
1

Robotics With the XBC

Controller
Session 10

Instructor: David
Culp

Email:
culpd@cfbisd.edu

mailto:culpd@cfbisd.edu

2

Learning Goals

 The student will learn to use the BEMF
functions in order to make precise turns
and will use the functions to navigate a
short obstacle course.

 Schedule for tonight
 Odometry continued
 Video of development lessons – West Bay
 Interview with DeWitt Perry Students
 Final Exam

3

Odometry Review

 Measuring distance based upon wheel
rotations.

 The robots straight line distance (d) is the
number of wheel rotations * wheel
circumference (C).
 Example:

• C = 10cm

• # rotations = 6.5

• d = 100mm * 6.5 rotations = 65cm

 #rotations = pulses traveled / pulses per
rotation

4

Odometry Review
(Example)

 Wheel Diameter(D) = 3.18 cm
 C = pi*D

 Wheel C = 3.14159 *3.18cm = ~10cm

 Pulses per rotation = 1000

 Total pulses traveled = 3500

 How far has our robot traveled?
 #rotations = pulses traveled / pulses per

rotation
• #rotations = 3500 / 1000 = 3.5 rotations

 d = number of wheel rotations * wheel
circumference.
• d = 3.5 rotations * 10cm = 35cm

5

travel_dist function
/*

Function: travel_dist

Purpose: Will cause two wheels to travel a certain number of cm (it is possible to use more or less
wheels)

Parameters:

int vel- The speed to travel in clicks/sec

float dist- The distance in cm to travel

*/

void travel_dist(int vel, float dist)

{

//First calculate how far to travel

float left_total_clicks_to_travel=(dist/wheel_circumference)*(float)LEFT_CLICKS_PER_ROT;

float right_total_clicks_to_travel=(dist/wheel_circumference)*(float)LEFT_CLICKS_PER_ROT;

mrp(LEFT_MOTOR, vel, (long)left_total_clicks_to_travel);

mrp(RIGHT_MOTOR, vel, (long)right_total_clicks_to_travel);

while((get_motor_done(LEFT_MOTOR) == 0) || (get_motor_done(RIGHT_MOTOR) ==0))

{ };

ao(); // turn off the other motor when one is done to avoid turns at the end

}

6

Turning

 If one wheel (the pivot wheel) is
stationary in pivot turns, the drive
wheel will travel in a circle, turning
the robot with it.

 The robot then turns in a circle with
a radius equal to the wheelbase of
the robot, which is measured from
the inside of the pivot wheel to the
outside of the drive wheel.

7

Turning Continued

 The circumference of this circle can be
calculated like the circumference of any other
circle, using 2*PI* radius.

 Full Turning Circle=(WHEEL_BASE*2.0)*PI

[Note - to convert angles in degrees to
radians: 360 deg = 2*PI rad]

 We can use this information to get the number
of clicks we travel to turn a single degree.

 This can be multiplied by the number of
degrees we want to turn to get how many
clicks the drive wheel should move.

8

Illustration

Drive
Wheel

Stationary
Wheel

Robot wheel base = r

D= 2 * wheel base

Circumference = 2 * wheel
base * pi

9

Finding Clicks Per Degree

 Divide the circle’s circumference by
that of the wheels.

 Then multiply the result by the
number of clicks per wheel rotation
and the ratio of 1/360 degrees.

 Clicks_per_degree=(full_circle/whee
l_circumference)*(1.0/360.0)*RIGH
T_CLICKS_PER_ROTATION;

10

New Additions to Our
#defines and Variables
#define LEFT_MOTOR 0
#define RIGHT_MOTOR 2
#define LEFT_CLICKS_PER_ROT 350 /*WHEEL ROTATIONS! NOT motor rotations!*/
#define RIGHT_CLICKS_PER_ROT 350 /*WHEEL ROTATIONS! NOT motor rotations! */
#define WHEEL_DIAMETER 1.5 /* in cm */
#define WHEEL_BASE 12.0 /* in cm */
#define PI 3.14159

float wheel_circumference = WHEEL_DIAMETER*PI; //in cm
float full_circle=(WHEEL_BASE*2.0)*PI;//Total turning circle for the robot; also in cm
float

left_clicks_per_degree=(full_circle/wheel_circumference)*(1.0/360.0)*(float)LEFT_
CLICKS_PER_ROT;

float
right_clicks_per_degree=(full_circle/wheel_circumference)*(1.0/360.0)*(float)RIGH
T_CLICKS_PER_ROT;

11

Assignment 1

 Write a function called pivot_turn.

 Pivot turn takes the following parameters.

 int motor – the motor # to use as the drive wheel.

 int vel – the speed to move.

 void pivot_turn(int motor, int vel, float dist).

 The function calculates the number of BEMF
pulses to move the drive wheel and moves it
keeping the other wheel stationary.

 Use your function in a program to turn your
robot an arbitrary # of degrees.

12

Solution
/*

Function: pivot_turn

Purpose: Will cause a dual drive robot to turn a certain number of degrees

Parameters:

int motor_num- The number of the motor to use (port number)

int vel- The speed to travel in clicks/sec

float degrees- The distance in degrees to travel

*/

void pivot_turn(int motor_num, int vel, float degrees)

{

//First calculate how far to travel

float left_total_clicks_to_travel=left_clicks_per_degree*degrees;

float right_total_clicks_to_travel=right_clicks_per_degree*degrees;

if (motor_num == LEFT_MOTOR)

{

//Now move that number of pulses

mrp(motor_num, vel, (long)left_total_clicks_to_travel);

bmd(motor_num);

}

else

{

//Now move that number of pulses

mrp(motor_num, vel, (long)right_total_clicks_to_travel);

bmd(motor_num);

}

}

13

A slightly more Elegant
Solution

float clicks_per_degree[4];

void main()
{

clicks_per_degree[LEFT_MOTOR]=(full_circle/wheel_circumference)*(1.0/360.0)*(float)LEFT_CLICKS_PER_ROT;
clicks_per_degree[RIGHT_MOTOR]=(full_circle/wheel_circumference)*(1.0/360.0)*(float)RIGHT_CLICKS_PER_ROT;

pivot_turn(LEFT_MOTOR,800,90.);
}

/*
Function: pivot_turn
Purpose: Will cause a dual drive robot to turn a certain number of degrees
Parameters:

int motor_num- The number of the motor to use (port number)
int vel- The speed to travel in clicks/sec
float degrees- The distance in degrees to travel

*/
void pivot_turn(int motor_num, int vel, float degrees)
{

//First calculate how far to travel
float total_clicks_to_travel=clicks_per_degree[motor_num]*degrees;

mrp(motor_num, vel, (long)total_clicks_to_travel);
bmd(motor_num);

}

14

Assignment 2

 Set up an “odometry course”
 Set a starting location of the robot.

 Place objects in front of the robot.

 Measure the distance from the objects
to the robot and the distance between
the objects.

 Write a program using the two
odometry functions to navigate your
course.

15

Interviews + Final

 Video Interview with West Bay

 Short Interview with DeWitt Perry
Students

 Final Exam Instructions + Goodbye
and Good luck!

