
JET PROPULSION LABORATORY INTEROFFICE MEMORANDUM

331-94.2-043

June 1, 1994

TO: Distribution

FROM: Aaron Kiely

SUBJECT: Comparison of Hu�man and Bit-Wise Arithmetic Coding

1 Introduction

A well-known defect of Hu�man coding is that the redundancy (the di�erence between code

rate and source entropy) can be substantial when the source entropy is small. Combining

Hu�man and zero-runlength coding is a common method of overcoming this problem. Al-

ternatively, a new block-adaptive data compression scheme, bit-wise arithmetic coding, may

be used [5]. In this memo we examine the redundancy and overhead associated with block-

adaptive Hu�man coding, analyze a variation of the zero-runlength coding, and compare the

techniques to bit-wise arithmetic coding.

In the sequel, we will be interested in the problem of compressing the output of a uniform

quantizer having b bits. At the input of the quantizer is an IID continuous source with

probability density function (pdf) f(x). For details on computing the quantizer distortion

or entropy, and an analysis of bit-wise arithmetic encoding, see [5].

2 Hu�man Coding

2.1 Redundancy

Given the probability distribution on the quantizer output symbols we may use the Hu�man

algorithm to (non-adaptively) assign a binary codeword to each symbol. The redundancy of

Hu�man codes has been studied and bounded by many researchers, e.g. [4]. Because each

codeword must be at least one bit long, the rate of a Hu�man code can never be less than

one, so the redundancy is particularly high when the entropy approaches zero. Even when

the source entropy exceeds one bit, redundancy may be signi�cant.

Example 1 Suppose the quantizer output is IID with probability distribution f0; "; 1=4 �

"; 1=2; 1=4 � "; "; 0; 0g for small ". The entropy is very nearly 1:5 bits, but an ideal Hu�-

man code assigns codewords of length (respectively) f0; 4; 3; 1; 2; 4; 0; 0g, producing an average

length of 1:75 + 3" bits, adding approximately :25 bits to the rate.

This redundancy e�ect also contributes to the rate of block-adaptive Hu�man codes.

1

2.2 Block-Adaptive Hu�man Coding

Under block-adaptive Hu�man coding, we create a new Hu�man code for each block of N

quantizer output symbols using the actual symbol frequencies in the block as estimates of

the symbol probabilities. It will be convenient to decompose the rate into two components:

the code rate1, resulting from codeword bits, and the overhead rate, from bits required to

identify the code parameters. We examine overhead in Section 2.3. In this section, we show

how to estimate the code rate.

Example 2 Using the distribution of Example 1, in a sequence of N samples, we would

expect each of the symbols with probability " to appear N" times. When both symbols appear,

the expected code rate is close to 1.75 bits. However, each symbol has a probability of (1�")N

of not appearing in the block. When one doesn't appear, it is not assigned a codeword, so the

expected code rate is lower. Consequently, the average code rate is somewhat less than 1.75

bits.2

In principle it is straightforward to compute the code rate:

RHu� =
X

x2AN

Pr[x]Hu�[x]: (1)

Here A is the quantizer output alphabet and Hu�[x] is the rate obtained by block-adaptively

Hu�man encoding the sequence x. Of course, both Hu�[x] and Pr[x] depend only on the

frequencies of symbols in x for an IID source. Although there is no known closed form expres-

sion for Hu�[x], its computation is quite feasible by computer{ we simply apply the Hu�man

algorithm to the symbol frequencies in x. What is much less feasible is the summation over

all of AN .

As a more practical means of estimating the code rate, we can limit the summation to

a few typical sequences. We �nd the \critical" symbol a whose probability of appearing in

an N -length block is closest to 1=2. We construct a sequence x containing one occurrence

of a, no occurrences of symbols having probability less than that of a, and all other symbols

occurring in x with frequency (nearly) proportional to their probability. We also construct

a second typical sequence y that is similar to x except that a does not occur in y.3 The rate

estimate is a weighted sum of Hu�[x] and Hu�[y]. This approximation comes surprisingly

close to simulations, see Figure 3.

We should note that the code rate may be smaller than the overhead rate. In fact the

code rate may be lower than the source entropy. For example, using (1) in the extreme case

where N = 1, the code rate is zero! Also note that at very high distortion, block-adaptive

Hu�man coding can achieve rates below one bit (see, e.g., Figure 3) while the non-adaptive

Hu�man code cannot.

1It should be clear from context whether \code rate" refers to a source code (as we intend it here) or
channel code (as it is more commonly used).

2From this example, we can see that increasing N may actually increase the code rate because it increases
the probability that \rare" symbols will appear in a block.

3Actually, since the distribution is symmetric, there are two such symbols. For improved accuracy, we
construct four di�erent typical sequences.

2

2.3 Overhead

In block-adaptive Hu�man coding we must transmit overhead bits with each block to identify

to the decoder the Hu�man code used. The problem of minimizing the number of overhead

bits is treated in [1, 6]. Here we summarize some of the relevant results.

A Hu�man code for 2b symbols can be identi�ed by specifying the codeword lengths

n1; n2; : : : n2b�1. (We can solve the Kraft-McMillan equality
P

i 2
�ni = 1 to �nd n2b .) This

requires approximately

(2b � 1) log2 l(2
b; N)

bits of overhead, where l(i; N) is an a priori upper bound on codeword length. We may use

l(i; N) = minfi� 1; L(N)g

where L(N) is the unique integer K satisfying FK+3 > N � FK+2 and FK is the Kth

Fibonacci number. In general, without making use of additional information about the

source, it is not possible to use substantially less overhead. We call this overhead technique

OH1.

Under OH1, overhead bits are required even for symbols that do not appear in a block.

When f(x) is nonincreasing in jxj and the quantizer bin width is large, it is likely that several

of the quantizer symbols corresponding to large jxj do not appear in a given block. In such a

situation, if we arrange the ni in order of decreasing magnitude of quantizer reconstruction

point, then the list of ni is likely to begin with several zeros. We can �rst send b bits

identifying z, the length of the run of zeros, and then encode the remaining 2b�z codewords

in the manner of OH1. This overhead scheme, which we call OH2, requires

b+ (2b � z � 1) log2 l(2
b
� z;N) (2)

bits of overhead. When the entire block consists of N zeros, z = 2b � 1 and we need only b

bits to encode the block, resulting in more savings than simply reduced overhead. This has

some impact at low rates.

This new scheme costs at most b extra overhead bits compared to OH1, and in practice

often saves a signi�cant amount. Using the bound l(i; N) � log
2
N

log
2
((1+

p
5)=2)

(from [6]) we �nd

that a su�cient condition for OH2 to give lower overhead than OH1 is that

z �
b

log2

�
log

2
N

log
2
((1+

p
5)=2)

� � b

:526 + log2 log2N
:

For example, when N = 256 and b = 8, we get a savings whenever z � 3.

3 Zero-runlength Encoding

3.1 ZGH encoding

A common means of tackling the redundancy problem at low entropy is to combine Hu�man

coding with zero-runlength coding. This is more e�cient than Hu�man coding when zeros

3

are highly probable. For example, the sequence of quantizer output indices 0; 1; 0; 0; 2;�1 can

be thought of as 01; 1; 02; 2; 00;�1, i.e., an alternating sequence from the separate alphabets

f0i : i � 0g and the nonzero integers. We insert the symbol 00 between adjacent nonzero

symbols to ensure that the sequence is alternating. This allows us to separately encode the

two alphabets. First let us consider the non-adaptive case.

Because the source is IID, the runs of zeros are distributed according to

Pr[0i] = (1� p0)p0
i

where pj denotes the probability that the quantizer output is index j. We encode runs of

zeros using the optimal (Hu�man) encoding for this distribution: the Gallager and van

Voorhis (GVH) code [3]. The nonzero symbols are separately encoded using the stan-

dard block-adaptive Hu�man coding procedure. We call this combined technique ZGH

(for zero-runlength + GVH + Hu�man) coding. There are, of course, many variations of

zero-runlength encoding, we choose this one primarily for its simplicity.

To estimate the rate of the ZGH code, consider the encoding of the pair 0i; S, where

S is some symbol from the nonzero alphabet. The expected number of source symbols

represented by this pair is

E[1 + i] � 1 +
1X
i=0

i(1� p0)p
i
0 =

1

1� p0
:

The expected number of encoded bits for the pair is RHu�(NZ) + nGVH where RHu�(NZ) is

the rate obtained from applying a Hu�man code to the nonzero symbols, and nGVH is the

average length of a GVH codeword. From [3], we �nd

nGVH = 1 + blog2 lc+
pk0

1� pl0

where

l =

&
� log(1 + p0)

log p0

'
(3)

and k = 2blog2 lc+1 � l. Thus the average rate of the ZGH code is

RZGH =
RHu�(NZ) + nGVH

E[1 + i]
= (1� p0)

"
1 + blog2 lc+

pk0
1� pl0

+RHu�(NZ)

#
:

In Figures 1 and 2 we compare the performance of the ZGH and standard Hu�man codes

for Gaussian and Laplacian sources. As might be expected, the ZGH performs better than

Hu�man coding alone at low rates but may perform somewhat worse everywhere else.

3.2 Overhead

To use ZGH block-adaptively, the nonzero values in the sequence are transmitted using

the block-adaptive Hu�man code with OH2 used to transmit the overhead bits. For the

runlength portion code, overhead is required only to identify the GVH parameter l to the

decoder.

4

0.01

0.1

1

M
SE

/σ
2

0 1 2 3 4 5

rate (bits/sample)

entropy

Huffman

ZGH

Figure 1: Rate-Distortion, Hu�man and ZGH coding for Gaussian source, b = 4.

0.1

1

M
SE

/σ
2

0 1 2 3 4 5

rate (bits/sample)

entropy

Huffman
ZGH

Figure 2: Rate-Distortion, Hu�man and ZGH coding for Laplacian source, b = 4.

5

To compute l (see (3)), as an estimate of p0 we use p̂0 = I=N where I is the number of

zeros occurring in the sequence. Since I must be an integer, only certain values of l can be

encoded. For I = N we have l =1, which corresponds to the all zeros sequence, we reserve

an extra overhead symbol for it, so that we require only the GVH overhead to transmit the

entire sequence. The remaining possible values of l can be counted in the obvious way. See

[2] for more details on GVH implementation. For N = 256, we require 5 bits of overhead, for

N = 512, we require 6 bits. Thus we pay a small price in overhead in exchange for lowered

rate when sequences contain long runs of zeros.

4 Conclusion

In Figure 3 we plot the estimated and simulated performance of block-adaptive Hu�man

coding for N = 256 and 512 on IID Gaussian and Laplacian sources. The estimated rate

uses the technique described in Section 2.2. The simulations use twenty iterations for each

point. In each case, OH2 outperforms OH1. In Figure 4 we also plot the performance of

bit-wise arithmetic coding for the same sources.

At low rate, long runs of zeros are common, and ZGH e�ciently exploits these long

runs with low overhead. Consequently ZGH performs best at very low rates. The overhead

of ZGH, however, is quite variable and at higher rates the overhead becomes substantial

and ZGH does not perform as well as conventional Hu�man coding. By contrast, bit-wise

arithmetic coding has overhead that is nearly constant over all rates. In a practical adaptive

system that uses zero-runlength coding, we would want a method for determining when to

switch to conventional Hu�man coding. Bit-wise arithmetic coding has the advantage of low

redundancy and overhead over all rates, without requiring knowledge of the probability of

runs of zeros.

Re�nements to source-coding schemes often amount to meta-coding: an additional code

layer is added to describe existing lower layers. For example, block-adaptive Hu�man coding

adds the layer of overhead bits that describe the Hu�man code to be used. The re�nement

of OH2 adds a layer describing the overhead bits. A system that can optionally use zero-

runlength encoding would require additional meta-coding to identify whether this option is

exercised. In exchange for added complexity, increased meta-coding can o�er lower rate,

more exibility, and the ability to trade-o� rate between layers.

However, a drawback of extensive meta-coding is that each higher code layer becomes

increasingly important: successful decoding of any of the lower code layers is unlikely unless

all higher layers are correctly decoded. If the compressed data is to be transmitted over a

noisy channel, this suggests that each higher layer should have increased error protection.

This in turn would likely require more complex encoding and decoding schemes. Further,

added error protection results in a lower channel code rate, which erodes the compression

gained by additional meta-coding.

References

[1] Y. S. Abu-Mostafa and R. J. McEliece, \Maximal Codeword Lengths in Hu�man Codes,"

TDA Progress Reports 42-110, April-June 1992, pp. 188-193, August 15, 1992.

6

0
.0

1

0
.1

1MSE/σ2

0
1

2
3

4

rate (bits/sam
ple)

ZGH-simulation

ZGH-estimateOH2-simulationOH2-estimate

OH1-simulationOH1-estimateentropy

0
.0

1

0
.1

1

0
1

2
3

4

0
.1

1

0
1

2
3

0
.1

1

0
1

2
3

AB

CD

Figure 3: Hu�man coding performance for OH1, OH2 and ZGH. a) Gaussian source, b =

4; N = 512, b) Gaussian source, b = 4; N = 256, c) Laplacian source, b = 4; N = 512,

d) Laplacian source, b = 4; N = 256. 7

0
.0

1

0
.1

1
MSE/σ2

0
1

2
3

4rate (bits/sam
ple)

Bit-ArithZGHOH2entropy

0
.0

1

0
.1

1

0
1

2
3

4

0
.1

1

0
1

2
3

0
.1

1

0
1

2
3

AB

C

D

Figure 4: Hu�man and bit-wise arithmetic performance, including overhead. a) Gaussian

source, b = 4; N = 512, b) Gaussian source, b = 4; N = 256, c) Laplacian source, b = 4; N =

512, d) Laplacian source, b = 4; N = 256.
8

[2] K. Cheung, P. Smyth, and H. Wang, \A High-Speed Distortionless Predictive Image

Compression Scheme," TDA Progress Reports 42-102, May-June 1990.

[3] R. G. Gallager and D. C. Van Voorhis, \Optimal Source Codes for Geometrically Dis-

tributed Integer Alphabets," IEEE Trans. Inform. Theory vol. IT-21, pp. 228-230, March

1975.

[4] R. G. Gallager, \Variations on a Theme by Hu�man," IEEE Trans. Inform. Theory vol.

IT-24, no. 6, pp. 668-674, November, 1978.

[5] A. B. Kiely, \Bit-Wise Arithmetic Coding for Data Compression," TDA Progress Reports

42-117, January-March 1994, pp. 145-160, May 15, 1994.

[6] R. J. McEliece and T. H. Palmatier, \Estimating the Size of Hu�man Code Preambles,"

TDA Progress Reports 42-114, April-June 1993, pp. 90-95, August 15, 1993.

Distribution: Laif Swanson,

Fabrizio Pollara,

Kar-Ming Cheung,

Sam Dolinar,

Laura Ekroot,

Dan Glover,

Max Costa,

Bob McEliece

9

