Photons and Fluctuations

Sourendu Gupta (TIFR, Mumbai)

Hard Probes, Asilomar

14 June, 2006

Near-equilibrium: photons and diffusion Equilibrium: Fluctuations, higher order fluctuations; critical end point and the wing critical line.

Plan

- 1. Near-equilibrium scales: (almost) "perfect fluids" have various consequences.
- 2. Fluctuations of conserved quantities: QCD results for susceptibilities and the specific heat.
- 3. Some results on strange quarks
- 4. Higher order fluctuations: non-poissonian behaviour is not fishy.
- 5. The critical end point and the wing critical line in the QCD phase diagram

Almost perfect liquid

In the context of heavy-ion collisions "perfect liquid" means zero η . Since $\eta \propto \lambda$, "perfect liquid" means vanishing mean free path. In thermal equilibrium $\lambda = \tau c_s$, so for perfect fluids relaxation time vanishes.

In toy models such as AdS/CFT, viscosity is non-zero but small so fluid is almost perfect; λ and τ are finite but small. Consequences for other transport phenomena.

- 1. Soft photon production
- 2. Diffusion of conserved charges

Quenched QCD computations also indicate small λ : SG hep-lat/0301006, Nakamura and Saito hep-lat/0406009

Ultra-soft photon production

Photon mean free path: $\lambda_{\gamma} = \lambda/C_{EM}$ where $C_{EM} = 4\pi\alpha \langle e_q^2 \rangle = 0.09(5/9) = 0.05.$ In AdS/CFT $\lambda \approx 0.1$ fm, hence $\lambda_{\gamma} \approx 2$ fm! In quenched QCD $\lambda_{\gamma} \approx 3$ fm. Effect exists for $E_{\gamma} \leq 500$ MeV.

For perfect fluid, photon luminosity proportional to visible surface area of fireball. For infinite λ_q , proportional to volume of fireball. Define contrast:

$$C = \frac{N(y,\phi)_{max} - N(y,\phi)_{min}}{N(y,\phi)_{max} + N(y,\phi)_{min}}$$

The mean free path of photons can be deduced from a measurement of C.

Frozen fluctuations

For perfect fluids fluctuations of conserved charges are frozen in, since diffusion constant vanishes: instant thermal response for fluctuations followed by Bjorken expansion. Hence one can look back at the thermal history of the fireball by studying fluctuations as a function of acceptance window.

Fluctuations

Quenched continuum (Mumbai), MILC a = 1/8T, $N_f = 2$, Mumbai $N_f = 2$ continuum extrapolation through quenched

Weak coupling expansion: Blaizot, lancu and Rebhan,

Phys.Lett.B523:143-150,2001 Vuorinen, Phys.Rev.D68:054017,2003

Ratios are robust

Above T_c ratios of QNS are almost independent of lattice spacing, and insensitive to quark masses (as long as m < T). Gavai and SG, PRD 73 (2006) 014004

Other fluctuations

Hierarchy of fluctuations: S, Q, Y, B

Energy fluctuations

Departure from ideal-gas behaviour even at the highest temperature. Gavai, SG, Mukherjee, Phys.Rev.D71:074013,2005

Quasiparticles: linkage of quantum numbers

Identify a particle by a complete set of quantum numbers. When there are many conserved quantum numbers the problem is simple. Look at two quantum numbers simultaneously— say U and D.

T = 0: whenever U = 1 is excited D = -1 is excited along with it.

 $T > T_c$: when U = 1 is excited $D = \pm 1$ should be excited along with it if the medium contains quarks. Otherwise, by observing what value of D is preferentially excited, you find something about the quantum numbers of the excitations.

Similarly one could study the linkages U|B or U|Q, or D|B etc.

$$C_{(XY)/Y} \equiv \frac{\langle XY \rangle - \langle X \rangle \langle Y \rangle}{\langle Y^2 \rangle - \langle Y \rangle^2} = \frac{\chi_{XY}}{\chi_Y}$$

U and D are not linked

u and \overline{d} can be carried by the same particle below T_c but not above T_c .

Strangeness is carried by quarks

 $C_{BS} = -3C_{(BS)|S}$ and $C_{QS} = 3C_{(QS)|S}$. Below T_c strange baryons are relatively heavy and therefore sparse in the plasma, but kaons are not so heavy. Above T_c : strange quarks.

Koch, Majumder, Randrup, PRL 95 (2005) 182301, Gavai and SG, PRD 73 (2006) 014004

Strange quark abundance

Strange quark abundance $\lambda_s = \chi_s/\chi_u$ determined for realistic light and strange quark masses. The ratio is robust. Gavai and SG, PRD 73 (2006) 014004

Higher order fluctuations

Strong dependence on quark masses: peak near T_c not accessible to weak coupling theory (Vuorinen).

```
Gavai and SG, Phys.Rev.D72:054006,2005; D68:034506,2003
Allton etal, Phys.Rev.D71:054508,2005
```

Global symmetries determine the phase diagram

Two flavours of light quarks: approximate $SU(2) \times SU(2)$ chiral symmetry, in the limit broken spontaneously to diagonal SU(2), (pseudo) Goldstone bosons are the (light pseudo-scalar) pions.

Five tunable parameters: T (temperature), μ_u and μ_d (two chemical potentials), m_u and m_d (two masses). Gibbs phase rule allows large order multi-critical points.

Order parameter for chiral symmetry restoration: $\langle \overline{\psi}\psi \rangle$, tuned by changing T and $\mu = (\mu_u + \mu_d)/2$, excitations in this "radial" direction are heavy scalar mesons.

Order parameter for pion condensation: $\langle \overline{\psi}\gamma_5\tau_2\psi\rangle$, non-zero value may be induced by tuning isospin chemical potential $\mu_3 = (\mu_u - \mu_d)/2$, excitations in this direction give a massless charged pion.

Berges and Rajagopal Halasz, Jackson, Schrock, Stephanov and Verbaarschot 1998

Section of the 5-d phase diagram along a surface of $\mu_3 = 0$ and $m_u = m_d$: phases distinguished by $\langle \overline{\psi}\psi \rangle$. Other interestingly ordered phases at larger μ .

The sign problem

$$Z = \mathrm{e}^{-F(T,\mu)/T} = \int DU \, \mathrm{e}^{-S} \prod_{f} \det M(U, m_f, \mu_f)$$

where the Dirac operator is a lattice discretisation of $M = m + \partial_{\mu} \gamma_{\mu}$.

- If there is a Q such that $M^{\dagger} = Q^{\dagger}MQ$, then clearly det M is real.
- $Q = \gamma_5$ for $\mu = 0$. Nothing for $\mu \neq 0$. Monte Carlo simulations of Z fail.
- Thermodynamics remains valid, free energy is fine.

Developing methods to work with the sign problem

- Reweighting: Simulate at some parameter set, reweight the Fermion determinant (*M*, inside the path integral) to another parameter set. Fodor and Katz (hep-lat/0104001) used density of states method, Bielefeld-Swansea (hep-lat/0204010) used Taylor expansion of determinant.
- Analytic continuation: Find F and derivatives at some parameter set, make analytical continuation of F (outside the path integral) to another parameter set.
 - Imaginary chemical potential: $\exp(i\mu)$ like a U(1) gauge field, no sign problem. de Forcrand and Philipsen (hep-lat/0205016), d'Elia and Lombardo (hep-lat/0209146) used regular imaginary μ , Azcoiti et al (hep-lat/0409157) extended to two couplings.
 - Taylor Expansion of free energy: Gavai and SG (hep-lat/030301), Bielefeld-Swansea (hep-lat/0305007)

The Taylor expansion of the pressure for 2 flavours

$$P(T, \mu_u, \mu_d) = \left(\frac{T}{V}\right) \log Z(T, \mu_u, \mu_d)$$

$$P(T, \mu_u, \mu_d) = P(T, 0, 0) + \sum_{n_u, n_d} \chi_{n_u, n_d} \frac{\mu_u^{n_u}}{n_u!} \frac{\mu_d^{n_d}}{n_d!}$$

$$m_u = m_d \text{ implies that } \chi_{n_u, n_d} = \chi_{n_d, n_u},$$
for any $\mu_u = \mu_d$. One QNS is
$$\chi_B(T, \mu_B) = \left.\frac{\partial^2 P(T, \mu_u, \mu_d)}{\partial \mu_B^2}\right|_{\mu_u = \mu_d = \mu_B/3}$$

$$V_2$$

 $\chi_B(T^E, \mu_B^E)$ diverges in the infinite volume limit: pseudo critical behaviour at finite volumes. van Hove's theorem

Evaluating fermion traces

Numerical estimates of traces are made by the usual noisy method, which involves the identity $I = \overline{|r\rangle \langle r|}$, where r is a vector of complex Gaussian random numbers. We need upto 500 vectors in the averaging.

Central value: measurement with exactly N_v vectors; bars: config-to-config variation. Statistics of vectors (N_v) is the big issue. Statistics of configs secondary. Bielefeld: $N_v = 50-100$, Mumbai: $N_v = 400-500$.

Evaluating fermion traces

Distribution of each trace is Gaussian. Product of traces such as χ_{2222} strongly non-Gaussian. Proof: For a Gaussian random number of unit variance

$$\langle x_i^2 \rangle = 1, \qquad \langle x_i^4 \rangle = 3 \qquad \text{implies} \left[x_i^4 \right] \equiv \langle x_i^4 \rangle - 3 \langle x_i^2 \rangle^2 = 0,$$

but for a product of independent Gaussian numbers $v = x_1 x_2 \cdots x_n$,

$$\langle v^2 \rangle = 1, \qquad \langle v^4 \rangle = 3^n \qquad \text{implies} \left[v^4 \right] = 3^n - 3.$$

The distribution of v can be written down in closed form in special cases.

Central limit theorem applies: distribution of \overline{v} is Gaussian (proof straightforward). But to reduce the 4th cumulant to substantially below the 2nd, one needs statistics $\gg 3^n$. So, the number of vectors $N_v \gg \mathcal{O}(n3^n)$.

4th order NLS peaks at T_c

Peak due to multiloop operators: correspond to products of traces.

Proper control of $(T/V)\langle O_{22}\rangle$ is needed to obtain the correct value of χ_{40} (and χ_{22}) near T_c . Similiar control of products of traces needed for all higher susceptibilities in this region.

Proper choice of N_v crucial.

Quark mass dependence

Radius of convergence: $\mu^*/T = \sqrt{|2\chi_B^{(2)}/\chi_B^{(4)}|}$.

Peak in χ_{40} implies decreasing radius of convergence. The radius of convergence seems to be very sensitive to quark mass in a region near T_c . Interpolation to $m_{\pi}/m_{\rho} = 0.7$ is consistent with the break point in Bielefeld-Swansea result.

Partially quenched computation. Sea quarks correspond to the lowest mass shown here.

The wing critical line

How curved is the wing critical line? Data from different simulations can be combined to answer this question since they are at similiar values of m_p/m_ρ but different m_π/m_ρ . Criticality may be harder to observe at larger m_π/m_ρ , but simulations are easier.

Radius of convergence

Notation: If
$$f(x) = \sum_{n} f_{2n} x^{2n}$$
 then $\rho_{2n} = \left| \frac{f_0}{f_{2n}} \right|^{1/2n}$ and $r_{2n+1} = \sqrt{\left| \frac{f_{2n}}{f_{2n+2}} \right|}$

Old Budapest results roughly consistent with our small volume analysis. A threshold $Lm_{\pi} \approx 5$ is needed to study the thermodynamic limit.

The QCD critical end point

R. V. Gavai and SG, PRD 71 (2005) 114014

Strong finite volume effect; strong quark mass effect. When $Lm_{\pi} \to \infty$, a = 1/4T and $m_{\pi}/m_{\rho} = 0.3$ then $T^E/m_{\rho} \approx 0.17$ and $\mu^E/m_{\rho} \approx 0.19$.

What to control in a reliable computation

- 1. Statistics of random vectors: $N_v \simeq 400-700$ required. One test: off-diagonal higher order susceptibilities must be independent of lattice volume.
- 2. Statistics of configurations: secondary problem. All configurations should be statistically independent, otherwise systematic effects. Measure autocorrelation times (τ). Statistical errors: $\sigma^2_{actual} = (1 + 2\tau)\sigma^2_{apparent}$.
- 3. Spatial volume: must be large enough to contain more than 5 Compton wavelengths of the pion. Even larger if one wants to study critical indices.
- 4. Quark mass is crucial. State of the art is a quark mass such that m_{π}/m_{ρ} is 50% larger than the physical value.
- 5. Lattice spacing errors can be controlled using two computations at the same m_{π}/m_{ρ} with two actions having different lattice spacing effects.

Summary

- Continuum limit of baryon number fluctuations predicted within approximately 5% accuracy. Similiar results for fluctuations of other conserved quantities.
- 2. Linkage studies can directly reveal the nature of the quasiparticles in the fireball. Variables similiar to fluctuations.
- 3. Strangeness abundance predicted within 5% accuracy in equilibrium.
- 4. Non-Poisson component of fluctuations important near T_c and expected to grow as one approaches the critical end point.
- The critical end point may be accessible to energy scans at colliders. Agreement between all lattice computations if one takes volume effects and quark mass dependence into account.