
1

Robotics With the XBC

Controller
Session 5

Instructor: David
Culp

Email:
culpd@cfbisd.edu

mailto:culpd@cfbisd.edu

2

Learning Goals

 The student will learn to recognize
and implement proportional and
bang-bang control methods. The
student will learn the difference
between a servo motor and a
standard DC motor and be able to
use a servo motor in Interactive C.
In addition the student will learn
about gears and drive trains.

3

Simulating Sensor Input
With the IC Simulator

 See visual demonstration.

4

Servos

 Servos are simply DC motors that have
control circuitry so they can be precisely
positioned to hold an angle (not rotate).

 Have three wires with a female plug.
(opposite to the motor and sensor plugs).

 Plug into the XBC’s servo ports(0-3).

 Make sure the black wire is in line with
the terminal labeled “-”

5

Using Servos…

 Extremely easy to use to rotate an
arm or open/close a grabber.

 Activate all servos with the function
enable_servos()
 Only do this once

 DO NOT USE IN A LOOP

 Deactivate servos with the
disable_servos()

6

Positioning servos

 Use the set_servo_position function to
move a servo to a desired position.

 int set_servo_position(int srv, int pos)

• srv = Servo port number 0-3

• pos= position(10-245) is ~0-180 degrees

 You can retrieve a servos current position
with the get_servo_position function.

 int get_servo_position(int srv)

• Returns the current position of the servo on port#
srv

7

Using xbctest.ic

 Follow on screen demonstration to
load and run “xbctest.ic” to test
servos and other XBC hardware.

8

Using Servos
 Plug a servo into port #0
 Open the interaction window
 Make certain the XBC is turned on.
 Issue the enable_servos() function call.

 Servos move to an arbitrary position

 Caution: Because servos are not accurately calibrated,
position values < 10 or > 245 can drive a servo into its
mechanical stop, draining the battery and over-heating
the servo. Test motion before trying these extremes.

 Now issue the command set_servo_position(0,10)
 Now issue the command set_servo_position(0,245)
 Set the servo to various positions and try the

get_servo_position function.

9

A Short Assignment

 Write a short program to slowly
move a servo from position 10 to
position 245.

 You will need a for-next loop.

10

To Help You Get Started

 Remember a for-next loop looks like
the following:
 for (<expr-1>;<expr-2>;<expr-3>)
<statement>

 for (count = 100; count >=10; count-
=10)

 Use a #define to define the servo
port #
 #define SERVO 0

11

Starting the Program

#define SERVO 0

void main()

{

int position;

enable_servos();

Your for-next-loop and servo control goes
here

}

12

Solution

#define SERVO 0

void main()

{

int position; // holds our current servo position

enable_servos(); // We must turn the servos on first

for (position = 10; position< 245; position +=5)

{ // loop from 10 to 245 in increments of 5

set_servo_position(SERVO,position); // set servo 0 to position

display_clear();

printf("Position: %d", position);

sleep(0.1); // A slight pause or we go to fast

}

}

13

Bang-Bang Vs. Proportional
Control

 “Bang-bang” control uses on/off
extremes.

 This is what we have been using.

 If the sensor is “hit” do something.

 If the sensor is not “hit” do something
else.

 No in between.

14

Proportional Control

 Proportional control adjusts the
output or response of the robot as
the sensor readings change.

 In other words the sensor provides a
smoother proportional feedback
mechanism into the control loop.

15

Getting Proportional Control
From an IR Range Finder

 We need to pass the output of the IR
sensor to the motor function.

 IR sensor returns 0-255. We must scale
this to 0-100.

 Sensor_Value/2.55

 The values are reversed. Large values
indicate a very close object so we want to
go slowly.

 -(Sensor_Value/2.55)+100

16

Mixed Math and Casting

 We cannot arbitrarily mix types in C.
 Some languages allow this.

 This slows those languages down because of
overhead.

 We must “cast” the values being used to
the same type.
 Place the type you want to cast to in

parentheses just before the value or variable
you want to cast.
• (int) 3.14159

• (float) speed

• (char) 3.14159

17

Our Formula using Casting

 speed= -(int)((float)analog(0)/2.55) + 100;

 (float)analog(0) casts the return value of the analog
function to a float.

• This is so we can divide it by 2.55

 The external (int) casts everything back to an int type
so 100 can be added to it and assigned to the int type
variable speed.

18

An Example

void main()

{

float MAX_IR = 1.5 // sensor max is actually ~150

int speed; // holds our speed

while(!b_button()) // loop until b button pressed

{

speed= -(int)((float)analog(0)/MAX_IR) + 100;

motor(0,speed);

motor(2,speed);

sleep(0.15);

}

printf("DONE!!\n");

}

19

Proportional Control

 In general proportional control
allows greater control and a better
range of response from your robot.

 Sometimes harder to implement.

 Can lead to more elegant solutions.

 We will implement proportional
control later in tonight's challenge.

20

Gears and Drive Trains…

 Gears serve to provide a gear reduction in a mechanical
object.

 Gears are used to change the speed and force of the
motor.

 Any rotating object is spinning at a certain velocity
and with a specific strength, in this case called
torque.

 We can change either quantity by introducing a new
“gear ratio” into the drive system.

• If we decrease the rate of spin we increase the
torque of the output gear.

• If we increase the velocity of the output gear we
subsequently decrease the torque, or strength in
which the output gear spins.

21

Gears and Drive Trains

 Gears serve to change the direction
of rotation in a mechanical object.

 Each gear in the system “reverses” the
direction of spin.

 We can easily calculate the
mechanical advantage of the gear
train.

 MA = output teeth/input teeth.

22

Example…..

 Picture shows a 24 tooth input gear
and a 40 tooth output gear.

 Output teeth/Input teeth
 40:24 = 5:3

 Each time the input spins 5 times the output

has spun 3 times.

23

Multiple Gears in a train…

 Multiple gears in a drive train are called a
compound gear train.

 We take the product of the gear ratios.

 Example: We have a 3 tooth gear driving a 9 tooth
gear connected to a shaft that drives a 3 tooth gear
that drives another 9 tooth gear. What is our gear
ratio?

 We have two separate gear ratios, a 3:1 gear ratio, driving
another 3: 1 gear ratio. This makes a total gear ratio of
9:1.

24

Calculating RPM

 You have a DC motor which spins at 1000 RPM that

drives a 4-tooth gear; this gear in turn drives a 64

tooth gear. At what speed does the output gear spin?

 Gear ratio = 64:4 = 16:1.

 Each time our 4 tooth driven wheel is rotated
one complete turn the output wheel has only
made it around 1/16 of a turn.

 1000 RPM /16 = 62.5 RPM.

25

A Problem for You to Solve

 You have a DC motor that spins at 25 RPM.

The motor drives an output shaft connected to

a 25 tooth gear, that gear drives a 5 tooth

gear. The 5 tooth gear is connected to a shaft

upon which a 9 tooth gear is connected and

driving a 3 tooth gear. What is the total gear

ratio and at what RPM will the output shaft

spin?

26

Solution…

 ratio 1 = 5 teeth/ 25 teeth = 1:5

 ratio 2 = 3 teeth/ 9 teeth = 1:3

 Now we multiply the ratios together
and we get a total gear ratio of 1:15

 Our output shaft spins 15 times
faster or at 375 RPM.

27

Homework…

 Gear ratio problems posted on the
course forum by Thursday.

28

Tonight's Challenge

 Modify your robots code so that it uses proportional
control.

 The input from the IR sensors should be used.

 Process the data from the IR sensors and input that
into a control loop.

 Lower numbers result in higher speeds to that motor
(we have already done this part).

 Each motor should be controlled separately. The
output of the LEFT sensor controls the RIGHT motor
etc…

 Behavior = The robot should avoid obstacles.

 As the left sensor gets close to an object the right
wheel is slowed and the left wheel is sped up, turning
the robot right.

 Opposite occurs when the right sensor approaches and
object.

29

#define LEFT_MOTOR 2 //left motor plugged into port 2

#define RIGHT_MOTOR 0 //Right motor plugged into port 0

#define LS 0 // Left IR sensor plugged into port 0

#define RS 1 // Right IR sensor plugged into port 0

void main()

{

int left_speed; // holds our speed

int right_speed;

while(!b_button()) // loop until b button pressed

{

/* The two lines below assign the output of the analog sensors

to variables that control the motors speed.

Since the sensors return a value from 0-255 we must scale this value

to 0-100 by dividing by 2.55.

Since the IR sensors return large values for close objects we must make them negative

and add 100 to get the desired range of 0-100.

*/

left_speed= -(int)((float)analog(RS)/2.55) + 100;

right_speed= -(int)((float)analog(LS)/2.55) + 100;

motor(LEFT_MOTOR,left_speed);

motor(RIGHT_MOTOR, right_speed);

}

printf("DONE!!\n");

}

