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Alternative Implementations of the Monte Carlo Power Method 

 
by 

 
R. N. Blomquist and E. M. Gelbard 

 
 

 
ABSTRACT 

 
 
We compare nominal efficiencies, i.e. variances in power shapes for equal running time, 

of different versions of the Monte Carlo eigenvalue computation, as applied to criticality safety 
analysis calculations. The two main methods considered here are "conventional" Monte Carlo 
and the superhistory method, and both are used in criticality safety codes. Within each of these 
major methods, different variants are available for the main steps of the basic Monte Carlo 
algorithm. Thus, for example, different treatments of the fission process may vary in the extent to 
which they follow, in analog fashion, the details of real-world fission, or may vary in details of 
the methods by which they choose next-generation source sites. In general the same options are 
available in both the superhistory method and conventional Monte Carlo, but there seems not to 
have been much examination of the special properties of the two major methods and their minor 
variants. We find, first, that the superhistory method is just as efficient as conventional Monte 
Carlo and, secondly, that use of different variants of the basic algorithms may, in special cases, 
have a surprisingly large effect on Monte Carlo computational efficiency. 
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I.  INTRODUCTION AND BACKGROUND 

 
The superhistory method was introduced in 1986 in a key paper by Brissenden and 

Garlick (Ref. 1). This method is designed to reduce substantially the biases induced, both in 
eigenvalues and flux shapes, by conventional Monte Carlo, the most commonly used criticality 
safety analysis method. In the Monte Carlo ("MC") power method, as in the deterministic 
method, the eigenvalue computation is carried out iteratively, in iterations called here 
"generations". The number of neutrons, Ns,  present at the start of each generation is usually 
fixed, in standard MC, via input, and positions of the first Ns starters are usually selected 
stochastically from a guessed initial distribution. Here we will consider standard MC only in its 
simplest form, in which each starter is followed until it is absorbed or escapes. When all neutrons 
in a generation are gone, Ns new starting sites are chosen, by one of several alternative processes, 
from among real or "potential" fission sites generated in the just-completed generation. These 
new starters, in their turn, are then followed for another generation, etc., for a user-specified 
number of generations. 
 

Within each generation, the neutrons may be tracked by any valid process, i.e., by any 
process such that the expected values of track lengths and reaction rates correspond to correct 
physical values, given the geometry, physics parameters, and starting locations. There is, 
however, no real physical process that is modeled by the renormalization of the fission source 
after every generation, i.e. by the completely artificial readjustment of the number of neutrons 
participating in the chain reaction. It turns out (Refs. 1, 2) that, because of statistical fluctuations 
in the MC eigenvalue, this normalization is not an unbiased simulation of normalization in 
deterministic power iteration. For this reason all MC estimates are biased from the first 
reselection of Ns new starting sites, no matter which of the usual alternatives is used to execute 
this step. This means that beyond this point the expected values will not agree with the true 
solution of the transport equation for the given cross sections and geometry. There are ways to 
estimate the resulting eigenvalue bias, and reasons to believe that this bias is usually 
inconsequential (Refs. 1, 2), but we have no good estimate of or bound on biases in flux shapes. 
For this reason it seems advisable to reduce the biases as much as possible. 
 

The superhistory method does just this by decreasing the frequency of source-
renormalization. Each starter is now followed for a specified number of generations, Ng, and the 
resulting extended history is now called a "superhistory". More specifically: 1) the starter is 
followed until it is absorbed or escapes; 2) when absorbed, it may excite a fission producing, on 
average, the proper number of offspring; and 3) all these are followed for a second generation 
until they too are absorbed or escape, and so on for Ng generations. Here the set of Ng generations 
is called a "supergeneration". Each supergeneration provides an eigenvalue estimate equal to the 
ratio of the net weight of all potential fission sites produced in that supergeneration, to the net 
weight of all source neutrons in all generations of that supergeneration. Estimates of reaction 
rates are defined similarly. At the end of each supergeneration Ns new starting locations are 
chosen from potential starting sites, now produced in the last generation of the preceding 
supergeneration. It will be seen that conventional MC is just the superhistory method with Ng = 
1. 
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In conventional MC the fluctuations in computed fission distributions are in part 
counteracted, in the course of each generation, by restoration of the weight of starters to the 
specified input value. In contrast in the superhistory method this renormalization of the fission 
source occurs much less frequently, allowing some additional accumulation of source 
fluctuations. It is one of our goals to determine to what extent effects of this noise accumulation 
are eliminated by the normalization at the end of the supergeneration. 
 

Above we have described the superhistory method in the form that seems to be 
recommended in Ref. 1, and described by Nigel Smith.a Absorption sites are potential fission 
sites, with the fission probability at each site equal to Σf/Σa, and the average number of offspring 
from each fission equal to ν /k.  Here, ν  is the local average number of neutrons per fission, k is 
a number close to the system eigenvalue, and we have excluded calculations in which variance 
reduction methods are applied, so that neutron weights are all unity. The factor 1/k is introduced 
so that the net number of offspring will be roughly equal to the number of starters, Ns, required 
in the next generation.  
 

In the variants just described, fission is simulated by a more-or-less analog procedure. 
Later we refer to this treatment of fission as "Variant A", where “A” signifies “Analog”. It is 
essentially this variant which is used in one of the two versions of the superhistory code MONK 
(Ref. 3), and in the conventional Russian MC code, MMKFK.b Probably it is more common, in 
other MC codes, to use a "less analog" fission simulation. For example one might take each 
absorption site, as before, as a potential fission site, but now assign to each such site the weight 
Ws = ν Σf/(kΣa). Fission can now be assumed to occur at each site where this weight is non-zero, 
with the site weight being the average total weight of neutrons produced by this absorption. In 
still another fission simulation it is the collision sites which serve as potential new source sites. 
In this case the site weights will be equal to Ws = ν Σf/(kΣt), and it is these weights which then 
determine the numbers of offspring.  In both the collision and absorption simulations, the site 
weight determines the number of next-generation neutrons emerging from the event.  For 
example, if Ws = 2.5, either two or three cloned sites will be banked, each with weight 1.0, 
depending on the roulette of the 0.5 fraction of the site weight.  Both of these techniques will be 
called "Variant E", where “E” is an abbreviation for “expected values”.  In one form or another, 
these techniques are the most commonly used. When we refer to Variant E, it will be necessary 
to say precisely how the potential source sites are defined. 
 

Another set of options is available for resetting the number of starters to Ns at the 
beginning of each supergeneration. One of these options, which we call "random source-
resampling", will be used in some of our tests though it is rarely seen in practice. We consider 
this option for various reasons. First, it seems to be indicated in Ref. 1 as an option in the 
superhistory method. Secondly, it is a very simple way to choose N2 starting sites from N1 
available fission sites and, in addition, is a technique sometimes cited in introductory 
presentations of MC. By "random source-resampling" we mean here the process applied to a 
bank containing sites with uniform weights, specified by the following Fortran: 

 
 

                                                 
a Private communication, Nigel Smith, Serco Assurance (Winfrith), 2001. 
b Private communication, Lev Maiorov, Kurchatov Institute, 2001. 
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      do Neut = 1,N2 
        ccc = ranf() 
        isite = aint(ccc*N1) + 1 
        XSIn(Neut) = Xf(isite) 
        YSIn(Neut) = Yf(isite) 
        ZSIn(Neut) = Zf(isite) 
      Enddo 
 

Here ranf() represents a pseudorandom number drawn from some typical sequence, and 
the N2 XSIn's are the x-coordinates of the required next-generation starters. Clearly if the original 
sites, (Xf, Yf, Zf), constitute a set of N1 points drawn from a given spatial source distribution, 
then the final (XSIn, YSIn, ZSIn) coordinates constitute a set of N2 points drawn from the same 
distribution. Although the wording in Ref. 1 is not completely clear, the authors seem to imply 
that they consider this resampling process to be a significant source of noise, and that it may be 
an advantage of the superhistory method that it reduces the frequency of random source-
resampling; but there are well-known schemes which can replace random source-resampling and 
are much less noisy. These other techniques can be used in either the conventional or 
superhistory method, eliminating this particular advantage of the superhistory method. 
 

Finally, there is an option in the formulation of the superhistory method that seems worth 
mentioning here, though it will not be discussed below. This is a programming option that is very 
much worth considering. It is possible to arrange a superhistory computation in such a way that it 
looks very much like conventional MC. That is, the calculation may be run generation by 
generation, like a conventional MC, but with population control only every Ng generations. One 
would then have to take account of the fact that the number of starters per generation is variable; 
but even in conventional MC the number of starters may not be completely constant, varying 
slightly from one generation to another. This is true, for example, in MCNP (Ref. 4), where, 
however, the net weight of starters is held constant, and in many of the test computations we will 
discuss. The advantage of such an approach is that a conventional MC code can be converted 
into a superhistory code fairly easily. On the other hand one can also arrange the computation so 
that a superhistory runs to completion before the next superhistory starts. This approach may be 
advantageous if the MC computation is to be parallelized. In that case the data acquired on 
different processors must be gathered periodically, and this gathering is usually an expensive 
operation. In a superhistory computation with Ng = 10 (the default value in MONK) a 
superhistory runs much longer than a single history so that the gathering of data, one might 
expect, need be done relatively infrequently. 
 
 

II.  METHODS AND TEST PROBLEMS 
 

The test problem configurations used in this investigation fit into four groups.  The first 
set consists of three identical one-dimensional one-group homogeneous slabs. Each case in this 
set was run with a different method/variant combination, but all were run with random source-
renormalization, a process found to be disadvantageous, as predicted in Ref. 1.  The second set 
also consists of three one-dimensional one-group slab cells, now not homogeneous. Random 
source-resampling is replaced by an alternative that almost sets the number of starters to the 
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desired value. Here, this renormalization technique seems to introduce no significant extra noise.  
Problems in both these sets were run with absorption sites taken as potential next-generation 
source sites, using Variants E and A.  The third group is a symmetric JAERI two-core problem 

(Ref. 5) run on VIM (Ref. 6) versions using absorption-based and collision-based source sites. 
The anomalies in Ref. 5 were reproduced, but results with collision sites as potential source sites 
were much worse than those using absorption sites.  The fourth group is a set of VIM 
computations modeling a hypothetical large three-dimensional thermal reactor, both in a 
homogenized form and with a plate structure.  This set was an attempt to assess how important 
homogeneity is as a factor in the performance of different site generation schemes. 
 
A.  Uniform Three-Region One-Group Slab Cells 

 
 This problem configuration is a uniform, one-dimensional reflected slab, 15.5 cm thick, 
divided into 3 equally thick edit zones. In each we estimate the absorption rate and its variance. 
In addition we compute the eigenvalue and its variance, using collision estimators throughout. 
Table I lists the problem parameters, the variance, σk

2, in eigenvalues, and the variance, σa
2, of 

absorption rates averaged over edit zones.  In the methods of Table I, fission is allowed to occur 
only at absorption sites. 
 
 In the first case with ν  = 1 and one generation per supergeneration, the superhistory 
method is equivalent to "conventional" MC. Row 2 displays results for the same slab with ν  
raised to 3 and Σf correspondingly lowered.  The row 3 method is identical to row 1, but with 10 
generations per superhistory. All cases correspond to the same just-critical cell, but with 
factorization of ν Σf as an independent parameter. Variances were computed among 1000 
replicas, i.e., identical but statistically independent calculations. Closely similar results were 
obtained for ν  = 2.5. 
 
 It should be understood that the cross sections and dimensions in this set of tests were 
inherited from earlier studies, and have no special significance. On the other hand it is our hope 
that, considering the whole range of our test problems, it will be possible to come to reasonably 
well-founded conclusions. 
 
 We see that Variant A flux shapes (Table I, row 2) are noisier than the shapes generated 
by conventional MC, probably because more than one neutron will emerge from each fission 
site. Thus the number of fission sites will be smaller in Variant A than in conventional MC, so 
that less information will reside in the fission source. 
 
 In the third computation of Table I, random selection of source sites occurs every tenth 
generation, while in the first MC it occurs after each generation. Otherwise the computations are 
identical. Apparently the additional random source resampling produces the observed increase in 
variance.  
 
 One can, however, easily eliminate this source-resampling in all methods discussed 
above. In conventional MC, for example, we define w(i), the site weight for the i'th site, as: 
 
 w(i) =  ν (i)Σf(i)/(kΣa(i)). 
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 Let Wt be the sum of all the w(i). Also, let w’(i) = w(i)Ns/Wt, where Ns is the number of 
starters desired at the beginning of each generation or supergeneration. To start a generation or 
supergeneration, now use w' instead of w to determine the mean number of offspring at site i. Ns 
will now be the expected number of starters. Conventional and superhistory variant E MC 
calculations using a test code have been modified in this way for the problems studied below. 
 
 It might be argued that, by not firmly fixing the number of starters in our "conventional" 
MC computations, we have artificially suppressed part of the difference between conventional 
and superhistory variances. Later, however, in discussing the JAERI two-core problem, we 
compare results obtained via the above techniques with corresponding results from VIM, a code 
in which the number of starters is constant. Differences between variances in the two MC 
computations are small, and probably not significant.  It must be conceded, however, that 
properties of this population control mechanism (preceding paragraph) require further 
examination, and more intercomparison with other methods. Among the most plausible 
alternatives is a method used by Forrest Brown.c  If the number of potential sites, Np, is greater 
than the required number of starters, Ns, Brown's approach is to randomly select Np-Ns sites for 
elimination. If, on the other hand, Ns is greater than Np, then the required additional sites are 
selected, without replacement, from the available potential sites. Here it is assumed that Ns is not 
greater than 2Np. Like most others, Brown’s method starts from fission sites whose weights have 
been adjusted to unity by some prior statistical process.  A rather different method, called “the 
comb” was brought to our attention by T. Booth (Ref. 7).  The comb starts from any number of 
weighted fission sites and yields a specified number of unit weight source sites.  So far as we 
know the statistical properties of this method, as applied to reactor eigenvalues, have never been 
examined. 
 
B.  Non-Uniform Three-Region One-Group Slab Cells 
 
 This problem set is physically the same as the previous set, except that in both end slabs, 
Σf = .1/ ν , .05/ ν  and 0, in problems 1-3, respectively. The computational methods and variants 
for this set and the corresponding results are shown in Table II.  Here, "Conventional" means one 
generation per supergeneration, 130 supergenerations run, of which the first 30 are skipped.  
Variant A means 10 generations per supergeneration, 13 supergenerations run, of which 3 are 
skipped.  Variant E used the same generation parameters as did the Variant A calculations. 
 
 Again one sees, as in Table I, that Variant A flux shapes are significantly more noisy than 
those computed by conventional MC. On the other hand conventional MC and the Variant E 
version of the superhistory method are now equally efficient for this expanded set of problems. 
The disadvantages of random source resampling, on the one hand, and the quasi-analog fission 
treatment on the other, have both been eliminated. 
 
C.  JAERI Two-Core Criticality Safety Problem 
 
 The test problems in the first two sets were very simple artificial problems convenient for 
this study. They were particularly useful because they could be run very quickly in many 
replicas, so that true variances could be computed with great accuracy. Further, they could be run 
                                                 
c Private communication, Forrest Brown, Los Alamos National Laboratory, 2001. 
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on simplified, specially written test codes embodying the superhistory method, an approach that 
was necessary since ANL does not now have a full-scale implementation of this method. 
 
 On the other hand, these test problems do cover only a small range of not very typical 
configurations. The problem examined here, although still not typical, is very different from the 
earlier test problems, and was one of the cases encountered in practice by Yamamoto, et al (Ref. 
5). The problem geometry is depicted in Figure 1 (in our case with T1 = 35 and Tc = 30), and it 
seems that the simplest way to describe the problem is to quote Ref. 5, as we do below. 
 
 "In this paper, two slab fuel solutions are taken as examples of calculation. Each slab is 
69 cm wide and 50 cm high, and is made of uranyl nitrate aqueous solution. The concentration of 
uranium is approximately 310 g/l and the enrichment is 10 wt%. As shown in Figure 1, two slabs 
are separated by an ordinary concrete slab of 69 cm wide and 50 cm high. The thickness of the 
unit 2 in Figure 1 is fixed at 35 cm and the thickness of unit 1, T1, and the concrete slab, TC, are 
variable. A criticality calculation using MCNP 4B was carried out for a symmetric configuration. 
The thickness of unit 1 and concrete slab was 35 cm, and 30 cm respectively.  The calculations 
were performed using active 500 generations of 2,000 neutrons each, after skipping 50 
generations. All neutrons in the first generation started with a flat distribution over the fissile 
material in the system."  
 
 Yamamoto and his coworkers found, in repeated calculations, that although in the 
symmetric case the MC flux guess was symmetric, and although the number of starters per 
generation was pretty large, still very large asymmetries developed between the fission sources 
in the two cores when they were decoupled by concrete. This behavior is demonstrated in the “30 
cm” trace in Figure 2. The authors’ analysis of mechanisms driving this behavior is interesting 
and illuminating, but we will not repeat it in detail. For our purposes it is sufficient to say that 
fluctuations are injected into the MC computation within each generation, and are weakened 
because leakage tends to smear irregularities in the both the source shape and the flux shape. The 
rate of attenuation depends on the dominance ratio; if it is close to unity the fluctuations may 
grow to very large magnitudes until an equilibrium is attained between the rate of creation and 
attenuation of noise. 
 
 In this section we have two purposes. First we want to compare the efficiency of the 
superhistory method with that of conventional MC, as in earlier sections; but now in addition we 
would like to improve our understanding of the observed anomalous behavior and, as far as we 
can, to damp out the erratic shifts in power shapes. 
 
 Since, as we have already pointed out, we have not implemented a full-scale ANL 
superhistory code, our superhistory computations will again be run as one-dimensional one-
group slabs using a special test code.  Group constants for these computations were produced by 
VIM in the course of continuous-energy MC runs for the JAERI two-core configuration.  Only 
the symmetric version of this problem will be discussed here.  For convenience, and to facilitate 
comparisons with the one-group calculations, the VIM calculations were run as one-dimensional 
slabs.  Further, we have replaced the 30cm slab of concrete with 30cm of water.  All relevant 
problem characteristics are listed in Tables III and IV, and corresponding computational results 
are tabulated in Table V. As throughout this paper, the "variances" cited are the variances among 
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the average absorption rates estimated in individual replicas, i.e., not the average of the variances 
estimated within the replicas.  Thus, to the extent that the replicas are independent, the variance 
computations are rigorous. 
 
 As before, it will be seen that, in this case, there is little difference in efficiency between 
conventional and superhistory MC; variances in absorption rates differ little (perhaps 
insignificantly) between methods.  At this stage, the fact that absorption rates are much more 
symmetric in the superhistory calculation would, therefore, seem to be accidental.  On the other 
hand there is a large difference in absorption rate variances in test cases 3 and 4, indicating a 
large disadvantage in the use of collision sites as potential fission sites. 
 
 Because of the anomalous behavior of the MC results in the JAERI problem, and because 
the JAERI problem is a system encountered in practice, it was felt to be particularly interesting 
to run more realistic multi-energy test computations. For this purpose a VIM version was written 
in which absorption sites, instead of collision sites, were taken as potential source sites. To check 
the consistency of methods between VIM and in the specialized test codes (methods which are 
not identical even for the 1D one-group test problems), the one-group tests were rerun with VIM.  
Results of this computation are displayed as Test Case 4 in Table V.  These results, in view of 
the relatively small number of replicas, seem consistent with those shown above for the 
corresponding computation. VIM continuous-energy solution variances for the JAERI problem, 
again for 20 replicas using each fission site generation scheme, are shown in Tables VI and VII. 

 
 Comparing one-group and continuous-energy results, it's clear that the one-group model 
is too unrealistic to evaluate the site generation techniques accurately. This can be seen both by 
comparing variances, and absorption rates in region 2. One reason for the observed differences 
may be the fact that there is, in water, a cross section window at high energies, a window through 
which neutrons can pass from core to core much more easily than in the one-group model. Surely 
another reason is that there are many sources of statistical noise in the realistic VIM that are 
absent in one-group MC. At this point we cannot say that all the differences in variance are 
thoroughly understood. In any case, variances in the VIM absorption rates are about 2.6 times as 
large when collision sites are taken as source sites as they are when absorption sites are taken as 
source sites. Since running times are about the same for both problems, we conclude that the 
efficiency improves by a factor of about 2.6 when absorption sites are taken as potential source 
sites. 
 
 This difference in variance is easily explained qualitatively in the limiting case of 
infinitely large cores. In this limit the motion of neutrons is unimportant. One can assume, in 
fact, that neutrons don't move at all between collisions. Suppose that starters are injected into this 
configuration at the beginning of a generation. Assume that the absorption probability is small, 
so that each starter makes a large number of collisions before it is absorbed. The number of 
collisions then has a large variance. Each collision site is assigned a weight of νΣf/(kΣt), which is 
usually much less than unity. This weight is then used as a basis for Russian roulette. Thus, for 
example, a starter might produce, say, 50 collision sites, which are then rouletted back to about 
one new starting site. The roulette process also produces noise, and the added variance 
propagates from one generation and one supergeneration to the next. In a finite medium this 
accumulation of variance would be counteracted by neutron transport from regions of high 
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neutron density to regions of lower density, but would be enhanced by the fact that sites from the 
same neutron track are not independent source sites. 
 
 These considerations are treated quantitatively in Appendices A and B, the first two of 
four appendices. In these two Appendices we compute the variances in fission rates in each core 
using random source-resampling, in A taking potential source sites at absorption sites, and in B 
using collision sites. In both cases the variances increase linearly with the number of generations 
(assuming, in B, that fluctuations are small); but if the ratio of scattering to total cross sections is 
close to unity the added variance due to the use of collision sites is equal to the variance due to 
random source-resampling. It appears, from the numerical results, that the random source-
resampling tends to smear the source fluctuations over both cores. If random source-resampling 
were replaced by a less noisy population control mechanism this smearing might be weakened.  
The variance injected directly by population control would then decrease, but that due to the use 
of collision sites might increase. Further, it seems plausible, from results obtained in Appendix 
B, that without population control (as in the superhistory method) the variance due to the use of 
collision sites might double, but this possibility has not yet been investigated. 
 
 It is interesting to see how the added variance affects the ratio, r, of fission rates Sf, in the 
two cores. In Figure 3 we have plotted the greater, rmax, of the ratios Sf2/Sf1 and Sf1/Sf2 for all 20 
replicas, and for runs with both schemes for constructing source sites. In this plot, replicas are 
ordered by increasing values of rmax. Generally rmax is about 2.5 times greater for the collision-
based algorithm than for the absorption-based algorithm. Further, two replicas using the collision 
based source selection algorithm give bizarrely large values (about 100) for rmax; in the 
computations using absorption site-based starting sites no ratio is greater than 5.   
 
 Appendices C and D have been added in the hope that they, together with A and B, will 
give some added insight into the behaviour of variances in the symmetric coupled core problem. 
In C we show that, very generally, again for infinitely large cores and in the limit of small 
fluctuations, the variances in fission rates, per core per generation, increase linearly with the 
number of generations. Further, the variances in average-over-generations fission rates also 
increase linearly as the number of generations goes to infinity. As one might expect from the 
arguments of Ref. 5, this behaviour of variances is not sensitive to the details of the Monte Carlo 
process.  Finally, in Appendix D we consider the effect of coupling the two cores, though only in 
a two-point model (i.e., a model in which each core is represented as a point) and in the limit of 
small fluctuations. In this case any nonzero coupling will make the variances in the per-
generation fission source go to a finite limit as the number of generations increases and, 
correspondingly, the variances in the means-over-generations will go to zero like the inverse of 
the number of generations. However, as the core coupling becomes weaker, then, for a given 
number of starting neutrons, fluctuations will grow from one generation to another till the 
assumption of small fluctuations will fail and Monte Carlo biases may then become significant. 
Just at what point biases appear can be determined most easily directly from a superhistory 
calculation. 
 
 
 
 

 8



D.  Large LWR Core 
 

 A coupled two-core reactor configuration is still unusual, but it is important to realize that 
MC results for much more common reactor configurations may also exhibit anomalies. In this 
section we deal with MC computations for two large thermal reactor cores, the first homogenized 
and the second composed of slab subassemblies. Both cores have vacuum boundaries. 
 
 The homogeneous "reactor" consisted of a 35x35 array of square units, 350 cm on a side 
and 350 cm in length. Each unit is a volumetrically smeared PWR subassembly, with smeared B-
10 added to achieve criticality at 300(K). The boron density was increased in the fourth (17x17) 
quadrant to introduce the effects of a flux tilt. Atom densities are shown in Table VIII. 
 
 Tables IX-A and IX-B list VIM continuous-energy computational results for 20 replicas, 
4000 neutrons per generation, 400 generations, 0 skipped, using absorptions and collisions, 
respectively, to produce potential fission sites.  Quadrant 1 is in the upper left-hand corner, 
quadrant 4 is in the lower right-hand corner (with extra boron), and 2 and 3 are the remaining 
quadrants. 
 
 It will be seen from Tables IX-A and IX-B that the pattern of MC results is similar to the 
pattern observed in the JAERI problem; i.e. that the computed fission production rates are 
significantly more noisy when source sites are taken at collision sites then when they are taken at 
absorption sites. In both cases, the “variances” computed among generations of a single run are 
extremely inaccurate, but are substantially worse when collision sites are used as potential fission 
sites. 
 
 Our final problem is a hypothetical heterogeneous version of the previous homogeneous 
problem. In this case the reactor fuel and structural materials are collected into 0.5 cm plates, 
while the boron and moderator are contained in separate moderator regions, also 0.5 cm thick. 
Atom densities are listed below in Table X, while computational results with the absorption-
based (case A) and collision-based (case B) algorithms are displayed in Tables XI-A and XI-B, 
respectively. 
 
 In this case, much of the advantage of the use of absorption sites as potential collision 
sites has been lost. The reason is pretty clear. Here the fission sites appear in regions where the 
ratio of scattering to absorption cross sections is relatively small, so that the number of potential 
fission sites per starter is also relatively small. The variance involved in producing and rouletting 
the potential source sites is then also small compared to the variance produced in the 
homogeneous case. It will be seen that the “apparent variances” computed among generations are 
now somewhat more accurate in both cases, and are not much better, if at all, in case A than in 
case B. 
 

III.  CONCLUSIONS 
 
 In all of the one-group test problems the superhistory method and conventional MC are 
equally efficient. Fluctuations in the numbers of source neutrons do accumulate within each 
supergeneration. On the other hand since eigenvalues are defined as numbers of fission neutrons 
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produced per neutron absorbed, these fluctuations don't affect eigenvalue estimates. Local 
fluctuations in source shapes also accumulate in the superhistory method, but intergeneration 
normalizations in conventional MC don't prevent the same sort of noise accumulation, in part a 
result of intergeneration correlations. Such correlations can be weakened by normalization 
between generations only if it introduces its own additional noise. Thus in both the eigenvalue 
computation and in the estimation of local reaction rates, noise will accumulate at much the same 
rate in the superhistory method and in conventional MC. 
 
 It must be stressed that we are referring here only to test problems of types discussed 
above. In the Eigenvalue of the World problem anomalies are caused primarily by the loss of 
source regions during the normalization process. The frequency of normalizations is reduced in 
the superhistory method, and the frequency of anomalous MC results is thereby reduced.  
Performances of the superhistory method and of stratified source sampling (Ref. 8) in Eigenvalue 
of the World problems are compared in Ref. 9. Stratified source sampling relies for success on 
reducing the likelihood of losing source regions via normalizations, while the superhistory 
method achieves the same goal by reducing the normalization frequency. At any rate, there 
seems to be no disadvantage connected with the use of the superhistory method; apparently no 
cost is incurred in substantially weakening biases. 
 
 In eigenvalue calculations for configurations with large cores it is sometimes preferable 
to take potential source sites at absorption sites, rather than collision sites. This seems to be 
particularly true with systems in which many scatterings per starter occur in important 
multiplying media. 
 
 In the work reported here we have seen no case where it is preferable to use collision 
sites as potential source sites. Yet on an intuitive basis many (perhaps most) Monte Carlo 
specialists have preferred this option. In using only the absorption sites we seem to discard much 
of the information contained in the neutron histories. On the other hand, selection of source sites 
from collision sites can be a very noisy process and, furthermore, source sites taken from the 
same track, or even the same history, are dependent samples whose lack of independence may 
seriously impair their value. Thus in a very large region the length of a track, or even the net 
displacement of a neutron during its history, may be insignificant compared to the dimensions of 
the region. In such a case it could be relatively inefficient to track more than one starter from the 
same history.  
 
 Thus it is difficult, on purely theoretical grounds, to come to a generally valid conclusion 
as to which of these two site-generation schemes should be used.  In fact there may be cases 
where (for small numbers of histories per generation) the chain reaction terminates within some 
region when sources are taken at absorption sites, but not when they are taken at collision sites.  
At this point, it isn’t clear that one method or the other should always be preferred, but it is true 
that the use of collision sites to generate potential fission source sites isn’t always the best 
strategy. 
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Figure 1. Schematic View of JAERI Coupled System (Ref. 5, reproduced with permission) 

 

 

 

Figure 2.  Ratio of Starting Neutrons (Slab 1/Slab 2) in Each Generation (T1,=35, 2000 
Neutrons/Generation) (Ref. 5, reproduced with permission) 
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Figure 3.  JAERI Slabs: Maximum Fission Ratios for 20 Replicas, Ordered by Increasing 
Ratio. 
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TABLE I. 
Absorption and keff Variances for Three Uniform Slabs (One-Group)a 

 
 

Method, Variant 
 

Σf 
 

ν  
Generations/ 
Superhistory 

Number of 
Superhists 

 
σa

2 
 

σk
2 

Conventional, E = A 0.1 1.0 1 100 6.06 1.8 e-5 
Superhistory, A 0.1/ ν  3.0 10 10 9.28 1.7 e-5 

Superhistory, E = A 0.1 1.0 10 10 3.92 1.7 e-5 
a Reflecting Boundaries, Σt = 1., Σa = 0.1; run with special test code. 
 
 
 
 

TABLE II. 
Absorption Rate Variances, keff and Variances in Non-Uniform Slabs (One-Group): No Re-

Sampling. 
 

Problem 
Set 

Method/ 
Varianta 

σa
2 

ν  =3.0      ν  =2.5 
Eigenvalue, k 

ν  =3.0      ν  =2.5 
σk

2 
ν  =3.0       ν  =2.5 

1 
1 
1 

Conventional 
Superhist./A 
Superhist./E 

3.86 
9.52 
3.64 

3.86 
7.94 
3.64 

.99993 

.99984 

.99993 

.99993 

.99973 

.99993 

1.63e-5 
1.78e-5 
1.63e-5 

1.63e-5 
1.90e-5 
1.63e-5 

2 
2 
2 

Conventional 
Superhist./A 
Superhist./E 

2.71 
4.99 
2.46 

2.71 
4.09 
2.46 

.77045 

.77000 

.77024 

.77045 

.77030 

.77024 

1.04e-5 
1.37e-5 
1.04e-5 

1.04e-5 
1.28e-5 
1.04e-5 

3 
3 
3 

Conventional 
Superhist./A 
Superhist./E 

1.45 
1.68 
1.51 

1.45 
1.55 
1.51 

.69191 

.69201 

.69190 

.69191 

.69185 

.69190 

9.64e-6 
9.56e-6 
9.64e-6 

9.64e-6 
9.27e-6 
9.64e-6 

aRuns replicated 500 times with a special test code. Variances were computed in each region, then averaged over 
regions to give table entries. In all regions Σa = .1 and Σt = 1.0.  Problems in set 1 are physically the same as 
problem of Table I. 
 
 
 

TABLE III. 
JAERI Problem, One-Group Parametersa 

 
Region Σa(cm-1) Σs(cm-1) Σf (cm-1) T (cm) 
1 0.0256 1.5600 0.0135 35.0 

2 0.0135 2.5300 0.0 30.0 

3 0.0256 1.5600 0.0135 35.0 

       a In all regions ν  = 2.44. 
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TABLE IV. 
Computational Characteristics: One-Group JAERI Problem 

 
Test 
Case 

Generations per 
Supergeneration 

Number of 
Supergenerations

Potential Fission 
Source-sites at: 

1 1 400 Absorption 
2 10 40 Absorption 
3 1 400 Collision 

4 (VIM) 1 400 Absorption 
 
 
 

TABLE V. 
JAERI Problem: One-Group Monte Carlo Resultsa 

 
 Absorption Rates Absorption Rate Variances 

Test Case Region 1 Region 2 Region 3 Region 1 Region 2 Region 3 
1 959.4 46.1 944.5 6357. 0.2 6357. 
2 951.6 46.0 952.3 6210. 0.2 6242. 
3 919.5 46.1 984.4 95377. 1.1 95455. 

4 (VIM) 940.4 46.0 963.6 5544. 0.1 5536. 
 

aTests 1-3 run with 100 test-code replicas, superhistory-variant E, no random source-resampling; test 4 run with 20 
VIM replicas. 
 
 
 

 
TABLE VI. 

JAERI Problem: VIM Continuous-Energy Results, Collision Site Technique 
 

Region: 1 2 3 
Absorption Rates 857.593 134.374 871.263 

Variance 48856.7 1.3 48805.9 
 
 
 

TABLE VII. 
JAERI Problem: VIM Continuous-Energy Results, Absorption Site Technique 

 
Region: 1 2 3 

Absorption Rates 860.844 134.549 867.934 
Variance 19080.5 0.5 19080.3 
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TABLE VIII. 
Homogeneous LWR Atom Densities 

 
Nuclide Density (at/b-cm) 

U-235 1.93800E-04 
U-238 6.26732E-03 
O-16 3.3398E-02 

B-10 (quadrants 1-3) 1.2500E-05 
B-10 (quadrant 4) 1.5000E-05 

Zirc 4.1949E-03 
H 4.0952E-02 

 
 
 
 
 
 
 

TABLE IX-A. 
Homogeneous LWR Results: Continuous Energy 

Absorption-Sites as Potential Source-Sites 
 

Parameter Quad 1 Quad 2 Quad 3 Quad 4 
Avg. Fission Production 1554.1 1135.1 1118.3 269.3 
Variance (20 replicas) 13415.1 15263.0 13900.8 530.8 

Std. Dev. of Mean (20 replicas) 26.6 28.3 27.0 5.3 
Avg. of Std. Dev. Estimates 9.4 6.6 6.2 6.6 

 
 
 
 

 
 

TABLE IX-B. 
Homogeneous LWR Results: Continuous Energy, 

Collision-Sites as Potential Source-Sites 
 

Parameter Quad 1 Quad 2 Quad 3 Quad 4 
Avg. Fission Production 1474.0 1224.0 1095.1 2283.9 
Variance (20 replicas) 31248.1 81030.9 102066.2 1568.4 

Std. Dev. of Mean (20 replicas) 40.6 65.3 733.3 9.1 
Avg. of Std. Dev. Estimates 14.3 13.4 12.7 7.8 

Var.(IX-B)/Var.(IX-A) 2.3 5.3 7.34 3.0 
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TABLE X. 
Heterogeneous LWR Atom Densities 

 
Plate Nuclide Density (at/b-cm) 
Fuel U-235 3.87600E-04 
Fuel U-238 1.25346E-02 
Fuel O-16 2.58444E-02 
Fuel Zirc 8.3898E-03 

Moderator O-16 3.3330E-02 
Moderator B-10 (quadrants 1-3) 2.5000E-05 
Moderator B-10 (quadrant 4) 2.7500E-05 
Moderator H 6.6660E-02 

 
 
 
 
 

TABLE XI-A. 
Heterogeneous LWR Results: Continuous Energy, 

Absorption Sites as Potential Fission Sitesa 

 
Parameter Quad 1 Quad 2 Quad 3 Quad 4 

Avg. Fission Production 1406.48 1070.23 1102.09 519.584 
Variance (20 replicas) 5253.99 11177.8 11181.1 1465.37 

Std. dev. of mean (20 replicas) 16.6291 24.2551 24.2585 8.78206 
Avg. of std. dev. estimates 12.0663 7.47985 7.14026 13.1324 

aVIM continuous energy. 20 replicas, 4000 neutrons, 400 generations (0 skipped) 
 
 
 
 

TABLE XI-B. 
Heterogeneous LWR Results: Continuous Energy, 

Collision Sites as Potential Fission Sitesa 

 
Parameter Quad 1 Quad 2 Quad 3 Quad 4 

Avg. Fission Production 1418.71 1041.47 1124.86 514.082 
Variance (20 replicas) 14125.6 9837.27 9180.52 3052.65 

Std. dev. of mean (20 replicas) 27.2663 22.7541 21.9815 12.6754 
Avg. of std. dev. estimates 11.9085 8.50203 9.15421 12.9712 

aVIM continuous energy. 20 replicas, 4000 neutrons, 400 generations (0 skipped) 
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Appendix A 
 

Theory of Variance  
Due to Random Source-Resampling in Eigenvalue Calculations 

 
In this Appendix we compute the variance induced in fission distributions by 

intergeneration source-resampling, the process specified earlier in Fortran notation.  We do this 
so that, in a later Appendix, we can compare this variance with variances introduced by the use 
of collision sites as potential source sites.  To make such a comparison analytically, it will be 
necessary to confine our attention to the simplest configuration which still retains some interest.  
Here this is a system of two media, both homogeneous and very large, in a one-group model.  
We assume, in fact, that the media are so large that within them the displacements of moving 
neutrons are negligibly small.  The two media can be different parts of one single medium, but 
parts so large that interactions between them may be neglected.  In our case, both media have the 
same cross sections and are both just critical.  One occupies a region, R, whose volume is a 
fraction, p, of the total volume of both.  We focus attention on R. Suppose that the source guess 
is flat and that N1 starters for the first generation are sampled from this source.  In this case, the 
probability that a starter falls into R is p.  Let n1 be the number of starters in R in the current 
generation, and N2 the total number of starters we need for the next generation.  We want to 
compute the variance in n2, the number of next-generation starters in R.  In the following 
discussion, we define P1(n1) to be the probability that n1 starters begin in R, P2(n2) to be the 
probability that n2 next-generation starters are in R, and P21(n2|n1) to be the probability that n2 
next-generation starters are in R given that n1 neutrons start in R. 

 

 In our one-group model of the JAERI problem, the eigenvalue, k0, is equal to kinf, i.e., k0 
=  νΣf/Σa.  If, as we assume here, absorption sites are taken as potential fission sites, the site 
weights, w, are equal to  νΣf/(kΣa).  Suppose that here as in all our one-group problems, we take 
k = k0 so that w = 1.  Then in Variant E, exactly one fission neutron is emitted at each absorption 
site.  Essentially, neutrons are passing directly from the source into the source-resampling 
process. 

Now, by definition of the variance of n2 during the MC calculation, and using 

1

2 2 21 2 1 1 1( ) ( ) ( )=∑
n

P n P n n P n ,  

 

2

1 2

2 2
2 2 2 2 2

2
2 2 1 2 1 2 21 2 1 1 1

( ) ( ) ( )

[ ( ) ( ) ] ( ) ( ).

= −

= − + −

∑

∑∑
n

n n

n n n P n

n n n n n n P n n P n

σ
 (1) 

Here 
2

2 1 2 21 2 1( ) (≡∑
n

n n n P n n ),  i.e. 2 1(n n )  is the conditional mean of n2 given n1.  Expanding the 

square, Eq. (1) becomes 
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where the second term on the right uses the fact that  
2

21 2 1( ) =1∑
n

P n n . In abbreviated notation, 

we write 
 
2 2 2 2

2 1 2 2 2 3 2( ) ( ) ( ) ( )= + +n n nσ σ σ σ ,n  
 
where we define the three variance components below: 
 

1 2

1

1 2

2 2
1 2 2 2 1 21 2 1 1

2 2
2 2 2 1 2 1 1

2
3 2 2 2 1 2 1 2 21 2 1 1 1

( ) [ ( )] ( ) ( ),

( ) [( ) ] ( )

( ) 2 [ ( )][( ) ] ( ) (

n n

n

n n

n n n n P n n P n

n n n n P n

n n n n n n n P n n P n

σ

σ

σ

≡ −

≡ −

≡ − −

∑∑

∑

∑∑ ).

 (3) 

Next, we show that .  It will be seen that 2
3 2( ) 0nσ = 2 1 2) ]n n n−[(  depends only on n1, since it 

has already been averaged over n2 keeping n1 fixed.  Therefore, one can write 

( ) ( ) ( )
1 2

2 2 2 1 21 2 1 2 1 2 1 1σ ( ) | ( ).                                                     (4)
     = − −      

∑ ∑
n n

n n n n P n n n n n P n2
3

 

But by definition 
2

2 2 21 21
(=∑

n
n n n P n n1)

.n

( ) , so that in Eq. (4), the quantity in curly brackets vanishes.  

Thus, we are left with 

2 2 2
2 1 2 2 2( ) ( ) ( )n nσ σ σ= +  (5)  

 The computation of  is relatively simple, so we dispose of this computation first.  If n2
2σ 1 

is given, the population of N1 fission sites contains a fraction n1/N1 of sites within R.  In each 
resampling step, this ratio is also the probability of choosing a next-generation starting site in R.  
Therefore, 

2 1 2 1 1( ) /n n N n N= .  
 

Further, 
1

2 2 1 1( ) ( ).=∑
n

n n n P 1n   Because N1 and N2 are constant, and from Eq. (3) and the two 

preceding equations, we see that 
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where 
 

1

1 1 1( )=∑
n

n n P n1 .

.−

 

Because we have a binomial distribution of starters, 
 

2 2
2 2 2 1( ) ( / ) (1 )n N N p pσ =  (7) 

 The computation of 2
1σ  is only slightly more complicated.    For this case, there are 

n
2( )n

2 starters, each with a binomial distribution with probability p=n1/N1, i.e., 

 
( ) ( )

2

2 1 1
2 2 1 21 2 1 2

1 1

| 1 ,
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n

n nn n n P n n N
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so that the first of Eqs. (3) becomes 
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1

2 1 1
1 2 2 1 1
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222
1 11
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2 2
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1

(1 )( ) N p p N pn N p
N

σ
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

,
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2
1 2 2

1

1( ) (1 ) 1n N p p
N

σ
 

= − − 
 

.
 (11) 

 Using Eqs. (7) and (11) in Eq.(5) yields 

2 2
2 1

1

( ) (1 ) [ 1]Nn p p N N
N

σ = − + −2 . (12) 
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Three special cases can easily be checked against independent calculations, i.e., (1) if N1 = 1, 
then σ2(n2) = p(1-p); (2) if N2

2

2

2 2

2N 1>>N2 and N1>>1, then σ2(n2)=N2p(1-p), and (3) if N2 = 1, then 
σ2(n2)=p(1-p).  It will be seen from Eq. (12) that the effect of random source-resampling just 
once can be substantial.  Thus, if N1=N2=N>>1 then σ2(n2)~2Np(1-p), so that the variance is 
doubled just by this one stage.  This is true regardless of the number of histories per generation, 
provided that number is much greater than one. 

 It is now relatively simple to get a recursion relation for the variances in successive 
generations of random source resampling.  Generalizing Eq. (6) we find that 

2 2
2, 1 2 1 1 1

2 2
1 1 2

2 2
2, 1 2 1 2

( ) ( / ) ( ).

But ( ) ( ), so that

( ) ( / ) ( ).

σ σ

σ σ

σ σ

+ + +

+

+ +

=

=

=

j j j j

j j

j j j j

n N N n

n n

n N N n

  (13) 

From Eq. (9), 

 2
1, 1 2 1 2( ) (1 ) ( ) /+ +  = − − j j jn N p p n Nσ jσ  (14) 

 
Using Eqs.(13) and (14) in the generalization of Eq.(5) yields 

 12 2
1 1 12(1 ) ( 1),+

+ + += − + j
j j j j

j

N
N p p N

N
σ σ −

,

 (15) 

where  σj ≡ σj(n2). 
 
If all the Nj’s are equal and equal to N1, and if N1>>1 
 
   2 2

1 (1 ),+ ≈ + −j j Np pσ σ
 (16) 

    2 ( 1) (1 )≈ + −j j Np pσ
 

i.e., the variance grows linearly with j. 
 
 The fact that the variance grows linearly with j is not surprising.  Some such growth is to 
be expected for infinite media, just on the basis of arguments in Ref. 5.  Here, in Ref. 5 
terminology, fluctuations are injected in each generation, unopposed by any restoring force.  But 
the injected variance is rather large.  In fact if, as in the one-group JAERI problem, p = 1/2, then 
after 500 generations the variance in the last-generation absorption rate will be equal to 500 x 
1000 = 5x105, so that the standard deviation has grown to 707 in an absorption rate of 1000.  It 
seems desirable to use a less noisy population control method for problem configurations with 
very low leakage.  One notable weakness of random source–resampling is that it injects large 
variance even if, as in some of our test problems, the number of fission sites is always equal to 
the required number of source sites. 
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Appendix B 
 

Theory of Variance Induced  
Through Use of Collision Sites As Potential Fission Sites 

 
Consider again a one-group two-core configuration with infinitely large cores.  Potential 

fission sites are now to be taken at collision sites.  Suppose that Ns source neutrons are injected 
into the whole system, with p1 the probability that a starter will go into core 1.  We want to 
compute the variances induced in regionwise source distributions just by the process of selection 
of new source sites, again neglecting the motion of neutrons.  Let pa be the probability that a 
colliding neutron will be absorbed, with ps ≡ 1-pa.  Further, let n1 be the number of source 
neutrons entering core 1, nc the number of collisions these neutrons undergo, and n2 the final 
number of first-generation fission sites in core 1.  We use here the same probability notation as in 
Appendix A.  By definition 
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But one can show, as in Appendix A, that 
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where, after summation over n2, 
 

1

2 2
1 2 2 1 1 1 1( ) ( ) ( ) ( )σ σ=∑∑

c

c c c
n n

n n n P n n ,P n  (3) 

 

1

2 2
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c
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n n

n n n n P n n Pσ = −∑∑ .  (4) n

 
 Now the weight of each collision site is equal to ν Σf/Σt, and the mean number of 
offspring at each site is taken to be ν Σf/(kΣt).  Normally k�1, so that ν Σf/(kΣt)<1. Fission sites 
will then be selected from among collision sites by roulette.  In the notation above 2

2( )cn nσ  is 
the variance in the number of roulette survivors, given the number of collisions.  Suppose that, in 
our model problem, both cores are identical and just critical, i.e. ν Σf/Σa ≡ ko = 1, and that k = ko.  
Then ν Σf/(kΣt) is equal to Σa/Σt = pa.  The probability of surviving roulette is then equal to pa, 
and 2

2( ) (1= −c c a an n n p p )σ . Thus 
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2
1 2 1( ) (1 ) (1 )= − = −σ c a a s an n p p N p p .  (5) 

 
Now we need to compute σ2

2(n2).  To do this we use the fact that  
 

2 2 1( ) ,= = =c a c an n p n n n p n ,c  (6) 
 
so that 
 

1

1 1

1

2 2 2
2 2 1 1 1 1 1 1

2 2 2 2
2 2 1 1 1 1 1 1 1 1

2 2 2 2 2
2 2 1 1 1 1

( ) [ ( ) ( ) ] ( ) ( ),

( ) [ ( )] ( ) ( ) [( ) ] ( ) ,

( ) [ ( ) ( ) ( ) / ].

σ

σ

σ σ σ

= − + −

  = − + − 
  

= +

∑∑

∑∑ ∑

∑

c

c

a c c c c c c
n n

a c c c c c c
n n n

a c a
n

n p n n n n n n P n n P n

n p n n n P n n P n n n n P n

n p n n P n n p

 (7) 

 
One can show that 2 2

1 1( ) /=c sn n n p pσ ,a  so that 
 

1

2 2
1 1 1 1( ) ( ) / ,=∑ c s

n

n n P n N p p pσ s a

1

)

,
,

 

 
while σ2(n1) = Nsp1(1-p1).  Thus 
 

2
2 1( ) [2(1 ) (1 )]= − + −s an N p p pσ  (8) 

 
 It will be convenient, at this point, to change our notation slightly.  Below we designate 
the cores as “core A” and “core B”.  Further, n  and n  will now be the numbers of first-
generation starters in each core.  The variances  and  are both equal to N

A
1
2σ

2 2σ σ

1
B

)( 1
An

( )2 2=A Bn n

(2
1
Bnσ

/ 4.= sN

s/4.  If 
we take potential source sites at absorption sites then, following the logic of Appendix A, 

  i.e. the number of fission sites in each core is equal to the number of initial 
source sites in that same core.  Thus   Define   

A A
2 1n n=

1

, B B
2 1n n=

1 ,A B

( ) 1 2 ,=A Am n B B
1 2m n=

M m= +m  so that  and  are the numbers of neutrons entering the random source-
resampling process.  Similarly  and  are the numbers of neutrons exiting the source-
resampling process, and 

1
Am B

1m
A
2m

+ =

B
2m

2 2 .A B
sm m N    

 
 

1p

Under these conditions we see from Appendix A that 
 

( ) ( ) ( )2 2
2 2 12 1

/ 2

= = −

=

A B
s

s

m m N p

N

σ σ
  (9) 
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since p1 = ½.  As in Appendix A the computed variances are variances in the numbers of second-
generation source neutrons entering each core. 
 
 Suppose we now take the collision sites as potential source sites, so that now M will 
fluctuate. We wish to compute   To do this we rewrite, in appropriately modified 
notation, Eqs. (3) and (5) of Appendix A. 

( )2
2 .Amσ

 
( ) ( ) ( )2 2 2

2 1 2 2 2 ,= +A Am m mσ σ σ A   (10) 
 

( ) ( ) (
1 1

2 2
1 2 2 1 1 1 1, ,=∑∑

A B

A A A B

m m

m m m m P mσ σ ) ,A Bm   (11) 

 

( ) ( ) (
1 1

2 2
2 2 2 1 1 1 1, ,=∑∑

A B

A A A B

m m

m m m m P mσ σ ) ,A Bm

)

  (12) 

 
where  is the joint probability distribution of   and  m ,  and 1 1( ,A BP m m 1

Am 1
B

 

( )2 1 1 1, =A A B A
sm m m N m M/ .

)

  (13) 

 
We compute  first, writing (2

1 2
Amσ

 

( ) ( )2
1 2 1 1 1, 1 ,A A B A

sm m m N p p p m Mσ = − ≡ / ,  

 

( ) (
1 2

2 1 1
1 2 1 21

 
= − 

 
∑∑

A A

A A
A

s
m m

m mm N P m m
M M

σ ),A A .  (14) 

 
Here and below we write m  = M/2, 1 = +A Am m δ , 1

Bm m δ= + B , and assume that  
δA, δB

 << m .  To second order in the δ’s, with  ,≡ +T Aδ δ δ B

 
( ) ( )

( ) ( ) ( )
1

2

/ / 2

1 1 / 1 / 2 / 2
2

≡ = + +

  = + − +    

A A A T

A T T

r m M m m

m m

δ δ

δ δ δ ,m
 

 

( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ){ }
22

2 22

1 1 / / 2 / 2 / 2 ,
2
1 1 1/ 2 1/ 4 ,
2

 = + − − + 

 = + − − −  

A A T A T T

A B A B

r m m m

m m

δ δ δ δ δ

δ δ δ δ


m

 (15) 

 
and to second order in 1/Ns 
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1 .
2

=Ar   (16) 

 
Further, again to second order, 
 

( ) ( ) ( ) ( ) ( ) ( )2 2 2 22 21 1 2
4
  = + − − −    

A A B A Br mδ δ δ δ 4 ,m

)

 (17) 

 
so that, to leading order in 1/Ns 
 

( )2
1 2 / 4.=A

sm Nσ   (18) 
 
Turning to  we see that (2

2 2
Amσ

 
( ) ( )

( ) ( )
2 2 2
2 2

222 ,

=

= −  

A A
s

A A
s

m N r

N r r

σ σ

   (19) 

 

( ) ( ) ( )2 2 2 2
2 2 116 2 2 . = − 

A A
sm N m mσ σ A Bδ δ   (20) 

 
 To evaluate A Bδ δ  we proceed as follows.  Rewrite 
 

1 2 1 1 ,δ = − = − + −A A A A Am m n n n m  
 

2 1 1 ,= − + −B B B Bn n n mδ  
 

noting that ( )1 2 1=A An n nA , ( )1 2 1=B B Bn n n .  Intuitively it seems clear that 

 

( )( ) ( )( ), , ,
2 1 2 1 2 1 1

0,

A A B B A B A B B An n n n n n n m− − = − −

=
 

 
since, for example, fluctuations in  about n  are due to scattering-roulette in core A, a process 
independent of all others in the system.  Thus 

2
An 1

A

 

( )( ) ( )2
1 1

/ 4.

= − − = −

= −

A B A B A

s

n m n m n

N

δ δ σ 1  
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We see that 
 

( ) ( )2 2
2 1

1 12 /
4 2
 = + +  

A A
s sm m Nσ σ 4N  

 

( ) ( )2
2 1

1 1 12 2 1 /
4 2 2
  = − + + +    

A
s a sm N p p N Nσ 4,s

s

)

 

 
( ) ( )( )2

2 / 2 1 / 2.= − +A
s am N p Nσ   (21) 

 
 Thus in this case, the random source-resampling tends to cut in half the variance due to 
the scattering-roulette process.  Still if pa << 1 the “excess” variance introduced by this process 
is about equal to the variance introduced by random source-resampling. 
 

In Eq. (21) the quantity  is the variance of the fission source constructed in the 
course of the first generation.  As in Appendix A one can easily generalize this expression to one 
which gives the variance, , in the j’th generation, and one finds that  

2
2( Amσ

2
jσ

 
2 ( / 2)[ (1 ) ( 1) / 2].= − + +j s aN j p jσ   (22) 

 
On comparing Eq. (22) with Eq. (16) of Appendix A, we see that the variance induced by the use 
of collision sites is equal to (Ns/2) (1-pa).  From Eq. (8) of this appendix we find that the 
corresponding variance just before invoking random source-resampling is equal to Ns(1-pa).  
Apparently the random source-resampling smears over both cores the variance due to the use of 
collision sites, cutting this variance in half.  It seems likely  that, if random source-resampling is 
replaced by a more innocuous population control process, the variance due directly to population 
control will decrease, but that due to scattering-roulette will increase, tending towards the value 
Ns(1-pa). 
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Appendix C 
 

Theory of Variances in Averages Over Generations 
 

In Appendices A and B we computed variances in numbers of starters, in a given region, 
for each generation.  These variances do not tell us directly what will be the variance in the 
average-over-generations of these numbers.  To compute such variances one must take into 
account the correlations between fluctuations in different generations.  We consider such 
correlations in the same test problems as treated in the earlier Appendices.  Here we use the ideas 
of Ref. 2, and make only a slight change in the Ref. 2 notation; it will be convenient to rewrite 
Eq. (11) of Ref. 2 in the form 
 

( 1) ( ) ( ) ( 1)/+ = +n n nH kψ ψ ε ,+n   (1) 
 
where ( 1)+nε  is the statistical error in the MC computation of ( 1)+nψ  given ( )nψ .   We note that 
here, and in Appendix D, the approach is general, not depending on the details of the Monte 
Carlo method.  From Eq. (1), retaining only linear terms in the δ’s, we see that, again from Ref. 
2, 
 

( 1) ( ) ( 1) , 0,1, ..., ,+ += + =n n nA nδ δ ε N   (2) 
 

( ) ( )≡oε δ o , where ( )oδ  is the error in the source guess and N is the number of generations. 
 
From (2) 
 

( ) ( )

0
.−

=

=∑
n

n n m

m
Aδ mε   (3) 

 
In the present test problems there are only 2 unknowns, i.e., the integrated sources in 

regions 1 and 2.  If the system is critical and the cores are decoupled, then H=I, and 
1 1 1 11 1 ,
1 1 1 12 2
    

= =    
    

)
T

T
oU τ   (4) 

so that 
1 11 .
1 12

−
= − 

A

   (5) 

 
We then have An = A for n>0, so that 
 

1
( ) ( ) ( )

0
.

−

=

= +∑
n

n m

m
Aδ ε nε  (6) 
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From (6) 
 

{ } { }12( ) ( ) 2 ( ) 2 ( ) 2 2[ ]
−

=

   = + =   ∑
n Tn m m n

m o
E E A nδ ε ε σ ε ,+γ σ  

 
where 

{ } { }22 ( ) 2 ( ) 2 (σ ε γ ε ε   ≡ ≡   
Tn mE and E A )m . 

 
Thus if in the recursion relation for the δ’s we retain only linear terms, then the variance 

in the n’th generation fission source will increase linearly in n, a result which is now independent 
of the details of the Monte Carlo method. 
 

If ( ) ( )

1

1
=

≡ ∑
N

N m
AV

mN
δ δ , then 

 
( ) ( ) ( )

1

1 .−

=

 =   
∑

N
N N m

AV
m

mA
N

δ ε + 
mε   (7) 

 
From Eq. (7) it is easy to show that 
 

{ } 22( )

3
  → 

N
AVE N asγδ → ∞N   (8) 

 
since 

 2 3

1

1
3=

→∑
N

m
m N  

 
Thus not only the variances in the fission sources of individual generations, but also the variance 
in the average-over-generations goes to infinity as the number of generations goes to infinity. 
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Appendix D 
 

Theory of Coupling and Source Distribution Fluctuations 
 
 Finally in this Appendix we consider the effect of point-to-point coupling in the two-
point model of Appendix C.  Whereas, for small fluctuations, the arguments of the earlier 
Appendices are exact for the given one-group problem, this is no longer true here.  First, as soon 
as the cores are coupled the fission source shapes are relevant and the eigenvalue equation is no 
longer a 2 x 2 matrix equation.  Secondly, if each of the two slabs is infinite the probability that 
an average neutron will be transferred from one to the other is vanishingly small.  Still for us the 
2 x 2 matrix model still retains some interest for at least one reason.  We think it interesting to 
ask whether, in this simple model, any threshold coupling level is required if the variance in 
source shape is to remain finite.  Suppose that, in this model, 
 

1 ,
.

, 1
− 

=  − 

a a
H

a a 
 (1) 

 
Now 
 

( )
1 1, 1, 11 22 2 ,

1 1 1, 12,
2 2

 − −  −−  
= =  −  − − 
 

a a a
A

a a



 (2) 

 
1, 11, , (1 2
1, 12

− 
= ≡ ≡ − − 

% %n nA c A A c a n), 0.>   (3) 

 
Arguing as in Appendix C one finds that, in place of Eq. (7) of this earlier Appendix, we now 
have 
 

( ) ( )( )

1

1 ,−

=

 =   
∑ %

N
N m mn

AV m
m

S A
N

δ ε + ε   (4) 

 

where  1

1
(1 ) .−

=

= < −∑ l

l

m

mS c c

 
From (4) it will be seen that for large N, 

2 ( ) 2 2
2

1 (1 ) ,   → ≤ −   
N

AV  N c
N

σ δ γL   (5) 

 
with γ2 defined as in Appendix C. Clearly, then, within the limits of our approximations 
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2 ( ) 0  → → 
N

AV as Nσ δ .∞   (6) 
 

 Unfortunately, our argument does not tell us what happens for any finite number of 
histories per generation. 
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