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Study of drift compression for heavy ion beams
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Abstract

The longitudinal dynamics of drift compression and pulse shaping for a space-charge-dominated heavy ion fusion beam
is studied. A nonperiodic quadrupole lattice is designed for a beam undergoing drift compression, and an adiabatically
matched solution is found for the transverse envelope equations in the nonperiodic lattice.
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1. INTRODUCTION adopted witheE, = —(ge?/y2)dr/oz andg = 2 In(r,,/rp).

. i ) . Here,eis the charge)(t, z) is the line density,, is the wall
In the currently envisioned configurations for heavy ion 4 qiys and, is the average beam radius. We also allow for
fusion, it is necessary to longitudinally compress the bean;m externally applied focusing forée = —«,z. In the beam

bunches by a Iar_ge fgctor aft_er the accelerati_on _phas]qame, the warm-fluid equations for the line densiy, ),
(Haber, 1982 In this article, we first study the longitudinal longitudinal velocityv,(t, z), and longitudinal pressure
dynamics of drift compression and pulse shaping using ?) (t, 2) are given by

one-dimensional warm-fluid model. A parabolic self-similar

drift compression solution is given, and it is demonstrated 5 3
that an arbitrary pulse shape can be shaped into a parabolic e (Avy) = 0, 1)
one by imposing an appropriate velocity distribution. Be-

cause the space-charge force increases as the beam is com- ,, w, €¥g I\ k,z 2 ap,

pressgd, a larger focusin.g force is .needed to confine the 7y U=, * mys 9z myd  myeA 0z @
beam in the transverse direction. It is necessary to have a

nonperiodic quadrupole lattice along the beam path. In this p, N p, +3 v, 0 3
article, we also describe the design of such a focusing lat- ot oz Pz =%

tice, in which we search fadiabatically matchedolutions

of the transverse envelope equations. The following set ofVe treatg andr, as constants for present purposes. Among
beam parameters typical of heavy ion fusion are used in thall the self-similar solution&Qin & Davidson, 2002admit-
present study. We consideiCs' beam with rest mass =  ted by the nonlinear hyperbolic PDE systéty (2), and(3),

133 m,, wherem, is the proton rest mass, kinetic energy the parabolic self-similar solution is the most suitable for
(y —1)mc? = 2.5 GeV, and initial beam lengity, = 9.5 m. the purpose of drift compression, and it has the form of
Our goal is to compress the beam by a factor of 16, that is, to

— - z2 z
Zof = Zpp/16=10.6 m. At,2) =Ab<t><1—%>, vt 2) = ~valt) 0 @
2. LONGITUDINAL DYNAMICS 2 \2 dz,(t
pa(t,2) = pzb<t><1— z§(t)> , % — o). ()

We use a one-dimensional warm-fluid model to describe the

longitudinal dynamics of drift compression. For the longi- Following the derivation in Qin and Davidsg2002, we
tudinal electric field, the conventiong-factor model is  gptain the familiar longitudinal envelope equation
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wheres = Sctis the normalized time variabli; = 3N,e?g/  wheref is Lagrangian coordinates definedby & + V(é)t.
2my>B2c? is the effective longitudinal self-field perveance, For the pulse shaping problem, the final line density profile
ande, = (4r2W/my3B2¢2)Y2 is the longitudinal emittance. At(z) = A(t =T, z) is specified. We therefore obtain

From Eq.(6), the beam path length required for drift com-

pression can be expressed(&s. Barnard, pers. comm. A1 (U)dU = A(&)dé, 9
- d whereU(¢) =¢ + V(&)T, andV(¢) is determined by solv-
s = _f % . (D ing Eq.(9) for U(¢) for the given functional forms of+(z)
20 /2,2 PP N Y S andA(z), and with the appropriate boundary conditions. As
Lo "z, zo 2 7 an example, we consider the case whefe) =1—z" (0 <

z=1andA{(2)=(1—-z"Ym(n+1)/n(m+1) (0=z=1).
Here,m,n # —1, and the coefficienin(n + 1)/n(m+ 1) in
the expression foA(z) assures the conservation of the
total number of particles. Equatidf) can be integrated to
give

In the drift compression scheme considered in this article
the longitudinal emittance is taken to be= 7.7 X 10°® m,
andK; = 1.3 x 10~* m, corresponding to an average final
current(l;) = 2500 A,z,; = 0.6 m, andg = 2.0. Assuming
Zo = —0.025, we obtairss = 376 m by evaluating the
integral in Eq.(7), andzi; = —0.0145 from the first integral [U(f) —
of Eq.(6). The axial beam sizg,(s), obtained numerically

frgtrﬂetrh\?viimﬁgli/(gIr:)acl;litent;;ze}?é))eineg:wl:“r(gﬁi’ l?hglog?gbt;;c The parabolic self-similar drift compression solution corre-
9 y Uy 9 ' P sponds tan= 2. For large value ain>> 1, A(z) has a flat-top

self-similar drift compression solution described here "®shape with a fast fall-off near the ends of the pulse. The

quires the initial beam pulse shape to be parabolic. HOWéolution of Eq.(10) then gives the initial velocity distribu-

ever, the beam pulse shape is generally not parabolic aft%ron V(z) necessary to shape a flat-top bunched beam into a
the acceleration phase in practical accelerator applications.araboIiC shape, which can be self-similarly compressed
!tis necessary to shape 'ghe begm pulse in_to a_parabolicfor ter imposing a’linear velocity tilt. In Figure 21(z) =

in the upstream before imposing a velocity tilt. The pulse(15/11)(1_ 22) andA(2) = 1 — 219, corresponding ta = 2
shaping problem can be posed as finding the initial velocity. _ ’ .
distributionV/(2) = u,(t = 0.2) such that a given initial pulse 210 — 10» &re plotted versus together withV (2).
shapeA(z) = A(t = 0,2) evolves into a given final pulse

shapeA+(z) = A(t =T, 2z) at timet = T. For the heavy ion

U ]m(n+1> L™ 0

n+1 |[nm+1) m+1

fusion beams currently considered, the pressure effects, ex- 15 (@)
ternal axial focusing, and the axial space-charge effects can Are) =70 ')
be neglected in the upstream region. In this case, the fluid _ '°
equations can be solved by integrating along characteristics §
or using Lagrangian coordinates. Following the derivation oo
in Qin and Davidsori2002), the solution forA(t, z) is 3 /
W)
05 Az)=1-2"
A
At z) = %, (8
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s (m) Fig. 2. Initial pulse shape\(z) = 1 — z'° and final pulse shap&r(z) =

(15/11)(1— z?) are plotted ina). The initial velocity profileV(z) is given
Fig. 1. Longitudinal drift compression of a heavy ion fusion beam. by Eq.(10) and is plotted in(b).
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3. TRANSVERSE DYNAMICS eters:g, = 72°, B/ = 31.70 Tm, Ly = 6.72 m, andn, =

For along charge bunch, the transverse dynamics in a qua :036. The focusing strength of each magnéts0.38 m *

O . . et N denote the total number of quadrupole magnet sets.
rupole lattice is described approximately by the transvers?: _yN1p btainN = 40. The lattice desian i
envelope equations roms; = X;-o L;, we obtainN = 40. The lattice design is

illustrated in Figure 2 together with the solutions to EG4)
and(12). After determining the nonperiodic lattice layout,

d?a 2K(s) &2 . . . . .
ey + Kkqa — b 2 0, 11 we search iteratively for the adiabatically matched solutions
S a a to Egs.(11) and(12). An adiabatically matched solution is
d2b 2K(s) &2 plotted in Figure 3. It is adiabatically matched because the
Pl Kqb — atb b—é =0, (12 envelope is locally matched and contains no oscillations

other than the local envelope oscillations. On the global
whereK(s) = 2N,e%/my3B2c?z,(s) is the effective per- scale, the beam radius increases monotonically. From the
veance. Becausk(s) is an increasing function o, it is numerical solution shown in Figure 2, the average beam size
necessary to increase the strength of the quadrupole lattidecreases by a factor of 2, which agrees with the design
coefficientx4(s) along the beam path to reduce the expan-assumption. Currently, well-behaved adiabatically matched
sion of the beam radius. Since the quadrupole lattice is nagolutions are obtained by using an intuitive trial-and-error
periodic, the concept ofmatchecbeam is not well defined. approach(J.J. Barnard, pers. commaA recently derived
However, if the the nonperiodicity is small, that is, if the equation for the average beam envelope in nonperiodic lat-
quadrupole lattice changes slowly along the beam path, wlces will provide a systematic understanding of the adiabat-
can seek aadiabatically matchedolution which, by defi- ically matched solutionéDavidson & Qin, 2001
nition, is locally matched everywhere. On the other hand,
for the problem of drift compression, we describe the design
of a nonperiodic lattice which provides the required control4- CONCLUSIONS
of beam radius when the beam is compressed, and equal
importantly, minimizes the possibility of global mismatch.
It is intuitive that a lattice, which keeps both the vacuum
phase advance and depressed phase advance constant, is
likely to induce beam mismatch. L&&996 have derived
the expressions for the vacuum phase advancand de-
pressed phase advancéor a periodic step-functiotFODO)
lattice given by

,X this article, we have studied the longitudinal dynamics of
drift compression and pulse shaping for a space-charge-
geogginated heavy ion fusion beam using a one-dimensional
warm-fluid model. A nonperiodic quadrupole lattice config-
uration has been designed for a beam undergoing drift com-

2\ L[ BV, T U6)60) o(3)/al0)
2(1-coso,) = (1— ?>n ([Bp]) L4, (13 L P
0
ab I I [T K 1
2L \? ! a(0) = 7.2cm = 5.8cm Kk,(8)/ R
g2 = 2(1— coso,) — K<@) . (14) 2be (0)=7 220 b(0) 4;? 8 . Q(g())/

Heren is the filling factor,L is the lattice periodB’ is field
gradient of the magnets, aKa) is the average beam radius.
Assumingn < 1, we obtain

B’ \? 2L \2
7n? L4 = const, K — | = const, (15)

o
N o = ow

100 120 140 160 180

[Bp] (a)

for constant vacuum phase advance and constant depressed
phase advance. For the drift compression scheme consid-
ered herek; /Ko =16. If we allow(a) to increase by a factor 200 220 240 260 280
of 2, thatis{a) /{(a),= 2, we obtairL; /Lo = %, and(nB’); / ‘
(nB")o = 4. We determineK(s) from the solution of the
longitudinal envelope equation. The value(a} is deter-
mined from the solutions to Eq$1l) and (12). For the
lattice design, we need to specifyB’, andL. If we choose “ %0 300 320 340 360
L; = Loexp—(s/s)In2], and B/ = const, then from s(m)

Eq. (15), mi = noexpl(s /s)In 2], wheres = E};é Lj. We  Fig. 3. Adiabatically matched envelope solutions in a nonperiodic lattice
also choose self-consistently the following system paramfor a heavy ion fusion beam under drift compression.
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