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Walker diffusion method for calculation of transport properties of finite composite systems

Clinton DeW. Van Siclen*
Idaho National Engineering and Environmental Laboratory, Idaho Falls, Idaho 83415

~Received 2 August 2001; published 25 January 2002!

A heterogeneous medium may be represented by a scalar field of local transport coefficients~e.g., conduc-
tivity ! or by a ‘‘resistor network’’ derived from that scalar field. In either case theeffective~macroscopic! and
local ~microscopic! transport properties may be calculated by the walker diffusion method. Some sample
calculations for disordered systems are presented to demonstrate the method.
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I. INTRODUCTION

The transport properties of porous and fractured me
determine, for example, the rapid migration of chemical c
taminants through fractured rock, and the displacement o
in porous rock by injected brine. Such environmental a
industrial applications motivate the many fundamental st
ies of transport in heterogeneous media~see the comprehen
sive review by Sahimi@1#!.

The electrical properties are governed by the set of tra
port equations,

“3E~r !50, “•J~r !50, J~r !5s~r !E~r !,

E~r !52“f~r !, ~1!

which relate the electric fieldE and the current densityJ at
the point r . The heterogeneity of the medium is express
through the local conductivitys(r ). This same set of equa
tions, with appropriate vector and scalar fields, enables
culation of the thermal, dielectric, and diffusivity properti
as well; again, the local transport coefficients in each c
reflect the heterogeneity of the medium. The electrical a
log is often extended to fluid permeability: alocal version of
Darcy’s law for fluid flow is

Q~r !52@k~r !/m#“P~r !, ~2!

where Q(r ) is the volumetric flow rate,P(r ) is the fluid
pressure,k(r ) is the permeability of the saturated medium
andm is the viscosity of the fluid. The incompressibility o
the fluid produces the additional equation“•Q(r )50.

Solution of these equations for given boundary conditio
is typically accomplished by the finite difference meth
~FDM!. This approach is equivalent to solving Kirchhoff
laws for a resistor network, and indeed porous and fractu
media are often explicitly modeled as resistor networks.
example, Bernabe´ @2# assigns hydraulic and electric condu
tances to the bonds of a network, where those conducta
are derived from specified distributions of pore size a
crack aperture and lateral extension. More generally, a
erogeneous medium is represented by a scalar field@com-
prised of thes(r ) or k(r ), for example# which is effectively
converted to a regular resistor network to permit FDM c
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culations~Romeu and Noetinger@3# analyze various choice
for the internodal transmissivities needed for the conv
sion!.

Van Siclen@4# has recently introduced the walker diffu
sion method~WDM! for calculation of the effective transpor
properties of scalar fields. In contrast to the FDM, the WD
works directly with the scalar field, and does not requ
boundary conditions in order to determine the effective pr
erties of the medium. The WDM also obtains the transp
property correlation lengthj ~the length scale above whic
the medium is effectively homogeneous with respect to
transport property of interest, and below which the medi
is heterogeneous! and the transport property scaling la
~which is relevant when the system size is less thanj! @5#.
This stochastic method has recently been applied to a s
of the electric and hydraulic properties of single fractur
where a fracture is represented by a field of local transp
coefficients that are functions of the local aperture value@6#.

To broaden its utility, the WDM is further developed b
low to treat finite scalar fields~i.e., those having nonperiodi
boundary conditions!, and finite and infinite resistor net
works. Thus the WDM enables studies of the effects of i
posed boundary conditions on transport properties of het
geneous media, and allows direct comparison of calcula
properties for media represented by scalar fields and by re
lar resistor networks, respectively.

II. WDM FOR SCALAR FIELDS

The walker diffusion method@4# exploits the isomorphism
between the transport equations and the diffusion equa
for a collection of noninteracting random walkers in the pre
ence of a driving force. The phase domains in a compo
microstructure correspond to distinct populations of walke
where the equilibrium walker densityr0(r ) of a population
is given by the value of the transport coefficients(r ) of the
corresponding phase domain. The principle of detailed b
ance ensures that the population densities are maintai
and provides the following rule for walker diffusion over
scalar field~or digitized microstructure!: a walker at site~or
pixel! i attempts a move to a randomly chosen adjacent sj
during the time intervalt5(4d)21, whered is the Euclidean
dimension of the space; this move is successful with pr
ability pi j 5s j /(s i1s j ), wheres i ands j are the transport
coefficients for the phases comprising sitesi and j, respec-
tively. The path of a walker thus reflects the phase comp
tion ~population density! and morphology of the domain
©2002 The American Physical Society44-1
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CLINTON DeW. VAN SICLEN PHYSICAL REVIEW E65 026144
that are encountered, and may be described by a diffu
coefficientDw that is related to the effective~macroscopic!
transport coefficients by

s5^s~r !&Dw , ~3!

where^s(r )& is the volume average of the constituent tran
port coefficients. The diffusion coefficientDw is calculated
from the equation

Dw5^R2&/~2dt!, ~4!

where the set$R% of walker displacements, each occurrin
over the time intervalt, comprises a Gaussian distributio
that must necessarily be centered well beyondj ~the walker
diffusion is otherwise anomalous@5#!. In practice it is con-
venient to eliminate the unsuccessful moves inherent in
rule stated above by use of the variable residence time a
rithm @4#.

Remarkably, the effective transport coefficient is obtain
without solving the set of transport equations~1! or imposing
boundary conditions. The WDM was verified by reproduci
some exact results from percolation theory@4#.

The WDM can additionally be used tosolve the set of
transport equations~1!; that is, to calculate the vector field
and the potential fieldf(r ) for given boundary conditions
The concept of walker populations~representing phase do
mains in a composite! together with the walker diffusion rule
is sufficient toderive the flux equation

J~r !52s~r !“f~r !, ~5!

where thef(r ) are found to be simple functions of th
walker densities.

At equilibrium ~i.e., in the absence of a driving force!, a
single diffusing walker will ‘‘populate,’’ or occupy, the site
of a composite in proportion to the corresponding transp
coefficientss(r ); thus, in the limit of infinite time, theequi-
librium walker density at sitei is given by

r i
05s i5~ t i /^tk&!^sk&, ~6!

where the ratio is the fraction of time spent at sitei and the
averages implied by the angle brackets are taken ove
sitesk.

The walker densities are altered when a chemical po
tial gradient is created by injecting walkers into the system
one boundary or point, and removing them at another.
steady-statewalker density at sitei is then

r i5~ t i /^tk&!^sk&, ~7!

where again the ratio is the fraction of time spent by
walkers at sitei @this is of course different from the ratio i
Eq. ~6!#.

The densitiesr i
0 andr i and the chemical potentialm i are

related by the principle of detailed balance

r i pi→ j5r j pj→ i exp@2~m j2m i !/kT# ~8!

and
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0pi→ j5r j

0pj→ i , ~9!

where pi→ j5pi j /(2d) is the probability that a selecte
walker at sitei will move to the adjacent sitej over the next
time intervalt ~the denominator 2d is specific to orthogona
lattices, e.g., square and cubic lattices!. Together these equa
tions produce the relation

r i /r i
05exp@m i /kT#. ~10!

Note that Eq.~10! is equivalent to the expression

m~r !5kT ln@r~r !/r0~r !#, ~11!

so that the usual relation between the chemical potential
dient and a particle concentration gradient in a homogene
system@r0(r )5constant# is recovered:

“m~r !5@kT/r~r !#“r~r !. ~12!

Equation~5! may be obtained from the walker flux equ
tion

Ji→ jt5r i pi→ j2r j pj→ i ~13!

which, after some algebra, produces

Ji→ j52~1/r i
011/r j

0!21~exp@m i /kT#2exp@m j /kT# !.
~14!

This suggests the particular identificationf i5exp@mi /kT#, so
that the potential at sitei is

f i5r i /r i
05~ t i /^tk&!~^sk&/s i !, ~15!

where again the ratiot i /^tk& is the fraction of time spent by
the walkers at sitei. Equation~14! for the walker flux then
becomes

Ji→ j52~1/r i
011/r j

0!21~f i2f j !. ~16!

The form of this last equation indicates that the WDM f
finite scalar fields provides a random walk solution to the
of FDM algebraic equations.

A practical issue is the implementation of boundary co
ditions. Clearly the potential is zero where the walkers
absorbed sincer i equals zero there. Relative potential diffe
ences are then established by appropriate placement
‘‘strength’’ of walker sources. As an example, consider t
two-dimensional, multiphase system shown in Fig. 1~a!.
Equipotential surfaces may be established at the left
right edges by viewing the system as anR3C grid or matrix.
Then a columnC11 is added that is identical to columnC;
when a walker reaches columnC11 it is immediately re-
moved~so that columnC11 is an equipotential surface wit
all f i50!. To induce correct walker behavior near theR
sources in column 1, a column 0 is added that is identica
column 2. If a walker placed in column 1 moves to column
on its first move, it is removed and its time spent in colum
1 is disregarded; otherwise all moves from a sitei contribute
to the residence timet i . If the walker diffuses in column 1
but eventually makes a move to column 0, it is removed
4-2
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WALKER DIFFUSION METHOD FOR CALCULATION OF . . . PHYSICAL REVIEW E 65 026144
that time. If the walker diffuses beyond column 1, it is im
mediately removed when it enters columnC11 or returns to
column 1~not column 0!. A new walker is placed in column
1 at the site that currently has thesmallestpotential ~i.e.,
smallestt i /s i!, thus ensuring~in the limit of infinite time!
that column 1 is an equipotential surface. This proced
gives a uniform potential gradient in the case of a tw
dimensional homogeneous system.

The discrete system in Fig. 1~a! was designed to approxi
mate a continuous system comprised of a circular region
radius 3

8 and conductivity 1.0 centered in a unit square
conductivity 0.1. Perrins, McKenzie, and McPhedran@7#
provide a truncated series expression for the transverse
ductivity of an infinite square array of cylinders that giv
0.214 619 for this continuous, two-dimensional system. F
ure 1~a! was obtained by superposing a circle of radius 24

FIG. 1. ~a! Two-dimensional, multiphase composite approxim
ing a continuous system comprised of a circular region of cond
tivity 1.0 ~white! centered in a square of conductivity 0.1~black!.
The interfacial phases have intermediate conductivity values a
dicated by the shade of gray.~b! Equipotential lines calculated for
potential difference applied across the composite.
02614
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a 64364 square region, then setting the conductivity of ea
site i intersected by the circle to the areal average values i

5 f 10.1(12 f ), wheref is the fraction of the site containe
within the circle. The electrical properties of the discre
system were obtained in the manner described above~equi-
potential surfaces at the left and right edges; periodic bou
ary conditions at the top and bottom edges! using 107 walk-
ers. Figure 1~b! shows calculated equipotential surfac
~lines!, the density of lines reflecting the magnitude of t
local potential gradient. The calculated effective conductiv
s5^Ji→ j&/Df50.2186~Df is the potential drop across th
system!; a somewhat smaller value would result from usi
the harmonic average conductivitys i5@ f 1(12 f )/0.1#21

or the geometric average conductivitys i5(0.1)12 f for those
sites intersected by the circle.~And of course the calculated
s will approach the exact value in any case as the resolu
of the system is increased from 64364.! This value fors
should be compared with that calculated for the discrete s
tem with periodic boundary conditions onall sides; the latter
value is 0.219660.0006 obtained by calculating the diffu
sion coefficientDw for a single walker diffusing over the
infinite system~the uncertainty ins may be reduced by in-
creasing the number of walks!. Note that the equipotentia
boundaries of the finite system coincide with the perio
boundaries of the infinite system. Thus the difference in c
culateds values is entirely due to the fact that the sca
conductivity field shown in Fig. 1~a! is converted to a con-
ductor network when nonperiodic boundary conditions
applied@as evident from Eq.~16!#.

Similar calculations were made for the two-dimension
two-phase random system shown in Fig. 2~a!. The fraction of
white sites is at the percolation threshold~0.592 75!; those
sites have the higher conductivitysA51.0 while the black
sites have the lower conductivitysB50.01. The effective
conductivitys of an infinite system with these properties
exactly (sAsB)1/250.1 @8#. The 1283128 system in Fig.
2~a! should have a conductivity very close to this, as t
conductivity correlation length for this choice ofsA andsB
~j'15, Ref. @5#! is much smaller than the system leng
~128!. Indeed, the WDM givess50.0977 when the left and
right edges of the finite system are made to be equipoten
surfaces by releasing and absorbing 53106 walkers there.
Figure 2~b! shows equipotential surfaces~lines! in the inte-
rior of the random system, their tortuosity reflecting the h
erogeneity of the scalar field. In the case of fluid flo
through a permeable medium, the large spatial variation
the fluid pressure gradient ensures channeling of the fl
tortuous streamlines, and a broad distribution of solute tra
times.

III. WDM FOR RESISTOR NETWORKS

The isomorphism between Ohm’s law for the electric
current density and the diffusion equation for a collection
noninteracting walkers in the presence of a driving for
2“f(r ) can again be invoked to develop the walker diff
sion method for resistor~or conductor! networks. The diffu-
sion current density~walker flux! is

-
c-

n-
4-3
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CLINTON DeW. VAN SICLEN PHYSICAL REVIEW E65 026144
J~r !52D~r !r~r !“f~r !, ~17!

whereD(r ) and r(r ) are the local walker diffusion coeffi
cient and local walker density, respectively.

According to Ohm’s law, the electrical current dens
Ji→ j between adjacent network nodesi and j due to the po-
tential differencef j2f i is

Ji→ j52s i j ~f j2f i !/r i j , ~18!

where s i j is the conductivity of the bond connecting th
nodes andr i j 51 is the bond length~this derivation is spe-
cialized toregular networks; that is, networks with regularl
spaced nodes!. Then the local walker diffusion coefficient i
identified with the conductivity such thatDi j 5s i j , and the
equilibrium walker densityr i

051 at all nodesi in the net-

FIG. 2. ~a! Two-dimensional, two-phase disordered compos
for which the ratio of the two conductivities is 100:1.~b! Equipo-
tential lines calculated for a potential difference applied across
composite.
02614
work. In analogy with this local relation, the effective~mac-
roscopic! transport coefficients for the regular network is
given by

s5Dw , ~19!

whereDw is the macroscopic walker diffusion coefficient.
The walker behavior again follows from the principle

detailed balance. A walker at sitei attempts a move in a
randomly chosen direction; that attempt~to adjacent sitej! is
successful with probabilitypi j . Equation ~9! gives pi→ j
5pj→ i which impliespi→ j}s i j and thus thatpi j }s i j . Con-
sider now a walker diffusing over a regular conductor n
work with all s i j 5smax. Then every attempted move is su
cessful (pi j 51) and the timet associated with a move is

t5l2/~2dDw!5~2dsmax!
21, ~20!

where the bond lengthl51 for convenience.
More generally, a walker at sitei attempts a move to a

randomly chosen adjacent sitej during the time intervalt
5(2dsmax)

21; that move is successful with probabilitypi j
5s i j /smax, wheresmax is the network conductor with larg
est conductivity value. The walker diffusion coefficientDw is
then calculated from the total displacement of the wal
over the time corresponding to the number of attemp
moves@Eq. ~4!#.

This diffusion procedure is computationally inefficien
since not all attempted moves by the walker are succes
This is overcome by statistically weighing the behavior
the walker such that every attempt is successful but the m
is accomplished over a variable time interval. Thus the ac
behavior of the walker is well approximated by a sequence
moves in which the direction of each move from a sitei is
determined randomly by the set of probabilities$Pi j %, where

Pi j 5
pi→ j

(kpi→k
5

s i j

(ks ik
~21!

and the time interval over which the move occurs is

Ti5
t

(kpi→k
5

1

(ks ik
~22!

@the last equality in Eq.~22! is specific to orthogonal net
works, e.g., square and cubic networks#. This variable resi-
dence time algorithm was verified analytically~by use of
Markov chain theory@9#! for one-dimensional conductor ne
works.

A further check is made by calculating the effective co
ductivity of square random networks where half the bon
have conductivitysA and half have conductivitysB ~so each
phase is at the bond percolation threshold!. These results, for
ratiossB /sA50.5, 0.1, 0.01, and 0.001, are presented in F
3. Each data point is the average value obtained from
different networks of size 5123512 ~with periodic boundary

e

4-4
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WALKER DIFFUSION METHOD FOR CALCULATION OF . . . PHYSICAL REVIEW E 65 026144
conditions!; standard deviations about each average
much smaller than the size of the plotted point. The points
fall on the straight line of slope 0.5, in agreement with t
analytical relations5(sAsB)1/2 @8,10#.

The effective conductivity was also calculated for squ
random networks where a fractionf A of the bonds have con
ductivity sA and the rest are nonconducting. These resu
for f A50.55, 0.6, 0.65, 0.7, and 0.8, are presented in Fig
Each data point is the average value obtained from 15 dif
ent networks of size 102431024 ~with periodic boundary
conditions!; standard deviations about each average
smaller than the size of the plotted point. The equation
the curve fit through these points~and passing through th
origin! is

s/sA5~2 f A21!m1v ln~2 f A21! ~23!

with m51.027 7160.001 96 ~standard error! and v5
20.029 8860.001 03. Thus the conductivity exponent f

FIG. 3. Calculated values of the conductivity ratios/sA for
square random networks where half the bonds have conductivitysA

and half have conductivitysB . The four data points are taken fo
sB /sA50.5, 0.1, 0.01, and 0.001.

FIG. 4. Calculated values of the conductivity ratios/sA for
square random networks where a fractionf A of the bonds have
conductivity sA and the rest are insulating. The five data poin
~from the right! are taken forf A50.8, 0.7, 0.65, 0.6, and 0.55.
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two-dimensional bond percolation isgreater than 1.096
~since the slope of the curve in Fig. 4 is increasing as
percolation threshold is approached from above!, which is
consistent with exponent values obtained by, e.g., Straley@8#
(1.1060.05), Stinchcombe and Watson@11# (1.1360.09),
Fisch and Harris@12# (1.4360.02), Ben-Mizrahi and Berg-
man @13# ~1.00!, Derrida and Vannimenus@14# (1.28
60.03), Sahimiet al. @15# (1.26460.054), and Grassberge
@16# (1.310060.0011). It is interesting to note that th
conductivity exponent obtained by the WDM for two
dimensionalsite percolation is 1.25360.005@4#.

The transport properties offinite ~nonperiodic! resistor
networks can be found in a manner similar to that descri
in the preceding section for finite scalar fields. A chemic
potential gradient is created by injecting walkers at selec
nodes and removing them at other nodes~internal as well as
boundary nodes can be walker sources and sinks!. Then the
steady-statewalker density at nodei is the fraction of time
spent by the walkers at nodei,

r i5t i /^tk& ~24!

~in the absence of a chemical potential,r i5r i
051!. Other-

wise the treatment for resistor networks follows that for s
lar fields; in particular, Eqs.~8!–~13! hold here as well. The
counterpart to Eq.~14! is

Ji→ j5s i j ~exp@m i /kT#2exp@m j /kT# !. ~25!

This suggests the particular identificationf i5exp@mi /kT#, so
that the potential at nodei is

f i5r i5t i /^tk& ~26!

and Eq.~25! for the walker flux becomes

Ji→ j5s i j ~f i2f j !. ~27!

This last equation is identical to Eq.~18!, which indicates
that the WDM forfinite resistor networks provides a rando
walk solution to the set of FDM algebraic equations.

The WDM may be straightforwardly applied toirregular
resistor networks as well, as those can be converted to~pos-
sibly higher-dimensional! regular networks for which the
walker diffusion rule is given above. Actual conversion of
irregular network is not necessary, however, when the v
able residence time algorithm@Eqs.~21! and ~22!#, with the
conductivitiess i j replaced by the conductancess i j /r i j , is
used. In this manner the transport properties of comp
two-dimensional fracture networks can be calculated, for
ample.

IV. CONCLUDING REMARKS

The WDM can be used to calculate theeffective~macro-
scopic! andlocal ~microscopic! transport properties of a het
erogeneous medium represented by a scalar field of l
transport coefficients~e.g., conductivity! or by a ‘‘resistor
network’’ derived from that scalar field. As a calculation ca
be accomplished by monitoring the position of a sing
4-5
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walker, the method requires very little computer memory a
so is especially suitable for highly complex material syste
such as geomedia. Because the walkers ‘‘solve’’ the trans
equations ‘‘on the fly,’’ the WDM may also be useful i
studies of dynamic phenomena such as miscible fluid in
sion in permeable media.
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