
AMPLITUDE and the SIZE information must
represent. A numerical analysis of the 8x8 FDCT
equation shows that, if the 64-point (8x8 block) input
signal contains N-bit integers, then the nonfractional
part of the output numbers (DCT coefficients) can grow
by at most 3 bits. This is also the largest possible size
of a quantized DCT coefficient when its quantizer step
size has integer value 1.

Baseline sequential has 8-bit integer source samples in
the range [-27, 27-1], so quantized AC coefficient
amplitudes are covered by integers in the range [-210,
210-1]. The signed-integer encoding uses symbol-2
AMPLITUDE codes of 1 to 10 bits in length (so SIZE
also represents values from 1 to 10), and
RUNLENGTH represents values from 0 to 15 as
discussed previously. For AC coefficients, the structure
of the symbol-1 and symbol-2 intermediate
representations is illustrated in Tables 2 and 3,
respectively.

The intermediate representation for an 8x8 sample
block’s differential DC coefficient is structured
similarly. Symbol-1, however, represents only SIZE
information; symbol-2 represents AMPLITUDE
information as before:

symbol-1 symbol-2
(SIZE) (AMPLITUDE)

Because the DC coefficient is differentially encoded, it
is covered by twice as many integer values, [-211,
211-1] as the AC coefficients, so one additional level
must be added to the bottom of Table 3 for DC
coefficients. Symbol-1 for DC coefficients thus
represents a value from 1 to 11.

0      1      2     . . .     9      10

RUN

0
.
.
.
15

X
X
X

EOB

ZRL

RUN-SIZE
valuesLENGTH

Table 2.  Baseline Huffman Coding
Symbol-1 Structure 

SIZE

7.2  Variable-Length Entropy Coding

Once the quantized coefficient data for an 8x8 block is
represented in the intermediate symbol sequence
described above, variable-length codes are assigned. 
For each 8x8 block, the DC coefficient’s symbol-1 and
symbol-2 representation is coded and output first.

For both DC and AC coefficients, each symbol-1 is
encoded with a variable-length code (VLC) from the
Huffman table set assigned to the 8x8 block’s image
component.  Each symbol-2 is encoded with a
“variable-length integer” (VLI) code whose length in
bits is given in Table 3.  VLCs and VLIs both are codes
with variable lengths, but VLIs are not Huffman codes. 
An important distinction is that the length of a VLC
(Huffman code) is not known until it is decoded, but
the length of a VLI is stored in its preceding VLC.

Huffman codes (VLCs) must be specified externally as
an input to JPEG encoders.  (Note that the form in
which Huffman tables are represented in the data
stream is an indirect specification with which the
decoder must construct the tables themselves prior to
decompression.)  The JPEG proposal includes an
example set of Huffman tables in its information annex,
but because they are application-specific, it specifies
none for required use.  The VLI codes in contrast, are
“hardwired” into the proposal.  This is appropriate,
because the VLI codes are far more numerous, can be
computed rather than stored, and have not been shown
to be appreciably more efficient when implemented as
Huffman codes.

7.3 Baseline Encoding Example

This section gives an example of Baseline compression
and encoding of a single 8x8 sample block. Note that a
good deal of the operation of a complete JPEG Baseline
encoder is omitted here, including creation of
Interchange Format information (parameters, headers,
quantization and Huffman tables), byte-stuffing,
padding to byte-boundaries prior to a marker code, and
other key operations. Nonetheless, this example should
help to make concrete much of the foregoing
explanation.

Figure 10(a) is an 8x8 block of 8-bit samples,
aribtrarily extracted from a real image. The small
variations from sample to sample indicate the
predominance of low spatial frequencies. After
subtracting 128 from each sample for the required
level-shift, the 8x8 block is input to the FDCT,
equation (1). Figure 10(b) shows (to one decimal place)
the resulting DCT coefficients. Except for a few of the
lowest frequency coefficients, the amplitudes are quite
small.

11



Figure 10(c) is the example quantization table for
luminance (grayscale) components included in the
informational annex of the draft JPEG standard part
1 [2]. Figure 10(d) shows the quantized DCT
coefficients, normalized by their quantization table
entries, as specified by equation (3). At the decoder
these numbers are “denormalized” according to
equation (4), and input to the IDCT, equation (2).
Finally, figure 10(f) shows the reconstructed sample
values, remarkably similar to the originals in 10(a). 

Of course, the numbers in figure 10(d) must be
Huffman-encoded before transmission to the
decoder. The first number of the block to be encoded
is the DC term, which must be differentially
encoded. If the quantized DC term of the previous
block is, for example, 12, then the difference is +3.
Thus, the intermediate representation is (2)(3), for
SIZE=2 and AMPLITUDE=3.

Next, the the quantized AC coefficients are encoded.
Following the zig-zag order, the first non-zero
coefficient is -2, preceded by a zero-run of 1. This
yields an intermediate representation of (1,2)(-2).
Next encountered in the zig-zag order are three
consecutive non-zeros of amplitude -1. This means

each is preceded by a zero-run of length zero, for
intermediate symbols (0,1)(-1). The last non-zero
coefficient is -1 preceded by two zeros, for (2,1)(-1).
Because this is the last non-zero coefficient, the final
symbol representing this 8x8 block is EOB, or (0,0).

Thus, the intermediate sequence of symbols for this
example 8x8 block is: 

(2)(3),   (1,2)(-2),   (0,1)(-1),   (0,1)(-1),
(0,1)(-1),   (2,1)(-1),   (0,0)

Next the codes themselves must be assigned. For this
example, the VLCs (Huffman codes) from the
informational annex of [2] will be used. The
differential-DC VLC for this example is: 

 (2)  011

The AC luminance VLCs for this example are:

(0,0) 1010
(0,1) 00
(1,2) 11011
(2,1) 11100
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Figure 10.    DCT and Quantization Examples

240

-24

-14

0

0

0

0

0

0 -10 0 0 0 0 0

-12

-13

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

coefficients coefficients

12



The VLIs specified in  [2] are related to the two’s
complement representation. They  are:

(3) 11
(-2) 01
(-1) 0

Thus, the bit-stream for this 8x8 example block is as
follows.  Note that 31 bits are required to represent
64 coefficients, which achieves compression of just
under 0.5 bits/sample:

 0111111011010000000001110001010 

7.4  Other DCT Sequential Codecs

The structure of the 12-bit DCT sequential codec
with Huffman coding is a straightforward extension
of the entropy coding method described previously.
Quantized DCT coefficients can be 4 bits larger, so
the SIZE and AMPLITUDE information extend
accordingly.  DCT sequential with arithmetic coding
is described in detail in [2].

8  DCT Progressive Mode

The DCT progressive mode of operation consists of
the same FDCT and Quantization steps (from section
4) that are used by DCT sequential mode.  The key
difference is that each image component is encoded
in multiple scans rather than in a single scan.  The
first scan(s) encode a rough but recognizable version
of the image which can be transmitted quickly in
comparison to the total transmission time, and are
refined by succeeding scans until reaching a level of
picture quality that was established by the
quantization tables.

To achieve this requires the addition of an
image-sized buffer memory at the output of the
quantizer, before the input to entropy encoder.  The
buffer memory must be of sufficient size to store the
image as quantized DCT coefficients, each of which
(if stored straightforwardly) is 3 bits larger than the
source image samples.  After each block of DCT
coefficients is quantized, it is stored in the
coefficient buffer memory. The buffered coefficients
are then partially encoded in each of multiple scans.

There are two complementary methods by which a
block of quantized DCT coefficients may be partially
encoded.  First, only a specified “band” of
coefficients from the zig-zag sequence need be
encoded within a given scan.  This procedure is
called “spectral selection,” because each band
typically contains coefficients which occupy a lower

or higher part of the spatial-frequency spectrum for
that 8x8 block.  Secondly, the coefficients within the
current band need not be encoded to their full
(quantized) accuracy in a given scan.  Upon a
coefficient’s first encoding, the N most significant
bits can be encoded first, where N is specifiable.  In
subsequent scans, the less significant bits can then be
encoded.  This procedure is called ‘‘successive
approximation.’’  Both procedures can be used
separately, or mixed in flexible combinations.

Some intuition for spectral selection and successive
approximation can be obtained from Figure 11.  The
quantized DCT coefficient information can be
viewed as a rectangle for which the axes are the
DCT coefficients (in zig-zag order) and their
amplitudes.  Spectral selection slices the information
in one dimension and successive approximation in
the other.

9  Hierarchical Mode of Operation

The hierarchical mode provides a “pyramidal”
encoding of an image at multiple resolutions, each
differing in resolution from its adjacent encoding by
a factor of two in either the horizontal or vertical
dimension or both.  The encoding procedure can be
summarized as follows:

1) Filter and down-sample the original image by
the desired number of multiples of 2 in each
dimension.

2) Encode this reduced-size image using one of the
sequential DCT, progressive DCT, or lossless
encoders described previously.

3) Decode this reduced-size image and then
interpolate and up-sample it by 2 horizontally
and/or vertically, using the identical
interpolation filter which the receiver must use.

Table 3.  Baseline Entropy Coding

Symbol-2 Structure

1
2
3
4
5
6
7
8
9

10

-1,1
-3,-2,2,3
-7..-4,4..7

-15..-8,8..15
-31..-16,16..31
-63..-32,32..63

-127..-64,64..127
-255..-128,128..255
-511..-256,256..511

-1023..-512,512..1023

SIZE AMPLITUDE
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4) Use this up-sampled image as a prediction of the
original at this resolution, and encode the
difference image using one of the sequential
DCT, progressive DCT, or lossless encoders
described previously.

5) Repeat steps 3) and 4) until the full resolution of
the image has been encoded.

The encoding in steps 2) and 4) must be done using
only DCT-based processes, only lossless processes,

or DCT-based processes with a final lossless process
for each component.

Hierarchical encoding is useful in applications in
which a very high resolution image must be accessed
by a lower-resolution display.  An example is an
image scanned and compressed at high resolution for
a very high-quality printer, where the image must
also be displayed on a low-resolution PC video
screen.
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10  Other Aspects of the JPEG Proposal

Some key aspects of the proposed standard can only
be mentioned briefly.  Foremost among these are
points concerning the coded representation for
compressed image data specified in addition to the
encoding and decoding procedures.

Most importantly, an interchange format syntax is
specified which ensures that a JPEG-compressed
image can be exchanged successfully between
different application environments.  The format is
structured in a consistent way for all modes of
operation.  The interchange format always includes
all quantization and entropy-coding tables which
were used to compress the image.

Applications (and application-specific standards) are
the “users” of the JPEG standard.  The JPEG
standard imposes no requirement that, within an
application’s environment, all or even any tables
must be encoded with the compressed image data
during storage or transmission.  This leaves
applications the freedom to specify default or
referenced tables if they are considered appropriate. 
It also leaves them the responsibility to ensure that
JPEG-compliant decoders used within their
environment get loaded with the proper tables at the
proper times, and that the proper tables are included
in the interchange format when a compressed image
is “exported” outside the application.

Some of the important applications that are already
in the process of adopting JPEG compression or
have stated their interest in doing so are Adobe’s
PostScript language for printing systems [1], the
Raster Content portion of the ISO Office Document
Architecture and Interchange Format [13], the future
CCITT color facsimile standard, and the European
ETSI videotext standard [10].

11  Standardization Schedule

JPEG’s ISO standard will be divided into two parts. 
Part 1 [2] will specify the four modes of operation,
the different codecs specified for those modes, and
the interchange format.  It will also contain a
substantial informational section on implementation
guidelines.  Part 2 [3] will specify the compliance
tests which will determine whether an encoder
implementation, a decoder implementation, or a
JPEG-compressed image in interchange format
comply with the Part 1 specifications.  In addition to
the ISO documents referenced, the JPEG standard
will also be issued as CCITT Recommendation T.81.

There are two key balloting phases in the ISO
standardization process: a Committee Draft (CD) is
balloted to determine promotion to Draft
International Standard (DIS), and a DIS is balloted to
determine promotion to International Standard (IS). 
A CD ballot requires four to six months of
processing, and a DIS ballot requires six to nine
months of processing.  JPEG’s Part 1 began DIS
ballot in November 1991, and Part 2 began CD
ballot in December 1991.

Though there is no guarantee that the first ballot of
each phase will result in promotion to the next, JPEG
achieved promotion of CD Part 1 to DIS Part 1 in the
first ballot.  Moreover, JPEG’s DIS Part 1 has
undergone no technical changes (other than some
minor corrections) since JPEG’s final Working Draft
(WD) [14].  Thus, Part 1 has remained unchanged
from the final WD, through CD, and into DIS.  If all
goes well, Part 1 should receive final approval as an
IS in mid-1992, with Part 2 getting final IS approval
about nine months later.  

12  Conclusions

The emerging JPEG continuous-tone image
compression standard is not a panacea that will solve
the myriad issues which must be addressed before
digital images will be fully integrated within all the
applications that will ultimately benefit from them. 
For example, if two applications cannot exchange
uncompressed images because they use incompatible
color spaces, aspect ratios, dimensions, etc. then a
common compression method will not help.

However, a great many applications are “stuck” be-
cause of storage or transmission costs, because of ar-
gument over which (nonstandard) compression
method to use, or because VLSI codecs are too ex-
pensive due to low volumes.  For these applications,
the thorough technical evaluation, testing, selection,
validation, and documentation work which JPEG
committee members have performed is expected to
soon yield an approved international standard that
will withstand the tests of quality and time.  As di-
verse imaging applications become increasingly im-
plemented on open networked computing systems,
the ultimate measure of the committee’s success will
be when JPEG-compressed digital images come to
be regarded and even taken for granted as “just an-
other data type,” as text and graphics are today.
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For more information

Information on how to obtain the ISO JPEG (draft)
standards can be obtained by writing the author at
the following address:

Digital Equipment Corporation
146 Main Street,  ML01-2/U44
Maynard, MA  01754-2571

Internet:   wallace@gauss.enet.dec.com

Floppy disks containing uncompressed, compressed,
and reconstructed data for the purpose of informally
validating whether an encoder or decoder
implementation conforms to the proposed standard
are available.  Thanks to the following JPEG
committee member and his company who have
agreed to provide these for a nominal fee on behalf
of the committee until arrangements can be made for
ISO to provide them:

Eric Hamilton
C-Cube Microsystems
1778 McCarthy Blvd.
Milpitas,  CA  95035
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