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ABSTRACT

The construction and application of efficient numerical recursive filters for the task of convolving a spatial
distribution of ‘‘forcing’’ terms with a quasi-Gaussian self-adjoint smoothing kernel in two or three dimensions
are described. In the context of variational analysis, this smoothing operation may be interpreted as the con-
volution of a covariance function of background error with the given forcing terms, which constitutes one of
the most computationally intensive components of the iterative solution of a variational analysis problem.

Among the technical aspects of the recursive filters, the problems of achieving acceptable approximations to
horizontal isotropy and the implementation of both periodic and nonperiodic boundary conditions that avoid the
appearance of spurious numerical artifacts are treated herein. A multigrid approach that helps to minimize
numerical noise at filtering scales greatly in excess of the grid step is also discussed. It is emphasized that the
methods are not inherently limited to the construction of purely Gaussian shapes, although the detailed elaboration
of methods by which a more general set of possible covariance profiles may be synthesized is deferred to the
companion paper (Part II).

1. Introduction

There are many methods available for objectively an-
alyzing the meteorological data required to initialize a
numerical weather prediction model (e.g., see Daley
1991). Those methods based on formal statistical prin-
ciples (e.g., Gandin 1963; Lorenc 1986, 1997; Parrish
and Derber 1992; Courtier et al. 1998), which permit a
proper accounting to be taken of multivariate aspects of
the problem, have now largely superseded the overtly
empirical methods of ‘‘successive corrections’’ (Berg-
thorssen and Döös 1955; Cressman 1959; Barnes 1964).
Nevertheless, for specialized applications, the empirical
methods continue to enjoy the advantages of greater
computational efficiency and the ability to adapt more
flexibly to the typically large inhomogeneities of density
and quality of the available data. While the high effi-
ciency of empirical methods becomes progressively less
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of a critical factor as available computational power
continues to increase, adaptivity remains a factor of con-
siderable importance in circumstances where the day-
to-day variability of data quality and quantity are hard
to predict beforehand, such as occurs in the processing
of satellite sounding data. In this context Hayden and
Purser (1995), following up on the work of Purser and
McQuigg (1982), developed a numerically efficient and
spatially adaptive analysis scheme using spatial smooth-
ers. Each spatial smoother was built up of more basic
numerical operators consisting of rather simple recur-
sive filters acting unidirectionally upon the gridded data
residuals.

The numerical efficiency of these basic operators can
also be turned to advantage within a statistical analysis
scheme, specifically in the synthesis of the effective
covariance-convolution operators needed by the descent
algorithms of the large-scale linear solvers involved
(Lorenc 1992). The Statistical Spectral Interpolation
(SSI) of the National Centers for Environmental Pre-
diction (NCEP) is an example of an analysis scheme in
which the spectral representation of the background er-
ror covariance is employed directly (Parrish and Derber
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1992). Methods of this type are inherently limited in
their ability to deal conveniently with geographical in-
homogeneities. Although one motivation of the present
two-part study was to develop the tool of recursive filters
to allow the operational three-dimensional variational
analysis (3DVAR) scheme to accommodate spatial in-
homogeneities in the background covariance, the in-
homogeneous and anisotropic aspects of the filtering
technique will be reserved for the companion paper
(Purser et al. 2003, referred to henceforth as Part II);
the focus of the present paper is to demonstrate the
ability of appropriately constructed recursive filters to
achieve acceptably isotropic covariance functions of
Gaussian form. Part II will extend this study to more
general non-Gaussian profiles and explore the case of
spatially adaptive covariances of either locally isotropic
or generally anisotropic forms.

A brief review of the ideas that underlie 3DVAR is
given in section 2 in order to clarify the points at which
the recursive filter plays a part. In section 3 we set forth
the relevant theory pertaining to the construction of ba-
sic recursive filters capable of being forged into con-
volution operators reasonably representing the qualities
desired by modeled covariance convolutions within an
adaptive analysis scheme with a uniform Cartesian grid
and with homogeneous covariances. Like the Gaussian
covariances of Derber and Rosati (1989), which are ob-
tained by multiple iterations of a diffusion operator, the
basic recursive filters are crafted to produce approxi-
mately Gaussian smoothing kernels (but in fewer nu-
merical operations than are typical in the explicit dif-
fusion method). Some of the technicalities discussed in
this section are treated in greater detail in the appen-
dixes. In another paper, Wu et al. (2002), we provide
examples of the applications of some of the techniques
presented here to global variational analysis of meteo-
rological data.

2. 3DVAR

In this section we attempt to follow the notation of
Ide et al. (1997), writing the abstract vector representing
the atmospheric state as x, with ‘‘background’’ and
‘‘analysis’’ versions of this indicated by subscripts, that
is, xb and xa. The component of error in the background
is denoted eb:

x 5 x 1 e .b b (2.1)

The observational data are collected into another ab-
stract vector yo whose components are related to the
state vector x through the application of a generalized,
possibly nonlinear, interpolation operator H together
with an effective measurement error eo:

y 5 H (x) 1 e .o o (2.2)

The statistical characteristics of the errors eb and eo

are quite difficult to describe in complete detail owing
to numerous complicating factors. Among the common

simplifying assumptions, we normally assume unbi-
asedness:

^e & 5 0, (2.3)b

^e & 5 0. (2.4)o

The covariance, R [ ^eo &, of observational error isTe o

assumed to be diagonal, equivalent to assuming the ob-
servational errors are statistically independent. The cor-
responding covariance, B [ ^eb &, of background error,Te b

however, is never assumed to be diagonal in its repre-
sentation based on the state-space constructed from the
gridded value components; the characteristically smooth
form in space of background errors implies that neigh-
boring points have errors, in fields of the same type,
that are strongly positively correlated. Although the
principles of variational analysis can accommodate
strong nonlinearities if required, it is often numerically
convenient to exploit the typically weak nonlinearity of
H by approximating the effects on H (x) of small incre-
ments of x, using the linearization of H :

Hdx 5 dH (x). (2.5)

The ‘‘primal’’ variational principle in 3DVAR seeks
the minimum over x of the penalty function L1(x) de-
fined by

T 212L (x) 5 (x 2 x ) B (x 2 x )1 b b

T 211 [y 2 H (x)] R [y 2 H (x)], (2.6)

which may be justified by minimum-variance argu-
ments. The solution, x 5 xa, then obeys

21 21TB (x 2 x ) 5 H R [y 2 H (x )]a b a (2.7)

and, hence, must define an increment of the form

Tx 2 x 5 BH f,a b (2.8)

where

21f 5 R [y 2 H (x )].a (2.9)

The inherent smoothness of the background field errors
eb, and hence that of the covariance B of these errors,
is therefore imprinted on the analysis increments them-
selves.

If we neglect the effects of nonlinearity, we find that,
instead of solving for x directly, we can instead first
solve for the smaller vector f in the implied ‘‘dual’’
variational principle that minimizes L2(f) defined by

T TT2L (f) 5 f (R 1 HBH )f 2 2f d,2 (2.10)

where d is the ‘‘innovation’’:

d 5 y 2 H (x ).o b (2.11)

Treating this dual form of the analysis problem is
essentially the approach adopted at the Data Assimila-
tion Office of the National Aeronautics and Space Ad-
ministration (NASA) Goddard Space Flight Center and
described by da Silva et al. (1995) and by Cohn et al.
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(1998). This ‘‘physical-space statistical analysis sys-
tem’’ (PSAS) may be advantageous when using so-
phisticated preconditioning methods based on careful
grouping of data, as discussed by Daley and Barker
(2000). However, when only the simplest precondition-
ing strategies are employed, Courtier (1997) shows that
the primal and dual forms imply essentially identical
condition numbers for the linear inversion problems.
Regardless of which form of 3DVAR is adopted, one
must rely on iterative methods to converge toward a
practical solution. The most costly part of each iterative
step of a solution algorithm is the multiplication of some
grid-space vector v by the covariance matrix B. This is
required once per iteration whether treating the primal
or the dual form of the problem. Even a single multi-
plication of this form becomes prohibitively expensive
if carried out explicitly with the full matrix having the
dimensionality of x. One remedy, adopted by Gaspari
and Cohn (1998, 1999) and extending earlier work of
Oliver (1995), is to constrain the allowed covariance
models to those possessing compact support. They show
how families of approximately Gauss-shaped compact-
support covariance models may be formulated and ap-
plied with much greater numerical efficiency than would
be possible for more general functions. Our own ap-
proach to achieving reasonable efficiency without re-
stricting the covariances to being of the compact-support
type is to assume that an operation of the form Bv may
be factored into smaller, less costly, factors.

In the first step, the multivariate structure of B is
broken apart by the judicious selection of a set of non-
standard analysis variables for which the contributions
from B naturally separate out. For example, a single
variable representing the quasigeostrophically balanced
combination of mass and rotational wind fields can be
attributed a univariate spatial covariance for its back-
ground errors quite independently of the corresponding
spatial covariance for the residual unbalanced rotational
wind component. Meanwhile, the divergent wind field
can be treated independently of either. Further steps in
the program of reducing the operator B might be, next,
to carry out a crude separation of a few additive com-
ponents of the operator on the basis of their character-
istic spatial scales. If this can be done to render the
resulting operator components into Gaussian forms,
then, in the absence of anisotropies obliquely oriented
with respect to the grid, the Gaussians themselves may
be factored into the three respective coordinate direc-
tions. [A more general discussion of radially symmetric
covariance functions can be found in the work of Oliver
(1995).] Finally, along each single dimension, a com-
putational advantage may be gained by employing a
spatially recursive filter, carefully constructed to mimic
the required Gaussian convolution operator, but at a
fraction of the still considerable cost of applying directly
the explicit Gaussian convolution operator itself. It is
the objective of the following sections to reveal pre-
cisely how such a recursive filter may be fabricated and

applied. We do not wish to imply that the Gaussian form
is inherently desirable in data assimilation. On the con-
trary, careful investigation of the spatial profiles of fore-
cast background error (Thiébaux 1976; Thiébaux et al.
1986; Hollingsworth and Lönnberg 1986) reveals co-
variance functions that cannot be reconciled with the
Gaussian shape alone. However, by treating the two- or
three-dimensional quasi-Gaussian filter combination as
a relatively cheap ‘‘building block,’’ a far larger range
of possible profile shapes becomes accessible, by the
superposition of appropriately weighted combinations
of quasi Gaussians of different sizes and by the appli-
cation of the negative Laplacian operator to such com-
ponents in order to induce the negatively correlated si-
delobe characteristics of some components of back-
ground error. These aspects are dealt with in Part II.
Thus, the motivating consideration for using recursive
filters in this context is predominantly that of compu-
tational efficiency together with the recognition that
much more general forms become available through the
exploitation of superposition.

3. Homogeneous recursive filtering theory

The theory of digital filtering was initially developed
in the context of time series analysis. However, many
of the same techniques are equally applicable in two or
more spatial dimensions when the numerical grid is of
a sufficiently regular configuration, as it usually is in
numerical weather analysis. While we attempt to keep
the technical discussion of this section self-contained,
other related aspects of the topic of digital filter design
are well covered by standard texts such as Otnes and
Enochson (1972) and Papoulis (1984).

a. Quasi-Gaussian recursive filters in one dimension

Let K/dx2 denote the finite-difference operator:

2 2K(c) /dx 5 2(c 2 2c 1 c )/dx ,i i21 i i11 (3.1)

approximating the differential operator, 2d2/dx2, on a line
grid of uniform spacing dx. The spectral representation of
the operator at wavenumber k (wavelength 2p/k) is

2
kdx

K̂(k) 5 2 sin .1 2[ ]2

Inverting this relationship, we obtain a formula for k2

in terms of K̂:

2
1/2ˆ4 K

2k 5 arcsin . (3.2)
2 1 2[ ]dx 2

Clearly, the same formula relates operator 2d2/dx2 to
operator K; in fact, the algebraic manipulations we set
forth here can be regarded as an application of the ‘‘cal-
culus of operators’’ (Dahlquist and Björck 1974, p. 311).
Using the standard expansion,
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TABLE 1. Coefficients bi,j for quasi-Gaussian filters up to degree
six.

i j 5 1 j 5 2 j 5 3 j 5 4 j 5 5 j 5 6

1 1 1

12

1

90

1

560

1

3150

1

16 632
2 1 1

6

7

240

41

7560

479

453 600

3 1 1

4

13

240

695

60 480

4 1 1

3

31

360

5 1 5

12

6 1

`

2i11arcsin(z) 5 g z , |z| , 1, (3.3)O i
i50

where

1 (2i 2 1)!!
g 5 ·i (2i 1 1) (2i)!!

1 1 1 1.3 1 1.3.5
[ 1, · , · , · , . . . , (3.4)

3 2 5 2.4 7 2.4.6

we may obtain a power expansion for k2dx2, and thence,
the expansions for the term (k2dx2) i:

2 2 i jˆ(k dx ) 5 b K . (3.5)O i, j
j$i

From (3.2) and (3.3) we find that

j21 2g g 2( j!)k j212kb [ 5 , (3.6)O1, j ( j21) 24 j (2 j )!k50

and other coefficients then follow by the application of
the inductive step:

j112i

b 5 b b . (3.7)Oi, j 1,k i21, j2k
k51

The coefficients, bi,j, which are all positive and rational,
are listed in Table 1 for j # 6.

Consider the differential operator, D(n) ,

n2 2 4 4 2 2a d a d 1 a d
D 5 1 2 1 1 · · · 1 2 ,(n) 2 4 21 22 dx 2!4 dx n! 2 dx

(3.8)

whose spectral representation is

n2 2 4 4 2 2a k a k 1 a k
D̂ [ 1 1 1 1 · · · 1(n) 1 22 2!4 n! 2

or, with s 5 a/dx,

22 2 4 2 2k dx s k dx
2D̂ 5 1 1 s 1 1 · · ·(n) 1 2 1 22 2! 2

n2n 2 2s k dx
1 . (3.9)1 2n! 2

Since

2 2a kˆlim D 5 exp , (3.10)(n) 1 22n→`

the substitution of each power series (3.5) up to degree
n for the powers of k2 into (3.9) gives us a way of
approximating this exponential function in terms of K̂:

2n n2s 1 s
j jˆ ˆ ˆD* 5 1 1 b K 1 b K 1 · · ·O O(n) 1, j 2, j1 22 2! 2j51 j52

n21 s
nˆ1 b K . (3.11)n,n1 2n! 2

Correspondingly, there is a finite-difference operator,
, composed of the nth-degree expansion of K impliedD*(n)

by this approximation, which, following a rearrange-
ment of terms, we may write

22 2 2s s b s2,2 2D* 5 1 1 b K 1 b 1 K(n) 1,1 1,21 2 1 2[ ]2 2 2! 2

jn 2b sj,n n1 · · · 1 K . (3.12)O 1 2[ ]j! 2j51

Note that, owing to the positivity of all the coefficients
bi,j, this operator is positive definite and therefore pos-
sesses a well-defined inverse. Note also that, for s k
1, the only coefficients in (3.12) that remain significant
are the ‘‘diagonal’’ ones, bi,i 5 1, yielding simply the
truncated Taylor series for the exponential function of
s2K/2. Shortly, we shall examine the practical impact
of the off-diagonal components, bi,j, j . i, but first we
describe the process of extracting from the above al-
gebraic developments a practical class of smoothing fil-
ters.

The reciprocal of the function exp(a2k2/2) in (3.10)
is a Gaussian function in k and is the Fourier transform
of a convolution operator (on the line x) whose kernel
is also of Gaussian form. Provided we can find a prac-
tical way to invert the operator equation,

D* s 5 p,(n) (3.13)

for a given input distribution, p, the resulting output, s,
will be an approximation to the convolution of p by the
Gaussian function whose spectral transform is the re-
ciprocal of the right-hand side of (3.10). The approxi-
mation, ( )21, to this convolution is what we refer toD*(n)

as a quasi-Gaussian filter. The common centered second
moment of operator D(n) and its approximation, , isD*(n)
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FIG. 1. Comparison of one-dimensional applications of recursive filters approximating a Gauss-
ian (shown solid). Dashed curves show filter approximations: (a) order n 5 1, (b) n 5 2, and (c)
n 5 4, with (long dashes) and without (short dashes) the off-diagonal b coefficient refinements.

exactly 2a2, so a is a convenient measure of the in-
trinsic distance scale of the smoothing filter implied by
the inversion of (3.13). A useful fact is that the square
of the intrinsic scale of the composition of sequential
smoothing filters is the sum of squares of the scales of
the individual components. Also, as a consequence of
the statisticians’ ‘‘central limit theorem’’ (e.g., Wilks
1995) applied to convolutions in general, the effective
convolution kernel of such a composition of several
identical filter factors resembles a Gaussian more close-
ly than does the representative factor. Thus, provided it
becomes feasible to invert (3.13), we possess the means
to convolve a gridded input distribution with a smooth
quasi-Gaussian kernel, at least in one dimension.

As a matrix, is banded and, for an infinite domain,D*(n)

symmetric. Conventionally, the linear inversion of a sys-
tem such as (3.13) might be effected by employing an
LU factorization (Dahlquist and Björck 1974) of ,D*(n)

D* [ AB,(n) (3.14)

with lower-triangular band matrix, A and upper-trian-
gular band matrix, B, allowing the solution to proceed
as two steps of recursive substitution. On an infinite
grid, the same principle pertains, but with the guaranteed
simplification of (i) a translational symmetry ensuring
that every row of A is identical (allowing for the trivial
translation) and every row of B is identical and (ii)
ordinary matrix symmetry by which we can ensure that
B is simply the transpose of A. In this case, the LU
decomposition of is also of the symmetric, or Cho-D*(n)

lesky, type (Dahlquist and Björck 1974).
In the two stages of solution,

Aq 5 p, (3.15)

Bs 5 q, (3.16)

the explicit recursions of the back substitutions are the
following basic recursive filters:

n

q 5 bp 1 a q and (3.17)Oi i j i2j
j51

n

s 5 bq 1 a s , (3.18)Oi i j i1j
j51

which are conveniently referred to as the advancing and
backing steps, respectively, since, in the first, index i
must be treated in increasing order while, in the second,
it must be treated in decreasing order, in order that the
terms on the right are already available at each step.
Note that the correspondences between notations of
(3.15), (3.16) and of (3.17), (3.18) are

A 5 B 5 1/b, (3.19)i,i i,i

A 5 B 5 2a /b, j ∈ [1, n]. (3.20)i,i2j i,i1j j

Defining the total ‘‘substance’’ implied by the distri-
bution p to be S i dxpi, the operator , and hence itsD*(n)

inverse, preserve this quantity. By symmetry, the factor
operators, A and B must therefore also preserve sub-
stance, implying that

n

b 5 1 2 a . (3.21)O j
j51

The task of distilling the coefficients aj from the pa-
rameters defining is somewhat technical and is rel-D*(n)

egated to appendix A. Filters may be constructed at
different orders, n, and with or without the refinements
implied by the off-diagonal coefficients, bi,j, for j . i.
For n 5 1 the filter response comprises back-to-back
decreasing exponential functions, which Fig. 1a shows
(dashed curve) in comparison to the Gaussian function
(solid curve) of the same width of one grid unit. Better
approximations to the Gaussian are obtained after ap-
plication of the second-order filters, as shown in Fig.
1b, and fourth-order filters, shown in Fig. 1c, for the



AUGUST 2003 1529P U R S E R E T A L .

case of the filter with only the diagonal coefficients b
(short-dashed curves) and with all of the b coefficients
(long-dashed curves). We see that the advantage of
keeping all the coefficients is greater at higher order,
where they make the resulting filter response a signif-
icantly better approximation to the intended Gaussian
function. However, the alternative treatments of the b
coefficients are virtually indistinguishable at smoothing
scales of a few grid units, as the truncation errors of
the component numerical derivative operators become
insignificant in comparison to the error resulting from
the finite truncation of the series for the Gaussian em-
ployed in the construction of the filter operator. The cost
of applying the filters with or without the off-diagonal
b coefficients is the same; therefore, we always adopt
the more accurate formulation that includes the off-di-
agonal coefficients.

We have described the idealized case of operators
acting on data extending indefinitely in both directions.
In practice, we are confronted with geometrical con-
straints, either in the form of definite lateral boundaries
to the domain, or as periodic conditions appropriate to
a cyclic domain. Fortunately, it is possible to generalize
the application of the advancing and backing recursive
filters to both of these situations. Appendix B treats the
case of lateral boundaries and shows how the effect of
a continuation of the domain to infinity can be simulated
by the imposition of appropriate ‘‘turning’’ conditions
at the transition between the advancing and backing
stages. Appendix C treats the case of periodic boundary
conditions. In both of these special cases the main part
of the filtering algorithm and the basic filter coefficients
employed are the same as in the case of the infinite
domain. By a generalization of the treatment used in
the cyclic case, one may efficiently distribute the re-
cursions across multiple processors of a massively par-
allel computer. This is discussed in detail in a related
context by Fujita and Purser (2001).

b. Quasi-Gaussian filters in two dimensions

Let x and y be horizontal Cartesian coordinates, and
k and l the associated wavenumber components. Then
in two dimensions, we can exploit the factoring property
of isotropic Gaussians:

2 2 2 2 2 2a r a k a l
exp 2 5 exp 2 exp 2 , (3.22)1 2 1 2 1 22 2 2

where r 5 (k2 1 l2)1/2 is the total wavenumber. In terms
of basic one-dimensional Gaussian smoothing filters,

and , operating in the x and y directions, a two-(x) (y)D D(`) (`)

dimensional isotropic filter, Ga, also of Gaussian form,
results from the successive application of the one-di-
mensional factors, and . For example, an input(x) (y)D D(`) (`)

field, x, is smoothed to produce the output field, c, by
the convolution:

c(x ) 5 G (x , x )x(x ) dx dy [ G , x,1 EE a 1 2 2 2 2 a

(3.23)

where

(y) (x)G 5 D , D .a (`) (`)

The crucial significance of the Gaussian form for the
one-dimensional filters is that this form is the only shape
that, upon combination by convolution in the x and y
directions, produces an isotropic product filter. In order
to generalize our filters to alternative shapes, while pre-
serving two-dimensional isotropy, we shall always at-
tempt to base the construction of the more general filters
on the building blocks supplied by the quasi-Gaussian
products of the approximations, and , to the true(x) (y)D D(`) (`)

Gaussian smoothers. But we must first establish what
is the minimum order of such a filter that will preserve
the isotropy of the product combination, at least to a
degree that ensures that any residual anisotropies are
not obtrusively obvious.

Figure 2 depicts the results obtained by smoothing a
delta function placed at the center of a square grid.
Figure 2a shows the result of a single application of the
first-order filter, D(1), in the x and y directions. This result
is clearly neither smooth nor even approximately iso-
tropic. Figures 2b and 2c show the results obtained by
using the filters of orders two and four. We see that the
appearance of isotropy is not adequately attained until
the order exceeds two, but the fourth-order filter shown
in Fig. 2c seems to provide an excellent approximation
to the isotropic Gaussian. For applications in data as-
similation, it is usually worth the cost of applying a
filter of at least fourth order if the filter is to be applied
only once in each of the orthogonal grid directions. For
a roughly equivalent cost, one may also apply the simple
first-order filter four times in succession (but with a scale
only a half as large in each instance). This has been the
approach employed in earlier applications of recursive
filtering to data analysis, such as Purser and McQuigg
(1982), Lorenc (1992), and Hayden and Purser (1995).
The result is shown in Fig. 2d, but is clearly inferior to
the use of the single fourth-order filter.

Very often, the physical variables of interest in an
analysis are derivatives of the variables it is convenient
to base the covariance model on. For example, covari-
ances of the steamfunction or velocity potential (scalars)
are often more convenient to handle than the derived
covariances among velocity components at two loca-
tions. Since we may wish to employ the results of our
filters as building blocks of such differentiated covari-
ances, it is as well to examine the derivatives of fields
analogous to those of Fig. 2. In order to permit any
departures from isotropy to stand out more clearly, we
take the Laplacian of the result of smoothing the delta
function. Figure 3 shows three such results (with a
slightly smaller scale than was used in Fig. 2), involving
single applications (in x and y) of D(n) with n being 2,
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FIG. 2. Sequential application of quasi-Gaussian recursive filters of order n in two dimensions:
(a) n 5 1, (b) n 5 2, (c) n 5 4, and (d) four applications of filters with n 5 1 with scale parameter
adjusted to make the result comparable with the other single-pass filters.

4, and 6 in panels a, b, and c, respectively. Even more
so than in Fig. 2, we see that it is not until we adopt at
least fourth-order filtering that we obtain an acceptable
degree of isotropy. For reference, the ‘‘right answer’’
obtained using the Laplacian of the true Gaussian, Ga,
is shown in Fig. 3d.

c. Numerical robustness and multigrid refinements

A recognized problem with high-order recursive fil-
ters (e.g., Otnes and Enochson 1972) is their suscepti-
bility to numerical noise derived from the amplification
of roundoff effects, especially as the filtering scale be-
comes significantly larger than the grid scale. A sug-
gestion of this problem is barely visible in the ragged-
ness of the outer contours of Fig. 3c, where 32-bit pre-
cision was used for both the calculation of the filter
coefficients and the application of the filters themselves.
The problem is deferred to larger filtering scales when
all calculations are performed at 64-bit precision. Also,
even when the filtering itself is performed at 32-bit pre-
cision, it is still beneficial to employ 64-bit precision in

calculating the coefficients used. However, a more sat-
isfactory and permanent solution is to avoid the problem
altogether, which can only be done by keeping the scale
of the computational grid for the recursive filter oper-
ations commensurate with the desired filtering scale in
each direction. A natural remedy, in cases where the
grid dimensions permit it, is to employ a ‘‘multigrid’’
strategy. General discussions of such methods can be
found in Brandt (1977) and an excellent introductory
exposition of the method is Briggs (1987). Essentially,
the field to be smoothed at a certain filtering scale is
first transferred (by adjoint interpolation from the initial
fine grid) to a grid whose coarseness is comparable with,
but still sufficiently resolves, this smoothness scale. The
smoothing is performed by the high-order recursive fil-
ter on the generally somewhat coarser grid, now without
risk of numerical noise, and at a numerical cost that is
usually significantly less than the cost of the equivalent
operation applied to the original fine grid. The resulting
smooth field is finally interpolated back to the fine grid.
The implied operator representing this combination of
steps remains self-adjoint and, provided the order of
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FIG. 3. Negative Laplacian applied to quasi-Gaussian recursive filters with (a) n 5 2, (b) n 5
4, (c) n 5 6, and (d) corresponding contours for the exact Gaussian. Contours are at multiples
of odd numbers with negative contours shown as dotted curves.

accuracy of the interpolations is large enough, no dis-
cernible hint of roughness appears in the resulting
smooth output. For the higher-order filters, which are
susceptible to the amplification of roundoff noise, the
multigrid remedy should be applied whenever the
smoothing scale exceeds about six of the basic grid
spaces.

The simplest multigrid structure is one in which the
spacing in the successive grids doubles. Then, except
for the possible overlaps (which are desirable in the case
of bounded domains in order to preserve the same cen-
tered interpolation operators everywhere), each coarse
grid is a subset of its finer predecessor. For cyclic do-
mains, this simplification obviously works only when
the periodic grid dimensions are divisible by powers of
two. For bounded domains, the judicious use of overlaps
of the coarser grids far enough beyond the finer grid
boundaries to accommodate the interpolation stencils
enables one to adopt the grid-scale-doubling arrange-
ment without numerical restrictions on the grid dimen-
sions. Interpolation is assumed to occur only between
adjacent grids of the scale hierarchy. Interpolation from

a coarse grid to the next finer grid in two dimensions
is accomplished by passing through an intermediate
stage in which one dimension is ‘‘fine’’ and the other
is ‘‘coarse.’’ In this way, only one-dimensional inter-
polation operators need be considered. Assuming each
coarse grid overlaps the next finer grid by a sufficient
margin, all interpolations can be performed using the
same standard centered formula. Table 2 lists the
weights wp associated with source points distant p grid
units from the target point for midpoint interpolation
from a uniform grid at (even) orders of accuracy be-
tween 2 and 12. [Analytic expressions for these inter-
polation coefficients may be found in the appendix A
of Purser and Leslie (1988).] Experience suggests that
sixth-order interpolations are adequate for most pur-
poses.

4. Discussion

The problem of efficiently accommodating accurate
approximations to isotropic covariance functions in a
variational analysis has been solved using recursive nu-
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TABLE 2. Coefficients wj for uniform grid midpoint interpolation at orders of accuracy, n, up to 12, where index j is the half-integer
distance, in grid units, between the target point and the source point to which weight wj applies.

n g w1/2g w3/2g w5/2g w7/2g w9/2g w11/2g

2
4
6
8

10
12

2
16

256
2048

65 536
524 228

1
9

150
1225

39 690
320 166

21
225

2245
28820

276 230

3
49

2268
22 869

25
2405

25445
35

847 263

merical filters. The covariances are never explicitly
computed; instead, their effects as convolution operators
are represented. This is achieved through a sequence of
applications of carefully designed recursive filters op-
erating along the various lines of the appropriately cho-
sen computational grids. In a regional analysis, there is
no reason not to use the grid of the intended numerical
prediction model. While the building blocks of a co-
variance operator generated by recursive filtering are
always of quasi-Gaussian form as required by the fac-
torization property (3.22), the final covariances them-
selves may be given more general radial profiles through
the superposition of varyingly scaled component Gaus-
sians, or by combining these components with the ap-
plication of Laplacian operators, as we discuss in Part
II.

A global model requires additional refinements to the
technique we have described here for purely geometrical
reasons. For one thing, the presence of polar coordinate
singularities makes the generation of even approxi-
mately isotropic covariances impossible by the method
of sequentially applying the quasi-Gaussian recursive
filters sequentially along the two principal grid direc-
tions. But even if we adopt a patchwork of overlapping
rectangular grids [which is essentially the approach we
have adopted for the global analysis described in Wu et
al. (2002)], the use of the present filters, which are ho-
mogeneous in scale only relative to the grid to which
they are applied, translates to the application of smooth-
ing operations, which, on grids of global extent, cannot
be everywhere even approximately of uniform scale in
the degree to which they smooth the given data. In order
to address this need to generalize the filters to obtain
control over their spatial smoothing scale from one geo-
graphical location to another, Part II will also describe
technical extensions that not only allow geographical
control of the characteristic scale and amplitude of the
covariance, but that also allow geographically adaptive
three-dimensionally anisotropic stretching of the quasi-
Gaussian building blocks from which the covariances
are constructed.
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APPENDIX A

Obtaining Filter Coefficients for a Given Scale

In section 3, was defined as a real-coefficientD*(n)

monic polynomial of K, so we may use this polynomial’s
roots kp (whose complex members come in conjugate
pairs) to perform the operator factorization:

n K
D* 5 1 2 . (A.1)P(n) 1 2kp51 p

In terms of the shift operator, Z defined

(Zc) 5 c ,i i11 (A.2)

we have

21K 5 2Z 1 2 2 Z , (A.3)

and each factor in (A.1) is expressible:

21K (Z 2 2v 1 Z )p1 2 5 ,
k 2 2 2vp p

where

v 5 1 2 k /2.p p

Therefore, the smaller of the two possible roots,

2 1/2 61z 5 [v 1 (v 2 1) ]p p p (A.4)

of the quadratic,

2z 2 2v z 1 1 5 0,p

allows the factorization of the term

21K 1 2 z Z 1 2 z Zp p1 2 5 . (A.5)1 21 2k 1 2 z 1 2 zp p p

The operation,
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1 2 zp
c 5 x,

211 21 2 z Zp

describes the application of the right-moving, complex
coefficient, first-order recursive filter,

c 5 (1 2 z )x 1 z c ,i p i p i21

whose stability is guaranteed by the property | zp | , 1
[the other root of (A.4) is its reciprocal]. Likewise, the
inverse of the other operator factor on the right of (A.5)
describes the operation of a left-moving stable recursive
filter. By a similar decomposition for all the p ∈ {1,
. . . , n}, we deduce that the operators of (3.15) and
(3.16), comprising the inverses of the right-moving and
left-moving high-order filters, are formally

n 211 2 z ZpA 5 and (A.6)P 1 21 2 zp51 p

n 1 2 z ZpB 5 , (A.7)P 1 21 2 zp51 p

whose operator kernels are real by virtue of the occur-
rences of the complex kp, and hence of the zp, in con-
jugate pairs, and whose coefficients are constructible by
the explicit convolution products of Z21 and Z pre-
scribed by (A.6) and (A.7).

We summarize the practical steps required in order
to obtain these coefficients. First, one locates the com-
plex roots, kp, of the real-coefficient polynomial in K
that defines . Then, the corresponding quantities vD*(n)

and, in each case, the smaller of the two roots zp are
obtained. Then the convolution polynomial (A.6) is con-
structed using these complex (in general) zp. Finally,
we invoke (3.17) and (3.18) to get the algorithmically
convenient coefficients ai and g of this filtering scheme.

The same kind of root-finding method is also used in
the construction of other homogeneous recursive filters,
as described in Hamming (1977) or Otnes and Enochson
(1972). However, the complex arithmetic can be avoided
by an alternative iterative method of obtaining the con-
volution kernels of A and its adjoint B. According to
(3.14), these are the rows of the Cholesky factors of an
infinite symmetric band matrix representation of ,D*(n)

but in practice, given a sufficiently large finite sym-
metric matrix having the same generic rows as , oneD*(n)

finds that the last rows of its Cholesky lower-triangular
factor will be numerically indistinguishable, both from
each other, and from the generic row of the Cholesky
factor of the infinite matrix representation of . ByD*(n)

an adaptation of the regular Cholesky algorithm,

A 5 D* 2 A A A , j , i, (A.8)Oi, j i,k j,ki, j j, j1 2@k,j

1/2

A 5 D* 2 A A , (A.9)Oi,i i,k i,ki,i1 2k,i

one can compute successive rows until, within roundoff,
the subsequent differences from row to row are negli-
gible. This iterative approach is equally valid and never
fails in practice to reproduce the same numerical co-
efficients as is given by the formal root-finding proce-
dure.

APPENDIX B

Nonperiodic End Conditions

Consider a mutually adjoint pair of nth-order basic
recursive filters A21 (‘‘advancing’’) and B21 (‘‘back-
ing’’) on a uniform grid and with constant coefficients
such that, if q 5 A21p, and r 5 B21 p, then, for a
generic grid point i,

n

q 5 bp 1 a q and (B.1)Oi i j i2j
j51

n

r 5 bp 1 a q . (B.2)Oi i j i1j
j51

On an infinite grid, assuming all data remain bounded
at infinity, one can easily verify for the symmetrized
output, s:

21 21 21 21s 5 B A p [ A B p. (B.3)

We ask, given a finite domain, i ∈ [1, N], and assuming
this interval contains the support of input p, how does
one ‘‘prime’’ those values of s just inside the boundary
at i 5 N in order to enable the backing filter, B21 when
applied to q 5 A21p, to simulate implicitly the effect
of a continuation of the gridded values of q beyond this
boundary? The solution of this puzzle is found by ex-
ploiting the commutativity (B.3). Let ŝ j denote the n
vector of (sj112n, . . . , sj)T. Then ŝN are the last n values
of s belonging to the actual domain while ŝN1n is the
vector of n values one would have obtained just beyond,
if the grid were continued. Define a lower-triangular n
3 n matrix, L with elements

L 5 1 and (B.4)i,i

L 5 2a , (B.5)i1j,i j

and an upper-triangular n 3 n matrix, U, with elements

U 5 a .i,i1j N2j (B.6)

Then, since r̂N1n 5 0, it must follow from s 5 A21r
that

Lŝ 5 UŝN1n N (B.7)

and, from s 5 B21q, that

T TL ŝ 5 U ŝ 1 q̂ b.N N1n N (B.8)

Thus, eliminating ŝN1n, we obtain the turning conditions
that prime the backing filter:

21T T(L 2 U L U)ŝ 5 q̂ b.N N (B.9)
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FIG. B1. Comparison of filter responses to initial data composed of impulses placed two units
and eight units away from the right-hand boundary with (solid) and without (short dashed) the
special end conditions described in appendix B. (a) Results for the first-order filter with a char-
acteristic scale of five units, and (b) for the fourth-order filter with the same scale.

For the simplest filter pair, n 5 1, a1 5 a, this formula
reduces to

2(1 2 a )s 5 bqN N (B.10)

or, since for the conservative filter, b 5 1 2 a,

1 2 a
s 5 q . (B.11)N N1 1 a

To summarize, the bounded-domain algorithm will
consist of the following three steps: (i) apply advancing
filter A21, (ii) prime the end conditions according to the
procedure we have defined in this appendix, and (iii)
apply backing filter B21.

By way of illustrating the effects of these end con-
ditions, Fig. B1 compares first-order (panel a) and
fourth-order (panel b) filter responses with and without
these end conditions for applications to initial data con-
sisting of impulses two and eight grid units from the
right-hand end. In each case, the smoothing scale is 4.0
grid units. The short-dashed curves show the output
without applying the special end conditions (i.e., ap-
plying the backing filter as if all data beyond the bound-
ary are reset to zero) while the solid curves show the
‘‘correct’’ responses using the end conditions we have
described. In both cases the neglect of the proper end
conditions has a serious effect on the response associ-
ated with the impulse placed two units from the end,
being much larger in the case of the higher-order filter
shown in the second panel, while, for the first-order
filter, the differences for the case of the impulse placed
eight units in become negligible. However, for the high-
er-order filter of Fig. B1b, we see that significant dif-
ferences persist even when the initial impulse is as much
as eight units away from the boundary and that, there-

fore, it is not wise to neglect the proper end conditions
for the higher-order filters.

APPENDIX C

Periodic End Conditions

Preserving the notation of appendix B, we consider
the problem of defining the correct priming vector q̂0

for the advancing filter on a cyclic domain with period
N, such that the values obtained are consistent with the
wraparound condition, q̂N 5 q̂0. In the recursion (3.17),
the sensitivity of q̂N to q̂N21, given that input element
pN is unchanged, is expressed as

dq̂ 5 Tdq̂ ,N N21

where

0 1 0 · · · 0 

 0 0 1 · · · 0 
T 5 . _ _ _ 5 _ 

a a a · · · a n n21 n22 1

Applying the chain rule, we deduce that the sensitivity
of q̂N to q̂0 when the intervening input elements, p1,
. . . , pN, remain unchanged, is

Ndq̂ 5 T dq̂N 0 (C.1)

or, for some linear n-vector function ĥ of all the p1 ,
. . . , pN ,

Nq̂ 5 T q̂ 1 ĥ(p).N 0 (C.2)

The identification of q̂0 with q̂N therefore requires that
21Nq̂ 5 (I 2 T ) ĥ0 (C.3)
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We do not need an explicit formula for the vector func-
tion ĥ(p) because we can construct it simply by running
a preliminary trial of the recursive filter with the starting
values, , of this trial solution q* set to zero. Then,q̂*0
from (C.2), the final n values of the trial solutionq̂*N
are simply the vector ĥ itself. A second sweep of the
recursive filter with the proper initial setting computed
from (C.3) completes the advancing filter in a self-con-
sistent way.

A similar procedure is used for the backing filter on
the cyclic domain, so the overall cost is double that of
the recursive filter on a nonperiodic domain of N points.
For this reason, when performance is critical, it may be
preferable in practice to employ a generous overlap and
the nonperiodic version of the filter instead. However,
the extra overhead of computing the proper cyclic con-
dition is a factor for consideration only for serial pro-
cessing; when the domain is divided into segments,
whether it is periodic or not, the recursions always need
to be repeated, at least for a significant fraction of the
domain, in order to achieve intersegment consistency.
Fujita and Purser (2001) show how a generalization of
this idea can form the basis for one of the ways in which
recursive processes may be implemented efficiently in
a distributed computing environment.
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