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Abstract

The longitudinal dynamics of drift compression and pulse shaping for a space-charge-dominated heavy ion fusion beam
is studied. A nonperiodic quadrupole lattice is designed for a beam undergoing drift compression, and an adiabatically
matched solution is found for the transverse envelope equations in the nonperiodic lattice.
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1. INTRODUCTION

In the currently envisioned configurations for heavy ion
fusion, it is necessary to longitudinally compress the beam
bunches by a large factor after the acceleration phase
~Haber, 1982!. In this article, we first study the longitudinal
dynamics of drift compression and pulse shaping using a
one-dimensional warm-fluid model.Aparabolic self-similar
drift compression solution is given, and it is demonstrated
that an arbitrary pulse shape can be shaped into a parabolic
one by imposing an appropriate velocity distribution. Be-
cause the space-charge force increases as the beam is com-
pressed, a larger focusing force is needed to confine the
beam in the transverse direction. It is necessary to have a
nonperiodic quadrupole lattice along the beam path. In this
article, we also describe the design of such a focusing lat-
tice, in which we search foradiabatically matchedsolutions
of the transverse envelope equations. The following set of
beam parameters typical of heavy ion fusion are used in the
present study. We consider aCs1 beam with rest massm5
133 mp, wheremp is the proton rest mass, kinetic energy
~g 21!mc2 5 2.5 GeV, and initial beam lengthzb0 5 9.5 m.
Our goal is to compress the beam by a factor of 16, that is, to
zbf 5 zb00165 0.6 m.

2. LONGITUDINAL DYNAMICS

We use a one-dimensional warm-fluid model to describe the
longitudinal dynamics of drift compression. For the longi-
tudinal electric field, the conventionalg-factor model is

adopted witheEz 5 2~ge20g2!]l0]z andg 5 2 ln~rw0rb!.
Here,e is the charge,l~t, z! is the line density,rw is the wall
radius, andrb is the average beam radius. We also allow for
an externally applied focusing forceFz5 2kzz. In the beam
frame, the warm-fluid equations for the line densityl~t, z!,
longitudinal velocity vz~t, z!, and longitudinal pressure
pz~t, z! are given by
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We treatg andrb as constants for present purposes. Among
all the self-similar solutions~Qin & Davidson, 2002! admit-
ted by the nonlinear hyperbolic PDE system~1!, ~2!, and~3!,
the parabolic self-similar solution is the most suitable for
the purpose of drift compression, and it has the form of
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Following the derivation in Qin and Davidson~2002!, we
obtain the familiar longitudinal envelope equation
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wheres5bct is the normalized time variable,Kl [3Nbe2g0
2mg5b2c2 is the effective longitudinal self-field perveance,
and«l [ ~4rb

2W0mg3b2c2!102 is the longitudinal emittance.
From Eq.~6!, the beam path length required for drift com-
pression can be expressed as~J.J. Barnard, pers. comm.!
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In the drift compression scheme considered in this article,
the longitudinal emittance is taken to be«l 5 7.731026 m,
andKl 5 1.33 1024 m, corresponding to an average final
current^If & 5 2500 A,zbf 5 0.6 m, andg 5 2.0. Assuming
zb0
' 5 20.025, we obtainsf 5 376 m by evaluating the

integral in Eq.~7!, andzbf
' 5 20.0145 from the first integral

of Eq. ~6!. The axial beam sizezb~s!, obtained numerically
from the longitudinal envelope equation~6!, is plotted to-
gether with the velocity tiltzb

' ~s! in Figure 1. The parabolic
self-similar drift compression solution described here re-
quires the initial beam pulse shape to be parabolic. How-
ever, the beam pulse shape is generally not parabolic after
the acceleration phase in practical accelerator applications.
It is necessary to shape the beam pulse into a parabolic form
in the upstream before imposing a velocity tilt. The pulse
shaping problem can be posed as finding the initial velocity
distributionV~z![vz~t50,z! such that a given initial pulse
shapeL~z! [ l~t 5 0,z! evolves into a given final pulse
shapeLT~z! [ l~t 5 T, z! at timet 5 T. For the heavy ion
fusion beams currently considered, the pressure effects, ex-
ternal axial focusing, and the axial space-charge effects can
be neglected in the upstream region. In this case, the fluid
equations can be solved by integrating along characteristics
or using Lagrangian coordinates. Following the derivation
in Qin and Davidson~2002!, the solution forl~t, z! is

l~t, z! 5
L~j!

11 V '~j!t
, ~8!

wherej is Lagrangian coordinates defined byz5j1V~j!t.
For the pulse shaping problem, the final line density profile
LT~z! [ l~t 5 T, z! is specified. We therefore obtain

LT~U !dU 5 L~j!dj, ~9!

whereU~j! [ j 1 V~j!T, andV~j! is determined by solv-
ing Eq.~9! for U~j! for the given functional forms ofLT~z!
andL~z!, and with the appropriate boundary conditions. As
an example, we consider the case whereL~z! 512 zm ~0#
z# 1! andLT~z! 5 ~12 zn!m~n11!0n~m11! ~0 # z# 1!.
Here,m, n Þ 21, and the coefficientm~n 1 1!0n~m1 1! in
the expression forLT~z! assures the conservation of the
total number of particles. Equation~9! can be integrated to
give
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The parabolic self-similar drift compression solution corre-
sponds ton52. For large value ofm.. 1,L~z! has a flat-top
shape with a fast fall-off near the ends of the pulse. The
solution of Eq.~10! then gives the initial velocity distribu-
tion V~z! necessary to shape a flat-top bunched beam into a
parabolic shape, which can be self-similarly compressed
after imposing a linear velocity tilt. In Figure 2,LT~z! 5
~15011!~12 z2! andL~z! 512 z10, corresponding ton5 2
andm5 10, are plotted versusz, together withV~z!.

Fig. 1. Longitudinal drift compression of a heavy ion fusion beam.

Fig. 2. Initial pulse shapeL~z! 5 1 2 z10 and final pulse shapeLT~z! 5
~15011!~12 z2! are plotted in~a!. The initial velocity profileV~z! is given
by Eq.~10! and is plotted in~b!.
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3. TRANSVERSE DYNAMICS

For a long charge bunch, the transverse dynamics in a quad-
rupole lattice is described approximately by the transverse
envelope equations
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where K~s! [ 2Nbe20mg3b2c2zb~s! is the effective per-
veance. BecauseK~s! is an increasing function ofs, it is
necessary to increase the strength of the quadrupole lattice
coefficientkq~s! along the beam path to reduce the expan-
sion of the beam radius. Since the quadrupole lattice is not
periodic, the concept of amatchedbeam is not well defined.
However, if the the nonperiodicity is small, that is, if the
quadrupole lattice changes slowly along the beam path, we
can seek anadiabatically matchedsolution which, by defi-
nition, is locally matched everywhere. On the other hand,
for the problem of drift compression, we describe the design
of a nonperiodic lattice which provides the required control
of beam radius when the beam is compressed, and equally
importantly, minimizes the possibility of global mismatch.
It is intuitive that a lattice, which keeps both the vacuum
phase advance and depressed phase advance constant, is less
likely to induce beam mismatch. Lee~1996! have derived
the expressions for the vacuum phase advancesv and de-
pressed phase advances for a periodic step-function~FODO!
lattice given by
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Here,h is the filling factor,L is the lattice period,B' is field
gradient of the magnets, and^a& is the average beam radius.
Assumingh ,, 1, we obtain
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5 const. , ~15!

for constant vacuum phase advance and constant depressed
phase advance. For the drift compression scheme consid-
ered here,Kf 0K0516. If we allow^a& to increase by a factor
of 2, that is,̂ a&f 0^a&052, we obtainLf 0L05 1

2
_, and~hB'!f 0

~hB'!0 5 4. We determineK~s! from the solution of the
longitudinal envelope equation. The value of^a& is deter-
mined from the solutions to Eqs.~11! and ~12!. For the
lattice design, we need to specifyh, B', andL. If we choose
Li 5 L0exp@2~si 0sf ! ln 2# , and Bi

' 5 const. , then from
Eq. ~15!, hi 5 h0exp@~si 0sf ! ln 2# , wheresi 5 (j50

i21 Lj . We
also choose self-consistently the following system param-

eters:sv 5 728, Bi
' 5 31.70 T0m, L0 5 6.72 m, andh0 5

0.036. The focusing strength of each magnet is[k50.38 m22.
Let N denote the total number of quadrupole magnet sets.
Fromsf 5 (j50

N21 Lj , we obtainN5 40. The lattice design is
illustrated in Figure 2 together with the solutions to Eqs.~11!
and~12!. After determining the nonperiodic lattice layout,
we search iteratively for the adiabatically matched solutions
to Eqs.~11! and~12!. An adiabatically matched solution is
plotted in Figure 3. It is adiabatically matched because the
envelope is locally matched and contains no oscillations
other than the local envelope oscillations. On the global
scale, the beam radius increases monotonically. From the
numerical solution shown in Figure 2, the average beam size
increases by a factor of 2, which agrees with the design
assumption. Currently, well-behaved adiabatically matched
solutions are obtained by using an intuitive trial-and-error
approach~J.J. Barnard, pers. comm.!. A recently derived
equation for the average beam envelope in nonperiodic lat-
tices will provide a systematic understanding of the adiabat-
ically matched solutions~Davidson & Qin, 2001!.

4. CONCLUSIONS

In this article, we have studied the longitudinal dynamics of
drift compression and pulse shaping for a space-charge-
dominated heavy ion fusion beam using a one-dimensional
warm-fluid model. A nonperiodic quadrupole lattice config-
uration has been designed for a beam undergoing drift com-

Fig. 3. Adiabatically matched envelope solutions in a nonperiodic lattice
for a heavy ion fusion beam under drift compression.
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pression with fixed vacuum phase advance and depressed
phase advance.An adiabatically matched solution was found
for the transverse envelope equations in the nonperiodic
lattice.
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