
“Alignment framework” with RCP R/W“Alignment framework” with RCP R/W

D0 workshop, NIU

Dhiman Chakraborty, 06/19/00

What’s there

A system to read alignment constants for each detector

element from an ASCII file (RCP), and create the

corresponding geometry for the entire detector. It serves two

main purposes:

1. Making survey data available to reconstruction software.

2. Simulation of detector misalignments necessary for the

development of alignment software.

Software packages (CVS modules)

alignment_system:

(non-D0-specific components of the alignment framework)

GeometryAddress:

A storage class for IP-address-style names (string) for

GeometryElements with methods to construct an address through

level-by-level concatenation, determine parent-child relationships

etc.

GeometryAddressManager:

A singleton registry (one-to-one map) of GeometryElement-

GeometryAddress pairs. A GeometryElement has to be

registered with this with a “name”. Provides various utilities

to traverse the geometry tree using char strings.

BaseAligner:

A virtual base class for individual XAligners to derive from

(X=SMT/CFT/CAL/CPS/FPS/MUO). Provides common methods

such as moveElement, write, etc. Individual Xaligners are

responsible for the implementation of detector-specific methods

such as registerElements, align etc.

• d0_alignment:

– D0Aligner:

The singleton global aligner responsible for invoking XAligners for

individual detectors (only SMT and FPS are currently

implemented). Takes one RCP.

– Test program

• creates default detector from Geometry RCPs, creates D0Aligner,

invokes its align() and write() methods. The (modified) geometry is

written out in D0Alignment.rcp

• fps_alignment:

– FPSAligner:

Creates GeometryAddress for every FPS GeometryElement, and

registers it with the GeometryAddressManager.

For each element, searches fps_move.rcp for a corresponding

GeometryXform. If one is found, it searches fps_reference.rcp

for the initial GeometryXform. If one is found, then the result is

a sum of the two, else just the first. The results are written out

in fps_positions_out.rcp

Example (a ReferencePoint):
double D0_FPSN_layer0 = (// element name
 -0.987 -100 399.58 // translation vector
 0 -1 0 // rotation axis
 3.14159) // rotation angle

• smt_alignment:

– SMTAligner:

Creates GeometryAddress for every SMT GeometryElement, and

registers it with the GeometryAddressManager.

For each element, searches smt_move.rcp for a corresponding

GeometryXform. If one is found, it searches smt_reference.rcp

for the initial GeometryXform. If one is found, then the result is

a sum of the two, else just the first. The results are written out

in smt_positions_out.rcp

Example (a leaf-level GeometryElement)
double D0_SMT_central_NBH1_barrel_layer3_ladder04 = (

 // element name
 -0.0922813 -4.33372 -7.43925 // translation vector
 0.222286 -0.788959 0.572828 // rotation axis
 2.7958) // rotation angle

How to use it?
> setup n32
> setup D0RunII test
> newrel -t test test
> cd test
> d0setwa
> addpkg -h d0_alignment
> gmake all
> bin/IRIX6-KCC_3_3/test_aligner

See fps_aligner or smt_aligner for an example of X_aligner

More detailed documentation will be available very soon in the
 doc areas of the respective packages.

Examples:
(fps_reference.rcp)

double D0_FPSN_layer0 = (// element name
 0 0 -397.35 // translation vector
 0 0 1 // rotation axis
 0) // rotation angle

double D0_FPSN_layer0_wedge0 = (// element name
 0 0 -397.35 // translation vector
 0 0 1 // rotation axis
 0) // rotation angle

(fps_move.rcp)
double D0_FPSN_layer0 = (// element name

 1.23 0 -3.45 // translation vector
 0 0 1 // rotation axis
 0) // rotation angle

double D0_FPSN_layer0_wedge0 = (// element name
 0 0 0 // translation vector
 0 0 1 // rotation axis
 0.1) // rotation angle

(fps_positions_out.rcp)
double D0_FPSN_layer0 = (// element name

 1.23 0 -400.8 // translation vector
 0 0 1 // rotation axis
 0) // rotation angle

double D0_FPSN_layer0_wedge0 = (// element name
 1.23 0 -400.8 // translation vector
 0 0 1 // rotation axis
 0.1) // rotation angle

What’s missing

• X_alignment:

For X=CFT,CAL,CPS,MUO

• Classes for alignment by track-fitting:

Residual, AlignmentTrack, TrackSelector, …

Needed: Input from users (FPS and SMT ready to use for

storing survey data)

