
1

Robotics With the XBC

Controller
Session 5

Instructor: David
Culp

Email:
culpd@cfbisd.edu

mailto:culpd@cfbisd.edu

2

Learning Goals

 The student will learn to recognize
and implement proportional and
bang-bang control methods. The
student will learn the difference
between a servo motor and a
standard DC motor and be able to
use a servo motor in Interactive C.
In addition the student will learn
about gears and drive trains.

3

Simulating Sensor Input
With the IC Simulator

 See visual demonstration.

4

Servos

 Servos are simply DC motors that have
control circuitry so they can be precisely
positioned to hold an angle (not rotate).

 Have three wires with a female plug.
(opposite to the motor and sensor plugs).

 Plug into the XBC’s servo ports(0-3).

 Make sure the black wire is in line with
the terminal labeled “-”

5

Using Servos…

 Extremely easy to use to rotate an
arm or open/close a grabber.

 Activate all servos with the function
enable_servos()
 Only do this once

 DO NOT USE IN A LOOP

 Deactivate servos with the
disable_servos()

6

Positioning servos

 Use the set_servo_position function to
move a servo to a desired position.

 int set_servo_position(int srv, int pos)

• srv = Servo port number 0-3

• pos= position(10-245) is ~0-180 degrees

 You can retrieve a servos current position
with the get_servo_position function.

 int get_servo_position(int srv)

• Returns the current position of the servo on port#
srv

7

Using xbctest.ic

 Follow on screen demonstration to
load and run “xbctest.ic” to test
servos and other XBC hardware.

8

Using Servos
 Plug a servo into port #0
 Open the interaction window
 Make certain the XBC is turned on.
 Issue the enable_servos() function call.

 Servos move to an arbitrary position

 Caution: Because servos are not accurately calibrated,
position values < 10 or > 245 can drive a servo into its
mechanical stop, draining the battery and over-heating
the servo. Test motion before trying these extremes.

 Now issue the command set_servo_position(0,10)
 Now issue the command set_servo_position(0,245)
 Set the servo to various positions and try the

get_servo_position function.

9

A Short Assignment

 Write a short program to slowly
move a servo from position 10 to
position 245.

 You will need a for-next loop.

10

To Help You Get Started

 Remember a for-next loop looks like
the following:
 for (<expr-1>;<expr-2>;<expr-3>)
<statement>

 for (count = 100; count >=10; count-
=10)

 Use a #define to define the servo
port #
 #define SERVO 0

11

Starting the Program

#define SERVO 0

void main()

{

int position;

enable_servos();

Your for-next-loop and servo control goes
here

}

12

Solution

#define SERVO 0

void main()

{

int position; // holds our current servo position

enable_servos(); // We must turn the servos on first

for (position = 10; position< 245; position +=5)

{ // loop from 10 to 245 in increments of 5

set_servo_position(SERVO,position); // set servo 0 to position

display_clear();

printf("Position: %d", position);

sleep(0.1); // A slight pause or we go to fast

}

}

13

Bang-Bang Vs. Proportional
Control

 “Bang-bang” control uses on/off
extremes.

 This is what we have been using.

 If the sensor is “hit” do something.

 If the sensor is not “hit” do something
else.

 No in between.

14

Proportional Control

 Proportional control adjusts the
output or response of the robot as
the sensor readings change.

 In other words the sensor provides a
smoother proportional feedback
mechanism into the control loop.

15

Getting Proportional Control
From an IR Range Finder

 We need to pass the output of the IR
sensor to the motor function.

 IR sensor returns 0-255. We must scale
this to 0-100.

 Sensor_Value/2.55

 The values are reversed. Large values
indicate a very close object so we want to
go slowly.

 -(Sensor_Value/2.55)+100

16

Mixed Math and Casting

 We cannot arbitrarily mix types in C.
 Some languages allow this.

 This slows those languages down because of
overhead.

 We must “cast” the values being used to
the same type.
 Place the type you want to cast to in

parentheses just before the value or variable
you want to cast.
• (int) 3.14159

• (float) speed

• (char) 3.14159

17

Our Formula using Casting

 speed= -(int)((float)analog(0)/2.55) + 100;

 (float)analog(0) casts the return value of the analog
function to a float.

• This is so we can divide it by 2.55

 The external (int) casts everything back to an int type
so 100 can be added to it and assigned to the int type
variable speed.

18

An Example

void main()

{

float MAX_IR = 1.5 // sensor max is actually ~150

int speed; // holds our speed

while(!b_button()) // loop until b button pressed

{

speed= -(int)((float)analog(0)/MAX_IR) + 100;

motor(0,speed);

motor(2,speed);

sleep(0.15);

}

printf("DONE!!\n");

}

19

Proportional Control

 In general proportional control
allows greater control and a better
range of response from your robot.

 Sometimes harder to implement.

 Can lead to more elegant solutions.

 We will implement proportional
control later in tonight's challenge.

20

Gears and Drive Trains…

 Gears serve to provide a gear reduction in a mechanical
object.

 Gears are used to change the speed and force of the
motor.

 Any rotating object is spinning at a certain velocity
and with a specific strength, in this case called
torque.

 We can change either quantity by introducing a new
“gear ratio” into the drive system.

• If we decrease the rate of spin we increase the
torque of the output gear.

• If we increase the velocity of the output gear we
subsequently decrease the torque, or strength in
which the output gear spins.

21

Gears and Drive Trains

 Gears serve to change the direction
of rotation in a mechanical object.

 Each gear in the system “reverses” the
direction of spin.

 We can easily calculate the
mechanical advantage of the gear
train.

 MA = output teeth/input teeth.

22

Example…..

 Picture shows a 24 tooth input gear
and a 40 tooth output gear.

 Output teeth/Input teeth
 40:24 = 5:3

 Each time the input spins 5 times the output

has spun 3 times.

23

Multiple Gears in a train…

 Multiple gears in a drive train are called a
compound gear train.

 We take the product of the gear ratios.

 Example: We have a 3 tooth gear driving a 9 tooth
gear connected to a shaft that drives a 3 tooth gear
that drives another 9 tooth gear. What is our gear
ratio?

 We have two separate gear ratios, a 3:1 gear ratio, driving
another 3: 1 gear ratio. This makes a total gear ratio of
9:1.

24

Calculating RPM

 You have a DC motor which spins at 1000 RPM that

drives a 4-tooth gear; this gear in turn drives a 64

tooth gear. At what speed does the output gear spin?

 Gear ratio = 64:4 = 16:1.

 Each time our 4 tooth driven wheel is rotated
one complete turn the output wheel has only
made it around 1/16 of a turn.

 1000 RPM /16 = 62.5 RPM.

25

A Problem for You to Solve

 You have a DC motor that spins at 25 RPM.

The motor drives an output shaft connected to

a 25 tooth gear, that gear drives a 5 tooth

gear. The 5 tooth gear is connected to a shaft

upon which a 9 tooth gear is connected and

driving a 3 tooth gear. What is the total gear

ratio and at what RPM will the output shaft

spin?

26

Solution…

 ratio 1 = 5 teeth/ 25 teeth = 1:5

 ratio 2 = 3 teeth/ 9 teeth = 1:3

 Now we multiply the ratios together
and we get a total gear ratio of 1:15

 Our output shaft spins 15 times
faster or at 375 RPM.

27

Homework…

 Gear ratio problems posted on the
course forum by Thursday.

28

Tonight's Challenge

 Modify your robots code so that it uses proportional
control.

 The input from the IR sensors should be used.

 Process the data from the IR sensors and input that
into a control loop.

 Lower numbers result in higher speeds to that motor
(we have already done this part).

 Each motor should be controlled separately. The
output of the LEFT sensor controls the RIGHT motor
etc…

 Behavior = The robot should avoid obstacles.

 As the left sensor gets close to an object the right
wheel is slowed and the left wheel is sped up, turning
the robot right.

 Opposite occurs when the right sensor approaches and
object.

29

#define LEFT_MOTOR 2 //left motor plugged into port 2

#define RIGHT_MOTOR 0 //Right motor plugged into port 0

#define LS 0 // Left IR sensor plugged into port 0

#define RS 1 // Right IR sensor plugged into port 0

void main()

{

int left_speed; // holds our speed

int right_speed;

while(!b_button()) // loop until b button pressed

{

/* The two lines below assign the output of the analog sensors

to variables that control the motors speed.

Since the sensors return a value from 0-255 we must scale this value

to 0-100 by dividing by 2.55.

Since the IR sensors return large values for close objects we must make them negative

and add 100 to get the desired range of 0-100.

*/

left_speed= -(int)((float)analog(RS)/2.55) + 100;

right_speed= -(int)((float)analog(LS)/2.55) + 100;

motor(LEFT_MOTOR,left_speed);

motor(RIGHT_MOTOR, right_speed);

}

printf("DONE!!\n");

}

