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Abstract

We derive conservative fourth- and sixth-order finite difference approximations for the divergence and gradient
operators and a compatible inner product on staggered 1D uniform grids in a bounded domain. The methods
combine standard centered difference formulas in the interior with new one-sided finite difference approximations
near the boundaries. We derive compatible inner products for these difference methods that are high-order
approximations of the continuum inner product. We also investigate defining compatible high-order divergence and
gradient finite difference operators that satisfy a discrete integration by parts ider2d@1 IMACS. Published
by Elsevier Science B.V. All rights reserved.

1. Introduction

We are developing a discrete analog of vector and tensor calculus that can be used to accurately
approximate continuum models for a wide range of physical processes on logically rectangular,
nonorthogonal, nonsmooth grids. These finite difference methods (FDMs) preserve fundamental
properties of the original continuum differential operators and allow the discrete approximations of partial
differential equations (PDEs) to mimic critical properties, including conservation laws and symmetries,
in the solution of the underlying physical problem. The discrete analogs of div, grad, and curl satisfy
the identities and theorems of vector and tensor calculus and provide new reliable algorithms for a wide
class of PDEs [6-9]. This approach has been used to construct high-quality mimetic finite-difference
approximations for the divergence, gradient [16,17], and curl [11]. In [10] this new methodology has been
applied to Maxwell’s first-order curl equations. We have created higher-order approximations (see [2,3,
5]) in 1D and 2D on smooth curvilinear grids that satisfy a summation by parts identity for the particular
case of periodic boundary conditions.
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One of the central parts of discrete vector analysis is the discrete analog of integration by parts
formula. Compatible discrete divergenceé-) and gradient Y) operators satisfy a discrete analog of
the Divergence Theorem:

/V~5de+/5Vde=/fﬁ-ﬁdS. (1.1)
2 2 082

Here $2 is some smooth region in a Euclidean spa@, is the boundary of the region, is an outward

normal to the boundaryf is a smooth scalar function defined on the closure of the regiony asic

smooth vector field defined on the closure of the region (see [15]). The higher-order discrete operators

derived in [2,3,5] do not satisfy the discrete analog of this identity for nonperiodic boundary conditions.
Because of its importance, we illustrate how the divergence theorem is used to show stability of

solutions of partial differential equations. So assume th@at, ¢) is some smooth function far € £2

and satisfies the simple heat equation

of
L =V.V 1.2
at £ (1.2)
and thatf is zero on the boundarys2. If we introduce the functional
1
=5 / F2(x, ) AV, (13)
2
then differentiation and the Divergence Theorem give
E
E;—t(z) =/%(x,z)f(x,z) dv = /v Ve, fx,ndv = —/(Vf(x,t))de. (1.4)
2 2 2

Consequently, the derivative &fis negative or zero, and thus cannot grow. So in this sense the solutions
of the differential equation must be stable.
Similarly one can show that the solutions of the simple wave equation
3 f
—=V.V 15
I~ f (1.5)
have constant energy

11 /0f\°
e =3 [ (2) +(vrwn)’a. (L6)
2Q ot
by showing that the time derivative @f is zero.

In 1D both divergence and gradient are simple derivatives and the identity (1.1) reduces to integration
by parts:

1 1
[uirast [of.de= r@u@ - £, (1.7)
0 0
and when eithey = 1 orv = 1, this becomes a conservation law:
1 1
dvv df . B
O e = (D) — v(0), O/de—ﬂl) £(0). (1.8)
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Fig. 1. Staggered grid.

To satisfy a discrete analog of (1.8), we must define a discrete formula for the derivative and a
discrete analog of the integral (in general a discrete analog of the inner products in (1.1)). Applications
to hyperbolic conservation laws may only contain a divergence, so in this case we need only consider the
analog of global conservation (1.8). In this paper we define high-order conservative (that is, satisfying
identities (1.8)) finite difference methods (FDMs) for the divergenbg &nd gradient ) operators
on 1D uniform staggered grids in bounded domains. On staggered grids there are two different discrete
analogs of this derivative. One, which corresponds to the divergence, has domain consisting of values a
the nodes and range consisting of values at the cell centers, and another one, which corresponds to th
gradient, has complementary domain and range of values.

The main results of this paper are explicit formulas for fourth- and sixth-order accurate discrete
divergence and gradient and corresponding inner products that satisfy a discrete analog of formula (1.8)
exactly. Many of the results in this paper require extensive algebraic computations which we have done
with a computer algebra system.

In discretization such as ours, it is important to distinguish if a nodal or staggered grid is being used,
because this significantly impacts the construction of the difference schemes. Our FDMs for a staggered
grid are quite different from those for a nodal grid [1,12,14,18].

For our discretizations we use a uniform staggered grid Fig. 1imithl/N and nodes at; =ik, 0 <
i <N, and cells[x;, x; 1] with centersx; 1> = %(x,- + x;11). Continuum functions are projected onto
the grid using point values:

firye= f(xiz12), O0<i<N -1, v =v(x;), O0<i<N. (1.9
Two auxiliary values forf are introduced at the domain boundaries,

which is typical for support-operators formulations.
The discrete divergence will act on thevalues, while the discrete gradient will act on tfievalues,
as illustrated in Fig. 1.

2. Second-order discrete operators

The simplest discrete divergence is defined by

Viy1 — V;

. 0<i<N-1, 2.1)

(Dv)iy12=
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and the discrete gradient is defined by

_ Ji2— fo

(Gflo= Tz

(Gf>i=w, 1<i<N -1, 2.2)
_ v I

(Gf)N—ih/z ,

where again the definition af at the boundary points is standard for the support operators approach.
The divergenceD is second-order accurate while the gradiénis second-order accurate in the interior
and first-order at the boundary. Fig. 1 illustrates the positions of the valuRs ahdG f in the grid.

Using both the midpoint and trapezoidal rules, we define digorete integraldor cell-centered and
nodal quantities by

N-1
I.f=hY_ fire (2.3)

i=0
4) N-1 UN
Inv:h<5+;vi+7>. (2.4)
An easy computation shows that these are second-order approximations of the continuum integrals and
I.(Dv) =vy — vo,
1,(Gf)= fn— fo, (2.5)

are analogs of the formulas in (1.8).
2.1. Generalizations

Away from the boundaries, the above considerations generalize to higher-order discretizations. For
staggered uniform grids, the half-integer points are obtained from the integer points by translating the
points by %2 and vice versa. So the natural higher-order central approximations to the derivative on
one grid can be translated by2 to give an approximation of the derivative on the other grid. Such
approximations to the derivative have the form

K
(Dv)iz1o= Y, dwvisr, O0<i<N-—-1, (2.6)
k=—K+1
K
(Gfi= Y difizrr2. 1<i<N-—-1, (2.7
k=—K+1

whereK is a positive integer and thg are anti-symmetricd, = —dy 4, 1— K <k < K. (Examples are
given below.)

We can setl; =0 for k > K andk < 1 — K, while retaining the anti-symmetry of th&, and then
remove the limits from the sums in (2.6) and (2.7). If we assumefitatdv are zero near the boundary,
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then a natural discretization of the Divergence Theorem (1.1) is

> (D)1 fivre+ Y vi(Gf); =0. (2.8)

1

If we manipulate the sums a bit we get

S (DV)ivaafivye = DY divigk firrz= Y Y divi fimkrrz= Y Y d1kVi firk—1y2
i i k i k i k
==Y divi fipe12=—>_vi(Gf);. (2.9)
i k i

So away from the boundary, the above simple analog of the Divergence Theorem holds exactly for
all antisymmetric approximations of the derivative. One-sided approximations must be used near the
boundary, so to have the Divergence Theorem hold exactly, we must modify the definitions of the
divergence and gradient and take different approximations to the integrals in (1.1).

Because thel, are antisymmetric, the higher order divergerd2eand gradieniG both kill constant
functions and thus also satisfy the analogs of (1.8) given by (2.5). Our problem is to fix things up so that
we get exact discrete analogs of (1.8) up to the boundary.

3. Higher-order discretizations

We define discrete inner products for functions defined on the staggered grid by generalizing the usual
inner products using the matricésand P:

N—-1 N
(Of. g)= Z Qi+l/2,j+l/2fi+l/28j+l/2’ (u, Pv) = Z P ju;v;. (3.1)
i,j=0 i,j=0

For these expressions to be inner produgtgnd Q have to be symmetric positive-definite operators.
The general divergence and gradient are defined by

1 N
(Dv)it12= szi—t-l/z,jvj, 0<i<N-1,
T (3.2)
(Gfi= A (gi,o fot+ > gijsr2fisre+ gin fN>, 0<i <N,
=0

and satisfy a discrete analog of the integration by parts theorem, (1.1) when

<QDv’f>+<v’PGf>:UNfN_UOfO’ (33)

is satisfied. The operators have order of accukaahen

(Dv)ir12—V'((i +3)h) =0O(h*), 0<i<N-1, 64
(G f)i — f'(ih) =0(n"), 0<i<N. '
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Our goal is to defing®, P, D andG satisfying (3.3) and (3.4) that are at least fourth order in the interior.
Near the boundarp andG should be local operators but they could be lower order. For some PDEs, the
reduced accuracy near the boundary has a small effect on the accuracy of the solution.

The leading error term in approximations of the first derivative by finite differences has the form

dk+1f
dxk+1’

where C is a constant. Therefore, an equivalent formulation of the accuracy requirement is that the
derivatives be exact on the polynomialstl.. ., x*:

Ch* (3.5)

Dx). . o—i(li+Hr) =0, 0<i<
(Dx?) 10— 7 ((i+3)h) 0 36)

(Gx7), — jiny~t =0,

for 0 < j < k. This condition provides a way of finding constraints on the inner product that are
independent of the definitions & andG:

m<me71,x”> +n{x™, Px”71> =1 0<m<k, 0<n<k m#0o0rn#0, (3.7)

or more explicitly

N-1 N
m Z Qi+1/2,j+1/2(l. + %)mfl(] + %>n +n Z Pi,jl.m].n_l — Nm+n. (38)
i,j=0 i,j=0

That is, the constraints (3.8) on the matriggs@nd P and the accuracy constraints on theand G are
independent.

The constraints (3.8) imply that if the approximatiobsand G are fourth-order accurate then, it is
impossible to satisfy (1.7) i2 and P are essentially identity matrices, that is,gf and P are both
diagonal with all but some fixed (with respect to the grid size) number of elements not equal to 1. We
proved this fact by assumin@ and P had this form and then using computer algebra to show that not
all the conditions could be simultaneously satisfied. This fact is also true for the sixth-Brdad G
operators.

Because there are no fourth- or sixth-order compatBleand G that are both local operators and
satisfy the integration by parts identity (1.7), we first derive lddand G operators satisfying (1.8) and
relax the condition that they simultaneously satisfy (1.7). THesend G will satisfy the integration by
part formula (1.7) to fourth- and sixth-order of accuracy, respectively. We now look independently at the
constraints on th@ and P matrices, the higher-order divergence, and the high-order gradient.

3.1. The divergence

Requiring that the discrete gradient is exact wifes 1, that is,G1 = 0, reduces the summation by
parts formula (3.3) to

(ODv, 1) = v, — vo. (3.9)



J.E. Castillo et al. / Applied Numerical Mathematics 37 (2001) 171-187 177

This implies that

(Dv, Q"1) = v, — vp. (3.10)
If we define the column sums @, by
N-1
Oy = ,Z—; Qj+1/2.i+1/25 (3.11)
then
(Dv, Q)= v, — vo. (3.12)

The second-order operataP (2.1) satisfies this condition as does the standard fourth-order
approximation
1
(D f)iz12= E(fi—l = 27f; +27fi11— fir2), (3.13)

except for the terms near the boundary.
To define a special local boundary formula to be used with this method, by symmetry we only need to
consider the upper-left corner of the matrix for the divergence,
ayl diz di3z dig dis  die ayy ag
a1 dp2 dz3 dz4 dzs A6 azy azg
a3l dz2 dAs33 d34 d3s  d3e asy asg

as1 Qa2 Q43 Qa4 A45  d4e A47 A48

D= asy1 ds2 ds3 ds4  dss5  dse asy dsg ... - (3-14)
1 27 27 1
o 0 o o0 5 -3 Z _2
o o o o o 4 -3 =
o 0 0o o 0o o0 5 -Z

1
0O 0 o0 o0 O 0 0 =

When we display only the upper-left corner of a matrix, we leave off the trailing bracket to make this
clear. We settled on modifying the FDM at the first five points after trying a number of examples and
finding that with this setup we can find divergences with parameters that can be used to try to satisfy
additional conditions.

The following lemma will be helpful in the computations.

Lemma. Letd; 12;, 0<i <N —1, 0<j <N, be the matrix defining a divergence ag,,,
0<i < N —1, be the column sums of the weight matrix. Then

N
(Dv,l):chvj, (3.15)
j=0
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where

N-1

¢j=_ Oip1jediyijzj, O0<j<N. (3.16)
i=0

Therefore a fourth-order discrete divergence operator satigBe®) with f = 1 provided thatcg = —1,
CN:].andeIO,lgjgN—l.

We have shown by direct computation that there are no fourth-order accurate divergences given as
above withQ = 1. On the other hand, there are uniformly fourth-order accurate divergences with non-
trivial Q:

= 649 = 143 = 75 = 551 =
Q12 = 27¢» 032 = 195 Os/2 = &2 072 = 2%, Qgpp=1, e (3.17)

The inner product with these weights is exact for quadratic polynomials and is a fifth-order approximation
of the continuous inner product. The formulas are similar to Gregory’s boundary corrected trapezoid
formulas in [4]. That s, (3.17) is a fifth-order quadrature formula. Using a computer algebra system, we
find a three-parameter family of uniformly fourth-order accurate discrete divergence operators,

an a az aa as as O
1 27 27 1
i~ —5+5 5 —100 —5;+ 100 —5a o 0
1 27 1
—-B §1+5,3 ———10ﬂ ﬂ+10ﬂ —2—4—5,3 B 0
1 5 3 17 11
N 7 i 4 »t5 —5—-10y —35;+10y -5y y 0
D = , (3.18)
0 0 0 1 _z2r 2r 1
24 24 24 24
1 27 27
0 0 0 0 34 —%5i 53
1 27
0 0 0 0 0 5 54
1
0 0 0 0 0 0 34
where
_ 6851 675 551
au = 7788+ 59 o + 5798 + G40
_ 8153 _ 105, _ 3375 2755
412 = 15576~ 59 % ~ 649 B — 649 V>
— 3867, 390, , 6750 @
@13 = 51g7 T 50X + 6298 T Bag ¥ (3.19)
g — — 9005 390, @ﬁ 5510 )
14 = 15576 59% ~ 649 649V
_ 3529 , 195 3375 2755
ais = 15576+ St 649’3 + %29 V>
_ 24 675 551
aie = ~ a9 — &aoP — a9V
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The special case where the FDM only changes at the boundary is givee=lty 8 = 2%1, y = —2%1:
—ifoz 126 Tobe —sios 2eb e O O
AR % & 0 0 0 o
0 4 Z Z % 0o 0 0
o o & -E % & o o0

D=| 0 o o & - Z -1 o0 (3.20)
0 0 0 o £ -z zZ -1
0 0 0 0 0 i
0 0 0 0 0 0 L -Z
0 0 0 0 0 0 0 4

In Appendix A we put this divergence into two more symmetric forms.
3.2. Sixth-order divergence

In Appendix B we give a 10 parameter family of sixth-order divergences. Here we only show the first
two rows of the matrix of a divergence where the formula for this divergence is the usual sixth-order
approximation of the derivative except for the boundary and first interior point:

1077397 1566847464380349955527 _ 25369793 12220145 _ 21334421 460217 101017 3369

T 1273920 3247285011648039491520 19745760 15796608 78983040 9872880 39491520 26327680 (3 21)
31 _ 687 129 19 _3 21 _ 3 0 0 '
960 640 128 192 32 640 640
The corresponding weights are
41137 15667 2933 2131 41411 33437 1 (3 22)
34560 34560 1728  4320' 345600 345600 :

3.3. The gradient

Using the exactness whem= 1 of the discrete divergencd)l = 0, the summation by parts
formula (3.3) reduces to

or equivalently,
(PTL,Gf)=fu— fo (3.24)
If we define the column sums &f as
N-1
Pi=> P, (3.25)
=0
then

(Gf.P)=fu—fo (3.26)
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The operatorG given in (2.2) satisfies this condition and is a second-order gradient in the interior
with first-order truncation error at the boundary. As for the divergence, we first try for gradients that
are a standard fourth-order approximation away from the boundary and local special formulas near the
boundaries. The standard fourth-order approximation is

1 27 27 1
(Gf)i= (24ﬁ 32 — 4f1>1/2 + ﬂfiﬂ/z — 2—4fi+3/2)- (3.27)

As for the divergence, the following will be helpful in doing the computations.

Lemma. Letg;o, & j+1/2, &in, 0<i < N,0< — 1, be the matrix defining a gradient arne};,
0<i < N, be the column sums of the weight matrlx. Then
N-1
(PG f,1)=cofo+ ch+1/2fj+1/z+61vfzv, (3.28)
j=0
where
Nfl_
Cj= P;gi, j+1/25 0<j<N-1L (329)
i=0

The weights are again independent of the particulars of the gradient:

-5 _ 407 473 343 1177 5 _
Po= 1152 Pi= 384 Py= 384 P3= 1152 P3=1, (3.30)

and the resulting discrete inner product is a fifth-order approximation of the continuous inner product.
A three-parameter family of uniformly fourth-order accurate gradients is:

an a2 as aa ais 0O O
16 128 31 29 3 54 1 36
5 %3 —ated Hp-al2 —gptay ooy o 0
_ 128 1 27 54 1 36
G=| -p& m+p9  —3—p12 —+,8— -%-8%2 g 0 . (33
16 128 3 54 51 36
“s~ V% s tY9 —a-v12 —LEvE E-vT 0
1 27 27 1
0 0 0 2 ~% % "%
where
_ 124832 , 16512 , 18816 13696
a11 = — 738 + X558 T B o035 TV 1205
ar, — 10789 1161 _ poas1_ 963
12 = "3256 207 Y37
_ a1 1548 12348 1284
a13 = —ggg T & +B57 TV 57
grg — _ 12189 6966 _ pEs_ 5718
14 = ~16280 %185 2035 Y 185’

_ 11789 4644 5292 3852
a15 = P79, A %55 T P07 TV 259>
e — 28 _ 129 _ plozg_ 107

16 = 207 207 V37"
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The choicex = 4, B =0,y = — gives

_ 1152 10063 2483 _ 3309 2099 _ 697
407 3256 9768 3256 3256 4884
— 117 3 _5 1
G= 0 12 24 8 24 24 ’ (3.32)
1 27 27 1
O =% -2 = —= 0

and results in a gradient that is only modified at the first interior point.
3.4. Sixth-order gradient
In Appendix C we give a 10 parameter family of sixth-order gradients. Here we only show the first three

rows of the matrix of a gradient where the formula for this gradient is the usual sixth-order approximation
of the derivative except for the boundary and first two interior points:

_ 568557184 455704609 128942179 15911389 _ 142924471 20331719 _ 2688571 187529 6207
150834915 83579520 41789760 6964960 ~ 117011328 50147712 38307280 41789760 27859840
496 811 449 29 11 13 37
3465 640 384 960 448 1152 T 21120 0 0 (3:33)
_8 179 _ 153 381 _ 101 1 __3 0 0
385 1920 128 320 1344 128 7040

Again, we only present the rows that are not the same as the usual sixth-order approximation of the
derivative. The corresponding weights are

43531 192937 42647 86473 125303 140309 1 (3 34)
138240 138240 69120 69120° 138240 138240 ? e '

4, Conclusionsand discussion

We derive conservative fourth- and sixth-order finite difference approximations for the divergence
and gradient operators and a compatible inner product on staggered 1D uniform grids in a bounded
domain. The methods use standard centered difference formulas in the interior with a new one-sided
finite difference approximation at the boundary. We derive a compatible inner product for these difference
methods, that is, a fifth- and seventh-order approximations, respectively, of the continuum inner product.
Our discrete operators satisfy the integration by parts identity (3.3) up to fourth- and sixth-order,
respectively.

Our ultimate goal is to define compatible high-order divergence and gradient finite difference operators
that satisfy a discrete integration by parts identity (3.3) exactly. Let us note that we have made some
substantial but unsuccessful attempts to solve this problem using the general divergence (3.18) anc
general gradient (3.31). The amount of algebra in this general setting simply overwhelms computer
algebra systems. We now list some of the fourth-order cases that we tried that assume special forms
for the matricegD and P in (3.1).

Casel. No solution. The matrice@ and P have general six-by-six blocks in the upper left (and lower
right) corners and are otherwise the identity. Also in the divergence
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and in the gradient
a=2—14, B =0, y=—2—14. 4.2)

This choice sets all but the first entries of the first column of the divergence and gradient to
zero.

Case2. No solution. The matrice® and P are diagonal with diagonal given by the weights (3.22)
and (3.34) discussed above, while the divergence is given by the ten-parameter family given
in (B.1) and gradient is given by by the ten-parameter family given in (C.1).

Let us note that discrete operators for nodal discretizations in 1D that satisfy summation by part
formula have been constructed in [1,12,14,18]. It gives us hope that this also can be done on staggere
grids.

Appendix A. Special formsfor the divergence

For the fourth-order accurate divergence, it is easy to see that the matrix for the ogmator vg
has a matrix with column sums zero and then that this implies that

1
OD+vg= Z(SAU, (A1)

wheres is the simple difference operatot,is anN + 1 by N + 1 matrix with upper left corner given by:

_ 61 , 143, 75 551 _ 8153 715, 375, _ 2755
A11=go12 T 162% + 538 + 5767 - A12= 13354~ 1929 — 64 P — 576 V>
_ 1289 , 715 , 375 2755 _ 9005 715, 375, _ 2755
A13=153s T 56% + 328 + g V> AL4= 13500~ 962~ 2P~ Zes V>
_ 3520 |, 715, | 3755 2755 _ 1 143, 755 551 _
A15= 3501 159 + 558 + 576V A16=—2% — 1% — 5B — 5757 A17=0,
_ 551 , 75 551 — 1715 _ 3755 _ 2755
A21= 13811 5P + 5767 A22= %12~ 64 576 /"
_ 161, 375 2755 _ 4717, 375 2755
A23= 95 + 2B+ V> Aza=—Gon2 T 2B+ sV (A.2)
_ 3529 , 375 2755 —_1 _ 755 _ 551 _
A25= 13502+ 62 P T 576V A26=—3""¢1 5767 Az27=0,
_ 551 , 551 _ 2755 _ 2755 _ 551 , 2755
A31= 1352+ 5787 A32=—13501— 576 " A33= 1535+ Z88 7
_ 8791 _ 2755 1427 | 2755 _ 1 551 _
A34= 1352~ 7887 A3s=so12 1 S76 /> A36=—35~ 570" Az7=0,
1 13 1
As1=A42=2A43=0, Aga=—3, Ass = 15, Ase=—3 Ay7=0,
1 13 1
As1=As2=A53=A54=0, Ass=—3;, Ase= 33, As7=—3;
Also, because the row sums Dfare zero it is possible to write
1
D = =Bs, (A.3)
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where agaird is the simple difference and

arg as a;z as ais 0
—24+a Bdoa -L+60 —da a 0
B= B -2 -4 Bi6p —-L-48 B O . (A.4)
2—14-1-)/ —%—4;/ 2—54+6y E by vy 0
o o o & B -4
where
=S8 B By
o= B+ o+ 20 By
= - —— -5y, *5)
o= B e+ 0
cro= 2~ Bo— G55 - B

Appendix B. Sixth-order divergence

We have found a ten-parameter family of sixth-order divergences with the following structure:

diy dip diz dig  dis dis dr7 dig dig 0 0
dyy dyp drz dos  dos dps da7 dpg dpg 0 0
d31 d3p d3z dis  dss d3e d37 d3g d39 0 0

D— day dap daz das  dss dse da7 dsg dag 0 0 ’ (B.1)
dsy dsp ds3 dsq  dss dse ds7 dsg dsg 0 0
de1 de2 de3 des  dss dee de7 deg deg 0 0
0 0 0 0 -—15 5w ~—T0 3i00 ~190 Tm O
0 0 0 0 0 -5 o0 ~—1650 1630 ez 19

where
b =~ S ¢ S, 1 3, A+ B+ e+ D

241920 34560 241920
+ 113798 T 211379 T 211379100
dy, — 4302307 _ 241920 _ 165888Q  _ 241920  _ 1658880 _ 165888Q _ 241920 _ 241920
26327680 41137 41137 41137 41137 41137 41137 41137
1658880 241920 1658880,

T 74113798 T 21137°9 T 41137 910
_ 3443147 725760, 4838400, 725760, 4838400, 4838400, 725760 725760
diz = 1074576 T a1137°1 T 2113752 2113793 T “a1137 94 T 2113756 t 2113795 T 2113757
4838400, 725760 4838400
+ 113798 T 211379 T 21137 5105

di, — — 16731250 1200600 _ 7741440 _ 1209600 _ 7741440  _ 7741440 _ 1209600, _ 1209600
14 = 77898304 41137 °1 41137 °2 41137 °3 41137 °4 41137 °6 41137 °5 41137 °7
7741440, 1209600 7741440,

4113758 — 4113759 — 41137 910
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282037 , 12 7257 12 7257 7257 12 12
dis = 8203 + 09600 1+ 5 600 >+ 09600 3+ 5 600 4+ 5 600 6+ 09600 5+ 09600,

= 769856 T 41137 ° 41137 41137 41137 41137 % 41137 % 4113757
L 7257600 6+ 1209600, o+ 7257600
41137 41137 41137 510
dip — — 87575371 725760, 3870720, _ 725760, _ 3870720 3870720, _ 725760, _ 725760,
16 = 778983040 41137°1 ~ "41137°2 ~ 41137°3 41137 °4 ~ T41137°6 T 41137°5 T 41137°7
_ 387072Q  _ 725760 3870720,
41137 °8 ~ 41137°9 ~ 41137 10
_ 10952047 , 241920, 967680 241920 967680 241920 967680 241920
d17 = 39401500 4113751 T 2113752 + Fi13793 T i1a754 T Fi13795 T 21137%6 T F113757
967680 241920 967680,
+ 2113798 T 7113799 T 211375105
__ 34560 34560 34560, 34560, 34560, 2088
dig = — 711351 ~ 11373 — 411875 — 411377 — 411379 T A1137
__ 34560, _ 34560 34560, 34560, 34560 162
di9 = — 7113752 — J11374 — 111376 — 111378 — 4113710 T Fi1s7
__ 34560 241920, __ 241920, 1658880, _ 687
d21 = —T5e671 — Teeero2 T 960’ d2o = 56751 + “Toe7 52 640’
_ _ 725760 _ 4838400 129 1209600, 7741440,
dyz = 1566751 15667 52 T 128 dog= 15667 51 T 1667 52 T 192’
dor — — 1209600 7257600, _ 3 d 7257600 4 3870720 o
25 = 15667 91 — 15667 92 — 32 26 = "15667" 15667 ©2 640’
__ 241920, _ 967680, 3 34560 34560
d21 = —T566751 ~ 1566752 — 840’ d28 = 5671 d29 = 1566752
_ 1728 1728 3 1728 82944
d31 = — 353353 ~ 41954 ~ 40’ d32 = 71953+ S93354 + 384’
_ 5184 34560, 75 8640 55206
d33 = — 1953 ~ 415 54 ~ 54> d34= 1553+ 415 S 4+ § 64’
__ 8640 51840, 25 5184 27648
dss = 219%3 7 419 384 d3s = 21993 T 419 “a10 54t 640’
1728 6912 1728
d31 = — 77953 — 21954 d3g = 553353 dz9= 3 2933‘4’
__ 4320 30240 30240, 207360, 3
da1 = —573355 = 13196 daz = 3155 + 2131 56 — 640
_ 90720, _ 604800 — _ 715 151200 967680,
dsz = — 513155 — 131 6+384’ das= + 2131 35 T 2131 96>
das — — 151200 907200, + d 90720 5+ 483840, _ 25
45 = 213155 2131 % 64’ 46 = 21319 2131 % 384
_ 30240 _ 120960 4320 4320
dsr = — 13155 — 13196 T+ 640’ dag = 373155, da9 = 575756
_ 3 34560, _ 241920 241920 1658880,
dsy = 640 4141157 — 41411°8 dsy = — 640+ 2141157 T 414115
den — 3 _ 125760 4838400, d 4 1209600, _|_774144o
53 = 33 ~ 4141157 41411 58 54= 7 192 41411° 41411 58
des — — 1257600 1209600 129 d 3870720, g+ 725760 | 687
55 = 41411 °8 41411 °7 — 128 56 = 41411 " 41411°7 T 640
der — — 241920 967680 31 d 34560 d 34560
ST = T 41411°7 T 41411°8 T 960 58 = 721412°7> 59 = 21411°8
_ 31 34560, _ 241920 443 | 241920 1658880,
de1 = 960 — 33437°9 — 33437910 de2 = 1920 T 3343799 T 33437 510:
den — — 9L _ 725760 4838400 d 235 | 1209600, o+ 7741440,
63 = T 128 33437°9 33437 510> 64= 192 T 33437 % 33437 510>
dee — — 59 _ 1209600 7257600, deg = — 210 4 725760 o+ 3870720,
65 = T a8 33437 °9 ~ 733437 °10 66 = 540 T 33437° 33437 °10>
__ 1627 _ 241920, 967680 34560 34560
ds7 = 1950 — 3343799 — 33437510 deg = 3343759- deo = 33337510-

The weights are given in Section 3.2.
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Appendix C. Sixth-order gradient

Here is a ten-parameter family of sixth-order gradients:

where

811 =

812

813

814

815

816 =

817

818 =

819

821 =

823

825 =

827 =

811 812 813 814 815 816 817 818 819 0 0
821 822 823 824 825 826 827 828 829 0 0
831 832 833 834 835 836 837 838 839 0 0
841 842 843 844 845 846 847 848 849 0 0
851 852 853 854 855 856 857 858 859 0 0
861 862 863 864 865 866 867 868 869 0 0
0 0 0 0 —mw% i ~1po 10 ~—i2 Tom O
0 0 0 0 0 -—mm 1om ~1o20 1o ~—12 Tom

12 4718592 4718592 4718592 471 2 23592 257
50 958884_ 859 %, 859 %, + 85920, 859 %ﬂ _ 2359296 s+ 8257536

T 178259445 3351887°1 478841 3351887°3 T 478841 62249335 T 6224933°6
47185920, 4718592 4718592 4718592

+ 33518897 T 4788419Y8+ 33518879Y9+ 4788410510’

7327275 _ 1797120, 12441600s 1797120, _ 1244160% L 48384, 1555200

2785984 43531 °1 43531 43531 93 43531 2353155 43531 °6

_ 1797120 _ 1244160Q 1797120, 1244160%
43531 57 43531 8 — "43531°9 ~ 43531
14680151 | 3594240, 2419200 3594240 24192000 96768 2419200,
+ + S2+ 3+ +

5571968 43531 51 43531 43531 " 43531 4 ~ 435315 43531 96
3594240 24192000, 3594240, 2419200
+ 2353157 + “azsa1 98 T azmsioe T 43531% 10,
_ 179817489 539136 _ 3483648Q _ 5391360, _ 3483648Q 145152S 2177280
27859840 43531 °1 43531 43531 °3 43531 43531 43531 6
5391360, 3483648% 5391360, 3483648%
43531 °7 ~ 743531 43531 °9 ~ 43531
142907685 , 3594240 3110400 35942400
10501888 T 304717% + 435319Y + 304717 3
3110400 138240 | 3594240 3110400
+ 43531% 43531°5 T 304717% + 435319Y
3594240 3110400
+ 304717% + 43531 %10’
_596065__ 299520 _ 16128000 _ 2995200 _ 16128000 . 80640 | 2016000
124128~ 43531 43531 43531 °3 43531 °4 T 13531°5 43531 %
2995200, 1612800% 2095200, __ 1612800Q
43531 °7 43531 43531 9 43531 10
9908595 , 1078272 4354560 1078272 4354560 290304, 2177280
5571968 478841%1+ 478841% + 478841%3+ 478841%4 47884155 — 478841%6
1078272 4354560 1078272 4354560
+ 478841% + 478841%8"' 478841%9"' 478841%10’
22977393 138240 _ 138240 48384 . 1088640Q _ 138240 138240
72435584 43531 43531°3 T 5650055 565903 43531°7 — 43531°9

648 138240 138240 138240, 138240, 138240,

23531 43531°2 ~ 43531°4 T~ 43531°6 T 435318 — 43531°10

496 _ 47185920, _ 4718592 — _8l1 1797120 12441600
3465 148561491 — 2122307°2 822= 540 T 1929371 192937 °2°
449 _ 350424Q _ 2419200Q — 29 | 5391360 34836480
384 = 192937°1 192937 °2> 824 960 192937 192937 °2>
11 3594240Q, _ 3110400Q L 2995200 4 16128000
248~ 13505591 T 19293792 826 = 1152 19293751 T 19293772
37 1078272 4354560 138240 138240

T 21120 212230701 T 212230772 828 = 19293751 829 = 19293752

185

(C.1)

(C.2)
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o = o B - B, = 04 0+ SN,
oo = 15 S O, o, s, | gm,
835 = —13a1— 29855933 — Tapear 4 836= o3+ a3ea7 53 T “gaear e
51 = o~ S BTG, gm0 = B
841 = — 13T 133656395 — 123665396 842 a0~ searss T SeaTas6:
oo = M5 N O, g, s ms, e,
845 = %%5, 846 = ‘7‘—22 - %295 - %%6’
847 = — 3330+ Gerzos t ToB1a03Y6  848= g3ms— TioAladS — 1124496 849= geirase:
851 = 355~ ‘GeasaanT — 1a7ess  852= g0 T 1253087 + 1253085
853 = To5 — 1755037 — ‘17530338 854= g0+ 12590337 T 13530338
= —45- B, - . TR, 4 L,
_ 673 _ 1078272 4354560 _ 138240 _ 138240
857 = T 21120 13783337 _ 13783338 858 = 1253037 859 = 1253038
gou = S L, R, =t s, |
o=~ 35T ML, g i T,
gos = 3 T, SHOU,, g, 55 moen, oy,
_ 1189 829440, _ 4354560 _ 138240 _ 138240
867 = 1208 ~ 1187239 ~ 1543399°10; 868 = 140309°9" 869 = 120309°10-

The weights are given in Section 3.4.
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