
The Failure of TCP in High-Performance Computational Grids
�

W. Feng
���

and P. Tinnakornsrisuphap
�

feng@lanl.gov, tinnakor@cae.wisc.edu
�

Research & Development in Advanced Network Technology (RADIANT)
P.O. Box 1663, M.S. B255

Los Alamos National Laboratory
Los Alamos, NM 87545

�
Department of Computer & Information Science

Ohio State University
2015 Neil Avenue

Columbus, OH 43210
�

Department of Electrical & Computer Engineering
University of Wisconsin-Madison

1415 Engineering Drive
Madison, WI 53706

Abstract

Distributed computational grids depend on TCP to en-
sure reliable end-to-end communication between nodes
across the wide-area network (WAN). Unfortunately, TCP
performance can be abysmal even when buffers on the
end hosts are manually optimized. Recent studies blame
the self-similar nature of aggregate network traffic for
TCP’s poor performance because such traffic is not read-
ily amenable to statistical multiplexing in the Internet, and
hence computational grids.

In this paper, we identify a source of self-similarity previ-
ously ignored, a source that is readily controllable — TCP.
Via an experimental study, we examine the effects of the
TCP stack on network traffic using different implementa-
tions of TCP. We show that even when aggregate applica-
tion traffic ought to smooth out as more applications’ traffic
are multiplexed, TCP induces burstiness into the aggregate
traffic load, thus adversely impacting network performance.
Furthermore, our results indicate that TCP performance
will worsen as WAN speeds continue to increase.

Keywords: network traffic characterization, self-similarity,

�
This work was supported by the U.S. Dept. of Energy through Los

Alamos National Laboratory contract W-7405-ENG-36. This paper is LA-
UR 00-3765.

TCP, computational grid, distributed computing

1 Introduction

Distributed computational grids, managed by middle-
ware such as Globus [4] and Legion [5], require support
for the fluctuating and heterogeneous demands of individ-
ual users. The ability to characterize the behavior of the
resulting aggregate network traffic can provide insight into
how traffic should be scheduled to make efficient use of the
network in a computational grid.

Several studies conclude that aggregate network traffic
is self-similar (or fractal) [7, 12], and thus not amenable
to the statistical-multiplexing techniques currently found
on the Internet. Additional studies claim that the heavy-
tailed distributions of file size, packet interarrival, and trans-
fer duration fundamentally contribute to the self-similar na-
ture of aggregate network traffic [10, 11, 16]. While these
heavy-tailed distributions may contribute to self-similarity,
we will illustrate that TCP itself is the primary source of
self-similarity and that this behavior may have dire con-
sequences in computational grids as WAN speeds increase
into the gigabit-per-second (Gb/s) range. In particular, we
show that even when application traffic is rigged to produce
a Hurst parameter � of 0.5, TCP adversely modulates this

Proceedings of Supercomputing Conference 2000 (SC ’00).

application traffic and produces ��� ��� �
(i.e., self-similar

traffic). While we focus on the TCP-induced self-similarity
of TCP Reno and TCP Vegas, concurrent research by Veres
et al. [14, 15] proves that TCP Tahoe is also a source of self-
similarity but does so through an examination of congestion
windows (���
	��) and their attractors.

2 Background

TCP is a connection-oriented service which guarantees
the reliable, in-order delivery of a stream of bytes, hence
freeing the application from having to worry about miss-
ing or reordered data. It includes a flow-control mechanism
which ensures that a sender does not overrun the buffer ca-
pacity of the receiver and a congestion-control mechanism
which tries to prevent too much data from being injected
into the network, thereby causing packet loss within the net-
work. While the size of the flow-control window is static,
the size of the congestion window evolves over time, ac-
cording to the status of the network.

2.1 TCP Congestion Control

Currently, the most widely-used TCP implementation is
TCP Reno [6]. Its congestion-control mechanism consists
of two phases: (1) slow start and (2) congestion avoidance.
In the slow-start phase, the congestion window grows expo-
nentially (i.e., doubles every time the sender successfully
transmits a congestion-window’s worth of packets across
the network) until a timeout occurs, which implies that a
packet has been lost. At this point, a ���������������� value is
set to the halved window size; TCP Reno resets the conges-
tion window size to one and re-enters the slow-start phase,
increasing the congestion window exponentially up to the
���������������� . When the threshold is reached, TCP Reno then
enters its congestion-avoidance phase in which the conges-
tion window is increased by “one packet” every time the
sender successfully transmits a congestion-window’s worth
of packets across the network. When a packet is lost during
the congestion-avoidance phase, TCP Reno takes the same
actions as when a packet is lost during slow start.

TCP Reno now also implements fast-retransmit and
fast-recovery mechanisms for both the slow-start and
congestion-avoidance phases. Rather than timing out while
waiting for the acknowledgement (ACK) of a lost packet,
if the sender receives three duplicate ACKs (indicating that
some packet was lost but later packets were received), the
sender immediately retransmits the lost packet (fast retrans-
mit). Because later packets were received, the network
congestion is assumed to be less severe than if all packets
were lost, and the sender only halves its congestion window
and re-enters the congestion-avoidance phase (fast recov-
ery) without going through the slow-start phase again.

TCP Vegas [1] introduces a new congestion-control
mechanism that tries to prevent rather than react to conges-
tion. When the congestion window increases in size, the
expected sending rate (���) increases as well. But if the
actual sending rate (��) stays roughly the same, this im-
plies that there is not enough bandwidth available to send
at ��� , and thus, any increase in the size of the congestion
window will result in packets filling up the buffer space at
the bottleneck gateway. TCP Vegas attempts to detect this
phenomenon and avoid congestion at the bottleneck gate-
way by adjusting the congestion-window size, and hence
��� , as necessary to adapt to the available bandwidth.

To adjust the window size appropriately, TCP Vegas de-
fines two threshold values, ! and " , for the congestion-
avoidance phase, and a third threshold value, # , for the
transition between the slow-start and congestion-avoidance
phases. Conceptually, !$� �

implies that TCP Vegas tries
to keep at least one packet from each stream queued in gate-
way while "%�$& keeps at most three packets.

If Diff = ER - AR, then when Diff '(! , Vegas increases
the congestion window linearly during the next RTT; when
Diff)*" , Vegas decreases the window linearly during the
next RTT; otherwise, the congestion window remains un-
changed. The # parameter can be viewed as the “initial” "
when TCP Vegas enters its congestion-avoidance phase.

To further enhance TCP performance, Floyd et al. pro-
posed the use of random early detection (RED) gateways [3]
to detect incipient congestion. RED gateways maintain
a weighted average of the queue length. As long as the
average queue length stays below the minimum threshold
(+-,.	0/�1), all packets are queued. When the average queue
length exceeds +-,2	�/�1 , packets are dropped with probability3

. And when the average queue length exceeds a maximum
threshold (+-465�/�1), all arriving packets are dropped.

2.2 Probability and Statistics

The Central Limit Theorem states that the sum of a large
number of finite-mean, finite-variance, independent vari-
ables (e.g., Poisson) approaches a Gaussian random vari-
able with less variability (i.e., less “spread” or burstiness)
than the original distribution(s). So, if each random variable
represented traffic generated by a particular communication
stream, then the sum of a large number of these streams rep-
resents aggregate network traffic with less variability, and
thus less variation or spread in the required bandwidth, i.e,
network traffic is less bursty or more smooth. Such aggre-
gate traffic behavior enables statistical-multiplexing tech-
niques to be effective over the Internet. Unfortunately, even
if application-generated traffic streams have finite means
and variances and are independent, TCP can modulate these
streams in such a way that they are no longer independent,
leading to aggregate network traffic with wildly oscillating

and unpredictable bandwidth demands [13].
To measure the burstiness of aggregate TCP traffic, we

use the coefficient of variation (� � � � � �) [2, 13] — the ra-
tio of the standard deviation to the mean of the observed
number of packets arriving at a gateway in each round-trip
propagation delay. The � � � � � � gives a normalized value for
the “spread” of a distribution and allows for the compari-
son of “spreads” over a varying number of communication
streams. If the � � � � ��� is small, the amount of traffic com-
ing into the gateway in each RTT will concentrate mostly
around the mean, and therefore will yield better perfor-
mance via statistical multiplexing. For purposes of compar-
ison, we also use the Hurst parameter, � , from self-similar
modeling [7, 10, 11, 12, 16]. While � may be better at
determining long-term buffer requirements (i.e., large time
granularities), it does not provide insight into how well sta-
tistical multiplexing performs, i.e., at small time granulari-
ties such as a round-trip time (RTT).

3 Experimental Study

To understand the dynamics of TCP, we use ns [9] to
model the portion of the Energy Sciences network (ESnet)
that is specific to our computational grid — namely the net-
work between Los Alamos National Laboratory (LANL)
and Sandia National Laboratory (SNL). We then syntheti-
cally generate application-generated traffic to better under-
stand how TCP modulates input traffic. Understanding how
TCP modulates traffic can have a profound impact on the
� � � � � � and � parameters, and hence, the throughput and
packet loss percentage of network traffic.

3.1 Network Topology

Figures 1 and 2 show the current ESnet backbone and
an abstraction of the ESnet backbone, respectively. We as-
sume that there are up to

�
hosts in the local-area networks

(LANs) of both LANL and SNL sending traffic back and
forth. The traffic generated from an Ethernet-attached host
, in LANL’s LAN goes through an Ethernet/FDDI interface
to a FDDI/ATM Cisco 7507 router to a Fore ASX-200BX
ATM switch in Albuquerque (ABQ POP) to a Cisco 7507
router to host , at SNL and vice versa. While the traffic
generated between LANL and SNL alone cannot cause any
congestion at the ABQ POP’s WAN ATM switch, data from
the “Internet Cloud” is significant enough to interfere with
traffic from both sites.

The Cisco 7507 routers have buffers large enough (48
MB) to handle incoming and outgoing traffic. The ABQ
POP’s Fore ASX-200BX switch can only buffer 64K ATM
cells per port or about 3 MB per port.

Figure 3 shows an abstraction of the proposed topol-
ogy for the future ESnet backbone. The ABQ POP ATM

switch remains a Fore ASX-200BX, but the interface speed
changes to OC-12 (622 Mb/s). The routers on either side of
the ATM switch upgrade to Cisco 7512 routers which have
33% more buffer space than the 7507s. Lastly, both LAN
architectures are replaced by Gigabit Ethernet (1000 Mb/s).
In short, all the link bandwidths scale up, but the ABQ POP
ATM switch remains essentially the same.

3.2 Traffic Characterization

The � � � � ��� provides a quantitative measure of how traffic
smoothes out when a large number of finite-mean, finite-
variance, independent streams are aggregated (via the Cen-
tral Limit Theorem). To characterize the TCP modula-
tion of traffic, we first generate application traffic accord-
ing to a known distribution, e.g., Poisson. We then com-
pare the � � � � ��� of this distribution (i.e., theoretical � � � � ���) to
the � � � � � � of the traffic transmitted by TCP (i.e., measured
� � � � � �). This allows us to determine whether TCP modulates
the traffic, and if so, how it affects the shape (burstiness) of
the traffic, and hence the performance of the network.

For instance, when � independent Poisson sources each
generate packets at a rate of � with round-trip time delay of� , the � � � � ��� of the aggregated sources is

c.o.v.(Poisson, �) �
�

�
��� � (1)

Hence, this theoretical � � � � � � of Poisson traffic decreases as
a function of

��� � � , implying that traffic should become
smoother as � increases (or as more sources are aggre-
gated).

The self-similar model is also used to characterize net-
work traffic. In this model, the Hurst parameter � theo-
retically lies between 0.5 and 1.0. When � � ��� �

, the
aggregate traffic is self-similar and exhibits long-range de-
pendence. Because we generate application traffic for each
client identically according to a known distribution, i.e.,
Poisson, with a finite mean and variance, the Hurst parame-
ter � from self-similar modeling should be 0.5 if TCP does
not adversely modulate the application traffic. However, as
we will show later in this section, TCP modulates the traffic
to have self-similar characteristics, particularly TCP Reno.

3.3 Experimental Set-Up

Tables 1 and 2 show the network parameters for the cur-
rent and proposed ESnet topologies, respectively. The val-
ues for network delay are derived from traceroute infor-
mation between LANL and SNL. Network-hardware values
such as buffer size are derived from vendor specifications.
Tables 3 and 4 contain appropriately scaled traffic-source
parameters for the current and proposed ESnet, respectively.

Figure 1. Network Topology of the Energy Sciences Network (ESNet)

ROUTER
155 Mb/s

ATM Switch

ABQ POP 155 Mb/s
ROUTER

1

2

M

1

2

M

155 Mb/s

LANL SNL

Ethernet: 100 Mb/s

FDDI

100 Mb/s

The rest of
the ATM cloud

Figure 2. Abstraction of the Current ESnet Architecture.

ROUTER
622 Mb/s

ATM Switch

ABQ POP
ROUTER

LANL

1

2

M

SNL

1

2

M

Gigabit Ethernet
1000 Mb/s = 1 Gb/s

Gigabit Ethernet
1000 Mb/s = 1 Gb/s

622 Mb/s

622 Mb/s

the ATM cloud
The rest of

Los Alamos, NM Albuquerque, NM

Figure 3. Abstraction of the Proposed ESnet Architecture.

Each LANL client generates Poisson traffic, i.e., single
packets are submitted to the TCP stack with exponentially
distributed interpacket arrival times with mean

��� � . We
vary the total traffic load offered by varying the number of
clients

�
and test two different implementations of TCP

(Reno and Vegas) and two different queueing disciplines
in the routers (FIFO and RED). The cross traffic produced
by the rest of the “ATM Cloud” is modeled after a Poisson
session arrival with Pareto service time for each session.
For each session, a new TCP is randomly created to either
LANL or SNL. This traffic can be characterized by the ar-
rival rate, mean file size, and Pareto shape parameter.

To see how TCP modulates traffic, we calculate the theo-
retical � � � � ��� of the aggregate traffic generated by the LANL
clients (based on the Poisson distribution each client uses to
generate its traffic) and compare it to the measured � � � � � � of
the aggregate TCP-modulated traffic at the routers.

For example, using the experimental parameters from
Table 1, the theoretical � � � � ��� of Poisson traffic is 0.659
when � ��� and drops all the way down to 0.120 when
� ��� � . However, in Sections 4 and 5, we will find that the
measured � � � � � � (after TCP modulation) can be upwards of
300% larger than the theoretical � � � � � � !

4 Results: Current ESnet Topology

When the amount of traffic being generated is larger
than the available bandwidth, i.e., from Table 3, ��� ���	��

���� ��� � � � & ��� � � � ��� ����� � & � hosts, TCP congestion-
control kicks in and modulates the traffic to be more bursty
than expected, i.e., the measured � � � � � � is significantly
larger than the theoretical � � � � ��� from Eq. 1, as shown in
Figure 4. In particular, with the theoretical � � � � ��� reaching

a low of 0.120 when � ��� � , the measured � � � � ��� for TCP
Reno is generally 300% higher than the theoretical � � � � ���
while the measured � � � � ��� for TCP Vegas is never more than
40% higher (and in most cases is less than 10% higher).

TCP Reno begins to induce burstiness when as few as
eight clients are aggregated. By 20 clients, the induced
burstiness becomes so significant that it adversely impacts
both throughput and packet-loss rates, as shown in Figures 5
and 6. (These results are in stark contrast to our results
in a more commodity 10-Mb/s switched Ethernet environ-
ment [13].) The enhanced burstiness that we see here results
from a combination of (1) the fluctuation of the congestion-
window sizes, particularly in TCP Reno [13], and (2) the
magnification of TCP’s inability to adapt appropriately to
short-lived congestion over high bandwidth-delay links.

Figure 5 shows the number of packets transmitted
through both routers. The throughput becomes saturated
around 30 clients or when the link capacity minus the av-
erage throughput of outside sources equals the traffic gen-
erated by the sources. TCP Vegas obviously does a better
job at utilizing the link as the number of packets transmitted
is higher than in TCP Reno. This substantiates the findings
in [8].

Figure 6 shows that TCP Vegas does not lose any pack-
ets, i.e., packet-loss rate = 0, because its ! and " param-
eters effectively avoid congestion. In contrast, TCP Reno
loses a measurable 0.26% of packets when the network is
not even congested at less than 20 clients. The 0.26% loss
rate corroborates the loss-rate numbers reported by ESnet;
while such a number is oftentimes dismissed, it should not
be because when a packet is dropped before it reaches its
destination, all the resources that it has consumed in tran-
sit are wasted. Over a 155 Mb/s link, a loss rate of 0.26%

Parameter Value

LANL network speed 100 Mb/s
LANL network delay 0.3385 ms
LANL FDDI to ATM interface delay 0.3315 ms
LANL to ABQ POP speed 155 Mb/s
LANL to ABQ POP delay 1.21 ms
LANL router buffer size 33554 packets

SNL network speed 100 Mb/s
SNL network delay 0.287 ms
SNL to ABQ POP speed 155 Mb/s
SNL to ABQ POP delay 0.13 ms
SNL router buffer size 33554 packets

ABQ POP ATM buffer (per port) 2315 packets
Outside traffic link speed 155 Mb/s
Outside traffic link delay 10 ms
TCP max advertised window 10000 packets
Packet size 1500 bytes
Round-trip propagation delay 4.6 ms
Total test time 200 s

TCP Vegas/ !�� "�� # 1, 3, 1

RED gateway/ +-,.	 /�1 6711 packets
RED gateway/ + 465 /�1 26843 packets

Table 1. Network Parameters for Current ES-
net.

Parameter Value

LANL network speed 1000 Mb/s
LANL network delay 0.67 ms
LANL to ABQ POP speed 622 Mb/s
LANL to ABQ POP delay 1.21 ms
LANL router buffer size 44739 packets

SNL network speed 1000 Mb/s
SNL network delay 0.287 ms
SNL to ABQ POP speed 622 Mb/s
SNL to ABQ POP delay 0.13 ms
SNL router buffer size 44739 packets

ABQ POP ATM buffer (per port) 2315 packets
Outside traffic link speed 622 Mb/s
Outside traffic link delay 10 ms
TCP max advertised window 100000 packets
Packet size 1500 bytes
Round-trip propagation delay 4.6 ms
Total test time 200 s

TCP Vegas/ !�� "�� # 1, 3, 1

RED gateway/ +-,2	 /�1 8948 packets
RED gateway/ + 4 5�/�1 35791 packets

Table 2. Network Parameters for Proposed
ESnet.

Parameters Value

Maximum # of clients 60
Poisson mean packet intergeneration (

� � �) 4 ms
Average traffic rate 3 Mb/s

ON/OFF mean burst period 3 ms
ON/OFF mean idle period 97 ms
ON/OFF Pareto shape 1.5
ON traffic rate 100 Mb/s
Average traffic rate 3 Mb/s

Outside-source mean time between session 0.25 s
Outside-source mean file size per session 2 MB
Outside-source average traffic rate 64 Mb/s

Table 3. Traffic-Source Parameters for Current
ESnet.

Parameters Value

Maximum # of clients 60
Poisson mean packet intergeneration (

��� �) 0.8 ms
Average traffic rate 15 Mb/s

ON/OFF mean burst period 1.5 ms
ON/OFF mean idle period 98.5 ms
ON/OFF Pareto shape 1.5
ON traffic rate 1000 Mb/s
Average traffic rate 15 Mb/s

Outside-source mean time between session 0.25 s
Outside-source mean file size per session 2 MB
Outside-source average traffic rate 64 Mb/s

Table 4. Traffic-Source Parameters for Pro-
posed ESnet.

translates to 403 Kb of information being lost per second.
Furthermore, this situation gets worse as the WAN scales up
in speed (see Section 5 for details).

Figures 5 and 6 also show that the presence of a RED
gateway at both the LANL and SNL routers does not cause
much change in the � � � � � � or the overall network perfor-
mance because the bottleneck of the network is at the ABQ
POP, not at the routers. In addition, because the buffer size
in the ATM switch at the ABQ POP is small compared to
both routers (which have buffers that are several orders of
magnitude higher than the bandwidth-delay product), the
buffers occupied in the routers are almost always smaller
than the RED + ,.	 /�1 , resulting in very little difference in
network performance or the � � � � � � of aggregate traffic.

Figure 7 shows the Hurst parameter � as a function of
traffic load. If � � ��� �

, the traffic streams are independent
of one another; while at � � ��� �

, the traffic streams exhibit
self-similarity (burstiness), or more precisely, long-range
dependence. So, when � independent Poisson sources are
mathematically aggregated together, the Hurst parameter �
is 0.5. If TCP does not adversely modulate our application-
generated traffic of independent Poisson sources, � should
remain at 0.5 across all offered traffic loads.

However, as Figure 7 shows, TCP Reno dramatically in-
duces burstiness and long-range dependence into the traffic
streams as its � value quickly reaches 1.0 when only twelve
clients have been aggregated together over an uncongested
network. Meanwhile, TCP Vegas does a much better job
at not adversely modulating the traffic. Unfortunately, TCP
Reno (not Vegas) is currently the most popular and virtually
ubiquitous implementation of TCP out in the world today.

5 Results: Proposed ESnet Topology

As in the previous section, when the amount of traf-
fic being generated is larger than the available bandwidth,
i.e., � � ��� �
 � ��� � ��� �-� & �

hosts, in the proposed ESnet,
TCP congestion-control really kicks in and adversely mod-
ulates the application traffic. However, over this proposed
ESnet, the adverse modulation by TCP is even more pro-
nounced than in the current ESnet, i.e., the measured � � � � � �
is enormously larger than the theoretical � � � � ��� from Eq. 1,
as shown in Figure 8. In this particular case, the theoretical
� � � � � � reaches a low of 0.054 when � � � � while the mea-
sured � � � � ��� for TCP Reno and TCP Vegas are upwards of
642% and 457% higher than theoretical � � � � ��� ! These num-
bers indicate that TCP performance may worsen as WAN
speeds continue to increase; further evidence of this is pro-
vided below.

TCP Reno starts to induce burstiness when as few as
eight clients are aggregated. By 34 clients, the induced
burstiness becomes so significant that it adversely impacts
both throughput and packet-loss rates, as shown in Figures 9

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Clients

C
.O

.V
.

Current ESnet Topology; Poisson Sources; At LANL Router

Reno
Reno/RED
Vegas
Vegas/RED

Figure 4. C.O.V. of Traffic at LANL Router.

10 15 20 25 30 35 40 45 50 55 60
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5
x 10

6

Number of Clients

N
um

be
r

of
 P

ac
ke

ts
 S

uc
ce

ss
fu

lly
 T

ra
ns

m
itt

ed

Current ESnet Topology, Total Packets by LANL and SNL Poisson Sources

Reno
Reno/RED
Vegas
Vegas/RED

Figure 5. Number of Packets Transmitted
Through LANL and SNL Routers.

0 10 20 30 40 50 60
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of Clients

P
ac

ke
t L

os
t P

er
ce

nt
ag

e
(%

)

Current ESnet Topology; Poisson Sources; Packet−Loss Percentage of LANL and SNL Sources

Reno
Reno/RED
Vegas
Vegas/RED

Figure 6. Packet-Loss Percentage for LANL
and SNL Sources.

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Number of Clients

E
st

im
at

ed
 H

ur
st

 P
ar

am
et

er

Current ESnet; Estimated Hurst Parameter of Traffic at LANL Router

Reno
Reno/RED
Vegas
Vegas/RED

Figure 7. Hurst Parameter at LANL Router.

and 10.
In contrast to Figure 5 where TCP Vegas shows bet-

ter throughput than TCP Reno, Figure 9 shows that the
throughput of TCP Reno is slightly better than TCP Vegas.
However, a detailed look at a snapshot of the congestion-
window evolution (Figures 11- 14) indicates that the reason
why the throughput of TCP Reno is better than TCP Ve-
gas may be due to the many packet retransmissions by TCP
Reno. Consequently, TCP Vegas’s goodput is likely to be
better than TCP Reno’s.

Figures 11 and 13 show that TCP Reno increases its con-
gestion window to an extraordinarily high value ()) �������

)
during slow start even though the optimal value is less than
100 packets. Why does this happen? Because there is no
mechanism other than packet loss to inform TCP Reno of
the appropriate value for the congestion window. With the
large bursts that TCP Reno allows with the O(1000 packet)
congestion window, the network becomes severely con-
gested and must back off twice in Figure 13 without trans-
mitting anything for more than two seconds. This suggests
that the slow-start mechanism of TCP Reno does not adapt
quickly enough when the bandwidth-delay product is very
large.

Returning to figure on packet-loss percentage (Fig-
ure 10), TCP Reno’s loss rate exceeds 5% when the net-
work is heavily congested while TCP Vegas once again pro-
duces no packet loss. Over a 622 Mb/s link a loss rate of
5% translates to a loss of over 31 Mb/s! This kind of loss
rate is clearly unacceptable for the multimedia applications
that must be supported in computational grids, e.g., remote
steering of visualization data and video-teleconferencing.

As in Section 4, Figures 9 and 10 also show that the pres-
ence of a RED gateway at both the LANL and SNL routers
does not cause much change in the � � � � � � or the overall net-

5 10 15 20 25 30 35 40 45 50 55 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Clients

C
.O

.V
.

Proposed ESnet Topology; Poisson Sources; At LANL Router

Reno
Reno/RED
Vegas
Vegas/RED

Figure 8. C.O.V. of Traffic at LANL Router.

0 10 20 30 40 50 60
0

2

4

6

8

10

12

14

16

18
x 10

6

Number of Clients

N
um

be
r

of
 P

ac
ke

ts
 S

uc
ce

ss
fu

lly
 T

ra
ns

m
itt

ed

Proposed ESnet Topology; Total Packets by LANL and SNL Poisson Sources

Reno
Reno/RED
Vegas
Vegas/RED

Figure 9. Number of Packets Transmitted
Through LANL and SNL Routers.

0 10 20 30 40 50 60
0

1

2

3

4

5

6

Number of Clients

P
ac

ke
t L

os
t P

er
ce

nt
ag

e
(%

)

Proposed ESnet Topology; Poisson Sources; Packet−Loss Percentage of LANL and SNL Sources

Reno
Reno/RED
Vegas
Vegas/RED

Figure 10. Packet-Loss Percentage for LANL
and SNL Sources.

0 1 2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

2500

3000

3500

4000

time (seconds)

C
on

ge
st

io
n

W
in

do
w

 S
iz

e
(p

ac
ke

ts
)

[Proposed ESnet; Poisson; 35 Clients; Reno]

Client 1
Client 15
Client 30

Figure 11. TCP Reno Congestion Window
(Clients = 35).

0 1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

time (seconds)

C
on

ge
st

io
n

W
in

do
w

 S
iz

e
(p

ac
ke

ts
)

[Proposed ESnet; Poisson; 35 Clients; Vegas]

Client 1
Client 15
Client 30

Figure 12. TCP Vegas Congestion Window
(Clients = 35).

0 1 2 3 4 5 6 7 8 9 10
0

200

400

600

800

1000

1200

1400

1600

1800

time (seconds)

C
on

ge
st

io
n

W
in

do
w

 S
iz

e
(p

ac
ke

ts
)

[Proposed ESet; Poisson; 60 Clients; Reno]

Client 1
Client 31
Client 60

Figure 13. TCP Reno Congestion Window
(Clients = 60).

0 1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

time (seconds)

C
on

ge
st

io
n

W
in

do
w

 S
iz

e
(p

ac
ke

ts
)

[Proposed ESnet; Poisson; 60 Clients; Vegas]

Client 1
Client 31
Client 60

Figure 14. TCP Vegas Congestion Window
(Clients = 60).

work performance because the bottleneck of the network is
at the ABQ POP, not at the routers. In addition, because
the buffer size in the ATM switch at the ABQ POP is small
compared to both routers (which have buffers that are sev-
eral orders of magnitude higher than the bandwidth-delay
product), the buffers occupied in the routers are almost al-
ways smaller than the RED + ,.	�/�1 , resulting in very little
difference in network performance or the � � � � ��� of aggre-
gate traffic.

6 Discussion

What are the implications of the above results for tomor-
row’s Next-Generation Internet and high-performance com-
putational grids? First, in contrast to the literature over the
past five years, we have shown that TCP itself is a primary
source of self-similarity, particularly TCP Reno. Due to the
burstiness that is induced by TCP Reno, the throughput and
packet-loss metrics are adversely affected, reducing overall
network performance.

Second, based on our results, Vegas [1] deserves serious
consideration as a high-performance TCP for both the In-
ternet as well as distributed computational grids. (However,
the weakness in this claim is that we did not test TCP Ve-
gas in a dynamically changing environment of short-lived
connections. That is, we did not model the arrival and de-
parture patterns of TCP connections.) For a somewhat op-
posing view, the authors direct the reader to [8] where Mo
et al. pit a TCP Reno connection against a TCP Vegas con-
nection with the input traffic originating from an infinite file
stream.

Third, the performance of TCP worsens as WAN speeds
are scaled up. Evidence of this was presented in Section 5.
In addition, there exists another case where TCP perfor-
mance will suffer as WAN speeds scale; a case that was
not specifically addressed in our experimental study. For
an intuitive understanding, one must think about the TCP
Reno congestion-control mechanism in the context of a
high bandwidth-delay product, e.g., 1 Gb/s WAN � 100 ms
round-trip time (RTT) = 100 Mb. For the sake of argument,
assume that the “optimal window size” for a particular con-
nection is 50 Mb. TCP Reno continually increases its win-
dow size until it induces packet loss (i.e., just above 50 Mb)
and then chops its window size in half (i.e., 25 Mb). Thus,
having all TCP connections use packet loss as a way to in-
cessantly probe network state can obviously induce bursti-
ness. Furthermore, re-convergence to the “optimal window
size” using TCP’s absolute linear increase takes much too
long and results in lowered network utilization. In this par-
ticular case, convergence can take as long as (50 Mb - 25
Mb) / (1500 B/RTT * 8 b/B) = 2,084 RTTs or (2,084 RTTs
* 100 ms/RTT) = 208.4 seconds = 3.472 minutes.

7 Conclusion

The ability to characterize the behavior of aggregate net-
work traffic can provide insight into how traffic should be
scheduled to make efficient use of the network, and yet still
deliver expected quality-of-service to end users. These is-
sues are of fundamental importance in widely-distributed,
high-speed computational grids.

Our experimental study illustrates that the congestion-
control mechanisms of TCP Reno and TCP Vegas modulate
the traffic generated by the application layer. TCP Reno,
in particular, adversely modulates the traffic to be signifi-
cantly more bursty, which subsequently affects the perfor-
mance of statistical multiplexing in the gateway. This mod-
ulation occurs for a number of reasons: (1) the rapid fluctu-
ation of the congestion-window sizes caused by the contin-
ual “additive increase / multiplicative decrease (or re-start
slow start)” probing of the network state and (2) the depen-
dency between the congestion-control decisions made by
multiple TCP streams, i.e., TCP streams tend to recognize
congestion in the network at the same time and thus halve
their congestion windows at the same time (see Figures 11
and 13, for example).

Furthermore, over the proposed ESnet topology, we
were able to magnify TCP’s inability (particularly Reno)
to adapt appropriately to congestion over high bandwidth-
delay links. Thus, the work presented here concludes that if
we continue on the path that we are on — using TCP Reno
as the networking substrate for high-performance computa-
tional grids — overall network performance will suffer. In
particular, TCP Reno’s congestion-control mechanism in-
duces burstiness and dependency between streams which
ultimately limit the effectiveness of statistical multiplexing
in routers. In addition, TCP Reno’s “packet-loss induced”
probing of network state does not allow a TCP connection
to maintain its optimal window size.

Finally, this work also opens up future research opportu-
nities in the profiling of application-generated network traf-
fic. Why is such profiling important? Because the traffic
distribution that sources generate will likely have an im-
pact on the performance of the congestion-control proto-
col (even though the average aggregated traffic rate is the
same). While the research community currently under-
stands what network traffic looks like on the wire, there
is little understanding on what the traffic looks like when
it enters the TCP protocol. Oftentimes, researchers sim-
ply use an infinite-sized file as input into TCP. Why is this
bad? Because it is analogous to pumping an infinitely long,
memory-reference pattern into a cache-coherency protocol
in order to test the effectiveness of the protocol. Rather
than do that, researchers in computer architecture profiled
memory-reference patterns in real parallel programs and
used these profiles as input into their cache-coherency pro-

tocols. Likewise, we, the network research community,
ought to start doing the same.

References

[1] L. Brakmo and L. Peterson. TCP Vegas: End to End Congestion
Avoidance on a Global Internet. IEEE Journal of Selected Areas in
Communications, 13(8):1465–1480, October 1995.

[2] W. Feng and P. Tinnakornsrisuphap. The Adverse Impact of the TCP
Congestion-Control Mechanism in Heterogeneous Computing Sys-
tems. In Proceedings of the International Conference on Parallel
Processing (ICPP’00), August 2000.

[3] S. Floyd and V. Jacobson. Random Early Detection Gateways for
Congestion Avoidance. IEEE/ACM Transactions on Networking,
1(4):397–413, August 1993.

[4] I. Foster and C. Kesselman. The Grid: Blueprint for a New Comput-
ing Infrastructure. Morgan-Kaufman Publishing, 1999.

[5] A. Grimshaw, W. Wulf, and the Legion team. The Legion Vision
of a Worldwide Virtual Computer. Communications of the ACM,
40(1):39–45, January 1997.

[6] V. Jacobson. Congestion Avoidance and Control. In Proceedings of
the SIGCOMM’88 Symposium, pages 314–332, August 1988.

[7] W. Leland, M. Taqqu, W. Willinger, and D. Wilson. On the Self-
Similar Nature of Ethernet Traffic (Extended Version). IEEE/ACM
Transaction on Networking, 2(1):1–15, Feburary 1994.

[8] J. Mo, R. J. La, V. Anantharam, and J. Walrand. Analysis and Com-
parison of TCP Reno and Vegas. In Proceedings of INFOCOM’99,
March 1999.

[9] ns. Network Simulator. http://www-mash.cs.berkeley.edu/ns.

[10] K. Park, G. Kim, and M. Crovella. On the Relationship Between File
Sizes, Transport Protocols, and Self-Similar Network Traffic. In Pro-
ceedings of the 4th International Conference on Network Protocols,
October 1996.

[11] K. Park, G. Kim, and M.Crovella. On the Effect of Traffic Self-
Similarty on Network Performance. In Proceedings of the SPIE In-
ternational Conference on Performance and Control of Network Sys-
tems, 1997.

[12] V. Paxson and S. Floyd. Wide-Area Traffic: The Failure of Poisson
Modeling. IEEE/ACM Transaction on Networking, 3(3):226–244,
June 1995.

[13] P. Tinnakornsrisuphap, W. Feng, and I. Philp. On the Burstiness
of the TCP Congestion-Control Mechanism in a Distributed Com-
puting System. In Proceedings of the International Conference on
Distributed Computing Systems (ICDCS’00), April 2000.

[14] A. Veres and M. Boda. The chaotic nature of tcp congestion control.
In Proceedings of INFOCOM 2000, March 2000.

[15] A. Veres, Zs. Kenesi, S. Molnar, and G. Vattay. On the propagation of
long-range dependence in the internet. In Proceedings of SIGCOMM
2000, August/September 2000.

[16] W. Willinger, V. Paxson, and M. Taqqu. Self-Similarity and Heavy
Tails: Structural Modeling of Network Traffic. A Practical Guide to
Heavy Tails: Statistical Techniques and Applications, pages 27–53,
1998.

