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1. Introduction

Attempts to use bent perfect crystals as neutron monochromators originate in the early seventies

[1]. Understanding the focusing capabilities of crystal bending and the possibility to increase the

neutron reflectivity of perfect crystals by bending [2,3] has provided a real progress of these

ideas. Matrix computer codes for instrument optics design have been developed [2,4,5] to sustain

the implementation of bent perfect crystals in neutron scattering.

The design of thick doubly bent perfect crystal monochromators has steadily improved

[6-8], making them competitive with mosaic crystal monochromators. This is true for powder

diffractometry, especially with position sensitive detection (PSD) [9,10], but also for three-axis

spectrometry [11,12]. Thanks to the high transparency of silicon to thermal neutrons the perfect

silicon as neutron monochromator allows using thicker crystals. However, focusing applications

demand higher curvatures that cannot be reached because of the breaking limit. An alternative

way is to build an effective thick crystal from thin wafers. This was first tested in the early

eighties [13,14] but was implemented in the construction of monochromators only in the last

years [15] as multiwafer or multilamella monochromators.

 Doubly bent perfect crystal silicon monochromators were implemented in neutron stress

mapping at HFIR (ORNL) and will be the choice after the reactor upgrade [16,17]. The optimal

design of such a monochromator was described in a previous report [16]. Within the approach

first used in these previous investigations, new imaging properties of bent crystals appear to be

very promising. This report is devoted to exploring the imaging properties of bent perfect

crystals. A general matrix description of diffraction on deformed perfect crystals is developed in

the first chapter, which gives the results already used in the previous report for bulk and multi-

wafer bent monochromators. The imaging conditions appear as a logical step following this
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approach [18] and the concept of Bragg mirrors as devices for non-dispersive imaging is

introduced. Imaging with a thick packet of silicon wafers at the spatial resolution of a single thin

wafer is demonstrated experimentally.  The combination of Bragg mirrors with the time-of-flight

(TOF) method is discussed. It appears to open entirely new opportunities in neutron scattering.

Hopefully this will be exploited at new facilities such as the Spallation Neutron Source, now

under construction in the US.

2.   Matrix description of diffraction by deformed perfect crystals

Neutron diffraction by deformed perfect crystals can be described in the quasi-classical limit [19]

in terms of geometrical optics (i.e., particle approach). The local value of the reciprocal lattice

vector is defined for every point of the crystal [3]. Neutrons along a given path in the crystal are

reflected with a certain probability at the points where the Bragg condition is fulfilled [20]. This

is an extension of the simple "lamellar" model of diffraction advanced earlier [1]. The approach

neglects the spatial extent of dynamic diffraction (~ 10-3 mm) and the angular dynamic range (~

10-6 rad).

A matrix method using the corpuscular approach similar to that of Gaussian lens optics

was worked out for neutron optics [21,2]. The neutron state before diffraction is specified by the

spatial coordinates across the beam (y0,z0), the angular deviations (γ0,δ0) from the beam axis and

the relative deviation of the wavevector (∆k0/k). The neutron state is thus defined in the five

dimensional phase space by the vector ηηηη = (y0, kγ0, ∆k0, z0,=kδ0). The neutron-state after

diffraction is specified in the same way by changing the subscript (0�1).

In the paraxial approximation of linear relations describing the diffraction, the neutron

coordinates in the horizontal (diffraction) plane are not correlated with those in the vertical plane

and the wavevector deviation has no influence on the ray tracing in the vertical plane. One can

thus consider separately the vectors ηηηη0 =(y0, γ0=, ∆k0/k) and ηηηη1 =(y1, γ1, ∆k1/k) of the neutron state

in the horizontal plane and the vectors ζζζζ0 = (z0,δ0) and ζζζζ1 = (z1,δ1) in the vertical plane. The

concept of acceptance diagrams [22] is quite useful to visualize the allowed domains of these

vectors - the phase space acceptance windows.

2.1. Thin crystal approach

A simple lens description of neutron diffraction from a thin curved crystal can be used [21]:
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where L0 is the distance to the crystal from the point where the initial state is considered, L1 is the

distance from the crystal to the point where the final state is considered, and f0 and f1 are the

focal lengths before and after diffraction:

)sgn()sin(
2

;)sgn()sin(
2 10 χθχθχθχθ +−=++= ee RfRf  ,        (2)

where Re is the radius of curvature of the crystal in the horizontal (equatorial) plane, which is

positive if the neutrons strike the concave side of the crystal. The factors sgn(θ+χ) were

introduced to formally allow angles to have signs (trigonometric convention). The coupling

matrix in relation (1) results from a multiplication of three matrices depicting the travel of the

neutron from the initial point to the crystal, the reflection by the crystal, and the travel of the

neutron from the crystal to the final point:
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By equating to zero the upper right element of the coupling matrix one gets the well-

known focusing relation for lenses:

 1
1

1

0

0 =+
L
f

L
f

 .               (4)

When relation (4) is satisfied all neutrons emerging from a point arrive to another point

regardless of direction: a point is imaged by reflection into a point. The magnification M is

defined as M = L1/L2. This definition is also valid for the image formation in the vertical plane.

The matrix description of the image formation in the vertical plane is similar and within the

paraxial lens optics the results are formally the same.
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In the diffraction plane the wavevector is correlated with the direction through the Bragg

law. For bent perfect crystals of negligible thickness one has [21]:
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The wavevector deviations before and after diffraction are in fact equal, but separate notations

are kept to allow for the Doppler effect or other possible inelastic phenomena.

The determinant of the reflection matrix for the thin crystal case differs from unity

because the reflection is not specular from the macroscopic point of view. The asymmetric

diffraction can shrink or broaden the neutron beam with the factor sin(θ−χ)/sin(θ+χ) but the

wavevector bandwidth (introduced by the crystal thickness) undergoes a reverse transformation

keeping a constant neutron phase space density.

The thin crystal approach can be extended to include nonlinear effects such as second

order aberrations and curvature non-uniformity [23]. The relation (5) includes second order and

third order terms to account these contributions, but in fact the wavevector deviations and the

neutron reflection on a thin crystal are considered separately.

2.2. General solutions

From the point of view of imaging the effect of the crystal thickness consists of blurring the thin

crystal ideal model of relations (1) and (5). Bent perfect crystals and bent mosaic crystals are

similar in this respect - it is only the degree of blurring that is different. For bent perfect crystals

the blurring is defined by the ratio between the crystal thickness and the horizontal radius of

curvature. Typically this is much smaller than the blurring due to the mosaic spread. The crystal

thickness is also much smaller than the crystal lateral extent. Relations (5) define thus the

inclination of the acceptance window in the (kγ, ∆k) plane of the phase space.

In contrast with the diffraction by mosaic crystals, the diffraction by perfect crystals is

basically a deterministic process. This is implicit in the matrix formulation of neutron optics

codes [2,4,5]. To describe analytically the blurring due to the crystal thickness an explicit

formulation is also needed. The change of neutron state on diffraction is described by a 3x3
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reflection matrix relating the horizontal vectors ηηηη1 and ηηηη0. The coordinates of the point in the

crystal where diffraction takes place are eliminated in the process. However, they are accounted

for in the boundaries of the phase space acceptance window.

In the first order (linear, or paraxial) approximation the relations describing the local

diffraction conditions inside a deformed moving crystal, obtained by expanding in projections

the Bragg relation in vector form, can be written as:
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The diffraction geometry in the reciprocal space is presented in Fig. 1. To calculate the

neutron trajectories before and after reflection it is necessary to know the spatial variation of ∆τ1,

∆τ2 and v1 (local lattice velocity component along ττττ0=)=inside the crystal. In the general case one

has to the first order the following matrix relation:
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The orthogonal coordinates inside the crystal can be expressed through the coordinates of the

point where diffraction occurs, taken across the incident and diffracted beam:
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The diffraction geometry is presented in Fig. 2. The trigonometric functions s+, s-, c+, c- are

defined in the notation summary. To simplify the expressions a new matrix is introduced which

directly connects the vector defined in the left side of (7) with the coordinates y0 and y1:

�
�
�

�

−
−

−
×

�
�
�
�

�
�
�

�

�

=
�
�
�
�

�
�
�

�

�

+

+

−

−

s
c

s
c

a
a
a

a
a
a

b
b
b

b
b
b

32

22

12

31

21

11

32

22

12

31

21

11

                                                                (9)



6

From relations (6) and the matrix defined in (9) the reflection matrix results:
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The constraint matrix defining the phase space acceptance diagram is derived similarly.

From relations (6) it results:
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while by definition one has:

  )cos()sin(0 χθχθ +−+= MM gly                                                             (12)

By using (11) and (12) one obtains expressions for the elements of the constraint matrix. This is

the matrix relating the true crystal coordinates lM and gM with the variables of the neutron path

before reflection y0, γ0, ∆k0/k:
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In a similar way the constraint relations after diffraction are derived:
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By assuming gM=0 in relations (13) and (14), the general correlation for the thin crystal

case, an extension of relation (5), is obtained as follows:
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The distances *
1

*
0 , ff  differ from the real focal lengths 10 , ff . To calculate these focal lengths

one considers the transport to the crystal of neutrons from a plane located at a distance L0 before

the crystal and the subsequent transport from the crystal to a plane located at a distance L1 after

the crystal. Relation (10) becomes:
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By inserting into this relation the first constraint of (15) and by canceling the coefficient of γ0 in

the expression of y1, the lens relation for thin bent crystals is obtained with general equations for

the focal lengths:
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The lens formula (4) with the focal lengths defined by (17) ensures that while diffraction occurs

on the neutral surface of the crystal or on a surface parallel to it, all neutrons emitted from a point

are collected to a point.

2.3. Elastically bent crystal

The variation of the reciprocal lattice vector in an elastically deformed crystal was examined

previously [3]. The following reflection matrix describes the Bragg reflection in this case [16]:
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Physically G/Re represents the change in Bragg angle per unit incident neutron pathlength in the

crystal [3]. A and B can be represented as function of a single material size (κ) as follow:
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This constant κ accounts for the lattice elastic deformation normal to the crystal plate. It depends

of the crystal shape and the crystallographic orientation of the plate [18]. If the curvature comes

from an in-depth gradient of d-spacing (thermal or compositional) then in relations (18') one

should put A = 1 and B = 0.

The reflection matrix in (18) is unitary - its determinant equals unity. The phase space

volume is thus preserved upon the transformation (18), as required by the Liouville theorem

(which actually says that the neutron density in the phase space cannot increase). Relation (18) is

valid regardless of crystal dimensions. The crystal dimensions only define the phase space

acceptance window through the relation [16]:
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where maxmax , MM lg  are the crystal thickness and lateral extension respectively, and s+, c+ are

trigonometric functions (see notation summary). Similar relations hold for the diffracted beam.

Relations (18,19) refer to neutron states at points within the crystal. To find the relations at

points before and after reflection, transport matrices as in relation (16) multiply reflection

matrices, with the difference that these are now 3×3 matrices.

2.4. Bent packets of wafers

Each bent wafer of a packet reflects neutrons like a bulk crystal and has its individual acceptance

window in the phase space. The overall acceptance window has a complex shape and generally is

sparsely filled. The effective peak reflectivity is an average over the whole acceptance window.

When individual acceptance windows superimpose, corrections must be introduced in the peak

reflectivity to account for possible losses due to multiple reflections [16].

To describe packets of wafers a simple model will be used: that of a bulk bent crystal of a

thickness corresponding to the total thickness of the packet but with no elastic stresses (ideal

bending, A=0, B=0). The results will be only approximate, the degree of approximation being

given by the thickness of a single wafer. The reflection matrix for this important case is [16]:
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The determinant of the reflection matrix is cos(θ−χ)/cos(θ+χ). It differs from unity if the

reflection is asymmetric. The overall volume in the phase space diagram may thus be different

before and after reflection. This is an apparent violation of the Liouville theorem, introduced by

the approximation used in modeling. In reality no violation occurs, as each individual wafer does

obey the Liouville theorem. To correct for this, a factor must be introduced in the average peak

reflectivity, which depends on whether the phase space volume considered on averaging is

before or after reflection [16]. This only matters for intensity calculations. We will focus here on

optical properties and will assume that the conservation of phase space density is ensured

through peak reflectivities.

In the multi-wafer case relations (19) become [16]:
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The wafer packet was considered parallel, with the wafers fully in contact on adjacent

surfaces. If adjacent wafers are not in contact and relative tilts are introduced then B≠0 and

formulae (20) and (21) will change.

3.   Imaging conditions

Consider the transfer of a neutron from a point at a distance L0 before the crystal to a point at a

distance L1 after the crystal. The general expression (16) can be rearranged as follow:
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The structure of this matrix gives an interesting result: neutrons emerging from a point at

L0 are imaged into a point at L1 when the following correlation between γ0 and ∆k0/k exists:
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In the general case relation (22) says that a point of the object space may be imaged into

different points of a line. Every point of the line in the diffraction plane will correspond to a

distinct path in the wavevector plane (kγ0, ∆k0). The line image will furnish a spectral analysis of

the object, analogous to what a prism does in conventional optics. Only a small part of the crystal

will contribute to the formation of each image point. Different zones of the crystal will give

different points of the image. We call this dispersive imaging [18]. Illustrative cases are

discussed below.

3.1. Dispersive chromatic imaging

Dispersive chromatic imaging occurs when all neutrons coming from a point and having the

same wavevector are focused to the same point regardless of their direction [15]. It occurs when

the coefficient of γ0 in (22) vanishes:

 0211022111012 =+++ CLLCLCLC                                                                (23)

For multi-wafer packets a simple expression is obtained [15]:
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For elastically bent bulk crystals the exact condition is:
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with  f, α0 and α1 given by relation (18').

The condition of dispersive chromatic imaging should not be confused with the

monochromatic focusing condition for thin bent crystals 2f0/L0=1. At monochromatic focusing

all neutrons reflected from along the crystal have the same energy. In the case under



12

consideration the crystal is an analyzer that images neutrons with different energies into different

points. The energy spectrum of the incoming beam is converted by Bragg reflection into a spatial

distribution at the distance L1. If the beam is strictly monochromatic the image of a point is again

a point. Conditions (24) or (25) specify arrangements with good energy resolution using a point

neutron source, a curved crystal analyzer, and a PSD.

3.2. Dispersive angular imaging

Dispersive angular imaging occurs when all neutrons coming from a point along a certain

direction are focused to a point regardless of the wavevector. The angular distribution of the

incoming beam is converted into a spatial distribution. The corresponding condition is obtained

by canceling the coefficient of ∆k0/k in the expression of y1 in relation (22):

023113 =+ CLC                                                                      (26)

This relation involves only the distance from crystal to image L1. A general condition for

L1 can be derived in terms of the primary coefficients aij defined in (7):

( ) ( ) ++ +++= saacaa
L

θθ cotcot
2
1

32223121
1

                                                     (27)

In the case of an elastically bent bulk plate this simplifies to:

( )χθ ++
=

tan1

*
1

1 B
LL                                                                (28)

For multi-wafer packets relation (28) reduces to *
11 LL = , see relation (20').

3.3. Non-dispersive imaging - Bragg mirrors

The previous imaging conditions cancel the contributions of the angular spread or the

wavevector spread (or a linear combination thereof) to the image spread of a point. The object

point is then imaged into a line along which some physical quantity varies (wavevector,

wavevector transfer, energy transfer, etc). The distribution of that physical quantity is converted

into a spatial distribution. If the task is to obtain a real image of the object then the image of a

point must not be a line but a point. Then, the arrangement must be non-dispersive, that is the

spatial dispersion of the beam must be canceled. The contributions to the blurring from both the

angular spread and the wavevector spread must vanish. Then the crystal becomes a Bragg mirror

(BM) - an imaging device with no chromatic aberrations (Fig. 3).
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For the crystal to be a Bragg mirror the coefficients of both the γ0 and ∆k0/k terms of y1 in

relation (22) must vanish simultaneously:

0
,0

23113

211022111012

=+
=+++

CLC
CLLCLCLC

                                                  (29)

or, equivalently:
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L −=−=                                                                            (29’)

By expressing the coefficients of the reflection matrix Cij through the primary coefficients aij of

the reciprocal lattice vector simple closed relations are obtained:
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with s+, s−, c+, c− trigonometric functions given in notation summary and with special cases as

follow:

− multi-wafer packet:

;, *
11

*
00 LLLL ==                                                         (30a)

− elastic bending of a bulk plate:

( ) ( ) ;
tan1

,
tan1

*
1

1

*
0

0 χθχθ ++
=

−−
=

B
LL

B
LL                                            (30b)

3.4. Stigmatic Bragg mirrors

A mirror is astigmatic if the image positions in the equatorial and sagittal planes are different.

The astigmatism of the BM is canceled (stigmatic imaging) when the lens focusing relation in

the vertical plane is also fulfilled:

.
sincos2

,1
10 θχ

a
a

aa R
f

L
f

L
f

==+                                                        (31)

By inserting (30) into (31) a simple general condition of stigmatic imaging is obtained:
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with special cases as follow:

− multi-wafer packet with ideal bending:

 ( ) θχθ 2sinsgn += ea RR                                                         (32a)

− elastic bending of a bulk plate:

( )
θ

θχθ
tan1

sinsgn 2

B
RR e

a +
+

=                                               (32b)

4. Bragg Mirror imaging resources

4.1. Working zones

The magnification of the BM is given by the distance ratio:

( ) ( )
( ) ( ) ++

−−

+++
+−+

==
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cotcot
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1 .                             (33)

For multi-wafer packets the magnification is simply:

( )
( )χθ

χθ
+
−=

cos
cosM         (33’)

Only when M > 0 is the image real and only then can a BM provide an image on a PSD. The BM

working zones for ideal bending are sketched in Fig. 4 as a function of the take-off angle 2θ and

α=θ+χ (BM inclination angle relative to the incoming beam). Reflection arrangements are

permitted at any take-off angle.

A Bragg mirror can be used to focus a divergent beam from a small source or a well-

collimated beam from an extended source. In the first case the image size is determined by the

magnification: 01 yMy ∆=∆ . In the second case 11 fL =  with f1 defined by the general relation

(17) and the image size is determined by the angular divergence of the collimator 011 γ∆=∆ Ly .

In both cases the real image is sharp even if the crystal is thick. For radiography applications a

virtual image may be of interest, in which case the same conditions are valid but suitable

arrangements with 01 ≤L  should be considered.
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4.2. Image resolution

The image spatial resolution is determined by the optical quality of the BM and by the spatial

resolution of the PSD, because the image blurring due to the intrinsic diffraction range in a

perfect crystal is usually negligible (less that 5 µm at 1m). The ultimate resolution in imaging is

set by the thickness of the individual wafers in the analyzer packet. With inexpensive standard

silicon wafers a spatial resolution around 1 mm is easily reached (see demonstration experiment

described below). This resolution is already better than that planned to be achieved with

SMARTS∗  instrument at the Los Alamos Neutron Science Center (LANSCE) and is comparable

with the resolution achieved at the ORNL reactor HFIR where residual stress mapping is

obtained by sequential stepping.

For multi-wafer option the main aberration term comes from the elastic deformation of

the wafer. By curving the wafer a tangential stress gradient is generated inside the crystal. This

gradient not only changes the d-spacing, but also rotates the crystalline planes if they are not

parallel to the crystal surface. Qualitatively, the wafer deformation aberration term will be

proportional to sinχ and the wafer thickness. Consequently this term vanishes when χ = 0 and

otherwise can be minimized by using thinner wafers available commercially at thickness down to

10 microns, although the mechanics of their assembly would be complicated. High-order

aberrations may also come into play. Conditions can be found, though, to minimize those

aberrations and to even cancel them. A careful theoretical and experimental investigation is

needed to quantify the ultimate resolution in imaging. The practical limit is expected to be

around 100 microns. A very high accuracy of bending will be needed to achieve that limit.

4.3. Imaging high order aberrations

The geometrical theory of aberrations for BM is complicated by the fact that there is only

a plane of symmetry, instead of an axis as in the case of an optical lens, but aberration types are

similar. Considering the image of the central object point, the equatorial (∆y1) and axial (∆z1)

deviations can be expressed as a series expansion of the ray coordinates on the mirror (lM, zM,

gM):
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1 (34)

                                                          
∗  SMARTS will be the world’s best special mapping instrument based on design objectives.
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In practice only a few terms are significant:
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The aberration type was designated by analogy with the light optics: A100 corresponds to

defocusing, B001 to astigmatism, A002 to coma, A020 and B110 to astigmatic coma, A300, A120, B210

and B030 to generalized spherical aberrations. The thickness aberration is described in the first

approximation by A001. This thickness aberration can be assimilated to the optical chromatic

aberration and is in fact canceled when the non-dispersive imaging condition is fulfilled.

Using the following notation the first and second order aberration coefficients have

simple expressions:

( )

( )

002110

21010

1122002

1122200

12001

21100

2

2
1
2
3

AB
CCB

CDCDA

CDCDA

DDA
CCA

aa

aa

ee

ee

=
+=

−=

−=

−=
+=

 ;               

1
2

0
1

1
2

0
1

1
2

0
1

)cos(

)cos(

)sin(1

)sin(1

1)sin(

1)sin(

L
D

L
D

RL
C

RL
C

RL
C

RL
C

a
a

a
a

e
e

e
e

χθ

χθ

χθ

χθ

χθ

χθ

−=

+=

−−=

+−=

−−=

−+=

  .     (35)

The third order aberration coefficients have complex analytical expressions depending on the

real mirror shape (bicycle tire toroidal, barrel toroidal, ellipsoidal, etc.).

By canceling the first order aberration coefficients the relations (30a) and (32a) are

obtained. The first two conditions (30a) are required for aberration-free one-dimensional imaging

in the equatorial plane and the last condition (32a) is required to reduce the astigmatism.

Different radii of curvature in the equatorial and axial planes are thus necessary for two-

dimensional imaging with BM.

By introducing these relations in the expressions of second order aberration coefficients,

simple formula are obtained:
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Thus the second order coma and astigmatic coma are zero when χ = 0.

Then for thin wafers the ultimate spatial resolution is defined by the influence of higher

order aberrations as follow:

•  If the crystal cutting angle χ is different from 0, the second order coma and astigmatic coma

are the main aberration sources. Matching these contributions with the first order thickness

and astigmatism contributions can minimize the loss of spatial resolution.

•  For χ = 0 these aberrations vanish and the third order generalized spherical aberrations are

relevant. These aberrations are shape sensitive and can be minimized by choosing the crystal

profile.

The aberrations introduced by object (sample) extension (field curvature and distortion)

are sensitive to the PSD configuration and can be partially corrected by digital image processing.

5. Testing the Bragg Mirror concept

To demonstrate imaging with BM an experiment was done at the High Flux Isotope Reactor

(HFIR) of the Oak Ridge National Laboratory (ORNL). A thick multi-wafer assembly designed

and fabricated at the University of Missouri Research Reactor (MURR) [15,16] was used. The

assembly consisted of 14 commercial wafers, each 20 cm wide and 0.7 mm thick, originating

from the same [100] ingot. The horizontal radius of curvature Re was set by a 4-point elastic

bending device and was adjustable with a fine screw. The vertical curvature was approximated

by fine segmentation (5 mm). The vertical radius Ra was set by the profile of the bending posts

(barrel shaped on the front, concave on the back) and was fixed at 1.38 m. Because the vertical

radius was fixed and the vertical curvature was obtained by segmentation, the astigmatism was

not canceled in this experiment.

To simulate the object a cadmium foil with three slits, each 2 mm wide, was put in the

beam produced by a flat mosaic Ge monochromator (λ=1.26 Å). The image formation was

observed with a neutron camera. After adjustment of angle, distances and horizontal radius to

fulfil the condition (30a) of non-dispersive imaging, the image was registered on Polaroid film.

The results are presented in Fig. 5. The neutron beam after the slits is shown in Fig. 5a. The
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neutron beam before the monochromator is shown in Fig. 5b. The multi-wafer monochromator

was placed at 1 m after the object slits.

Two different configurations were tested: reflection Si (400) with unit magnification and

reflection Si (511) with 1.5 magnification in the diffraction plane. The neutron beams at the two

imaging positions are shown in Figs. 5c and 5d. The image sharpness demonstrates a spatial

resolution in the horizontal plane corresponding to the thickness of one wafer (0.7 mm), at a total

thickness of the packet of 1 cm.

The image clarity is strongly dependent of BM curvature radius and the distance to the

film position. The Figure 6 illustrates the neutron beam profile variation with the distance

between BM and film. The decrease of intensity in the middle of the image results from a gap

between the two central strips of the multi-wafer assembly. The BM tilt is responsible for the

overall inclination of the image relative to the slit position.

The image clarity is also affected by the neutron converter thickness. For this reason it

was impossible to observe a clear image formation directly on the screen of a neutron camera.

Only a thin converter before the Polaroid film could provide a clear image.

Another test measurement was completed at the HFIR residual stress facility in which

the thick multi-wafer assembly was located to reflect neutrons scattered by a sample and a PSD

was used to detect the neutrons. To evaluate the spatial resolution the cadmium foil with three

slits used in the previous experiment was placed in front of PSD. The spatial pattern registered

by PSD in a collimated beam (<1o angular divergence) is presented in fig. 7. The PSD

contribution can be well described by a Gaussian profile with 2.75(7) mm FWHM (see fig.7). An

additional increase of FWHM up to 3.2 mm was observed at a larger angular divergence of the

incoming neutron beam.

The experimental set-up is sketched in fig. 8. The existing silicon monochromator

provided a monochromatic beam with λ=1.67 Å. Two different samples were tested for imaging

in scattering: a vanadium plate 2 mm thick and an iron pin (diameter of ~2 mm). The multi-wafer

assembly with Si(400) reflection intercepts the scattered neutron beam and provides the image of

the sample on PSD (fig. 8). For the iron pin sample the multi-wafer assembly was placed at 81.9o

scattering angle corresponding to the diffraction line (211). For the vanadium plate the neutron

scattering is elastic incoherent and isotropic, consequently the scattering angle was chosen from

alignment reasons at 86.9o. The plate was oriented along the scattered beam in order to minimize
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the spatial extension of the scattered neutron beam at sample position. The distances from

sample to multi-wafer and from multi-wafer to PSD were almost equal (1.09 m).

The multi-wafer assembly curvature was varied in order to obtain the densest image. The

FWHM of the spatial pattern registered by PSD is presented in Fig. 9. The optimal curvature is

slightly different from the theoretical value but the difference is not really significant in such test

experiments. In contrast, the minimal FWHM-s of images (2-3 mm) are encouraging enough.

The image is naturally wider for the vanadium plate as the whole analyzer is contributing to the

image formation and all geometrical contributions to the image smearing are significantly

amplified by comparison with the diffraction case when the scattered beam is spatially limited.

6. Bragg mirrors at pulsed sources

A BM can also be used for neutron imaging at pulsed neutron sources. Then the incident neutron

energy is determined by time-of-flight. Using a two-dimensional (2D) position sensitive detector

(PSD) and time-of-flight (TOF) analysis the BM imaging system (BMIS) will make it possible to

collect both real space mappings and scattering space data simultaneously, enabling totally new

research opportunities. In the time-of-flight method each pixel of the PSD contains a segment of

the diffraction pattern, useful for strain, texture or phase fraction mapping, or an inelastic

scattered spectrum. The image may refer to any scattering law, for either elastic or inelastic

scattering.

6.1. Phase space acceptance diagram

The acceptance window in phase space provides a complete characterization of a BM. This is

similar to the acceptance diagrams defined in two dimensions (spatial and angular), but is five

dimensional (x, y, γ, δ, ∆k/k). If one restricts the discussion to a point source and accepts the

approximation that the vertical angular deviation does not influence the acceptance in the

horizontal plane, then the relevant phase space acceptance diagram for a BM can be reduced to

two dimensions (γ,∆k/k).

For inelastic scattering the range of accepted wavelengths will define the instrument

resolution. For diffraction (or incoherent elastic scattering) the shape of the phase space

acceptance diagram does not have a decisive influence on the instrument resolution, but

drastically reduces the range of accessible wavevector transfers. BMs have to be adjusted to

transmit the phase space field corresponding to the wavevector transfer of interest. It is important
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to note that for a fixed radius of BM the inclination of the needle-shaped acceptance diagram is

determined by the cutting angle χ only, the length is determined by the mirror lateral extent and

the width is determined by the mirror thickness.

� If χ = 0 the relative wavelength window (∆λ/λ )max is not influenced by the angular

acceptance. Therefore a narrow energy resolution (down to 1%) can be obtained for inelastic

scattering in this case. A large angular acceptance (about ~10o in both the equatorial and

axial plane), determined by the BM dimensions, ensures a high rate of data collection.

� If χ ≠ 0 the wavevector value and direction are correlated and large wavelength windows of

up to (∆λ/λ )max ≈ 10% can be obtained. Such asymmetric configurations are appropriate for

elastic scattering when the wavelength value is determined by time-of-flight. In this case the

angular acceptance at fixed wavelength is determined by the BM thickness (about 1o per cm).

The multiwafer BM phase space acceptance diagram is in fact a superposition of the

individual acceptance diagrams for each wafer. Because of elastic lattice deformation, gaps or

superpositions can appear between these individual diagrams and reflectivity oscillations may

result. There exists a certain optimal combination of θ and χ where the individual diagrams stay

adjacent and the oscillations disappear namely when |G| [defined in (18’)] becomes equal to

|cos(θ+χ)|. The combination depends on the wafer orientation and the type of bending. For

exemple, the optimal multi-wafer configuration is presented in Fig. 10 for a cylindrically bent

plate of [100] orientation. Using the optimal combination between θ and χ=the slope of the phase

space window was calculated in Fig. 11. A few phase space diagrams are given in Fig. 12. The

change of θ involves a rotation of the phase space window in the (γ,∆k/k) plane. The size of the

window is determined by the maximum angle accepted by the BM (lmax/L0). The relative window

size for both angle and wavelength is shown in Figs. 13 and 14. Assuming a maximum

acceptance angle of 10o (lmax/L0 = 0.175), a wavelength window of 4% is achievable for θ in the

range from 20o to 50o with an angular acceptance in the 1o-3o range.

In combination with TOF, Bragg mirrors make it possible to record a single diffraction

line or a few close lines along with their higher orders. Each diffraction line will provide a

mapping of the sample. Two-dimensional mapping (of crystal phases, texture or strains) is done

in a single measurement at the spatial resolution of the Bragg mirror and the wavevector transfer

resolution in diffraction by the TOF method. This opens entirely new opportunities in materials

studies. For imaging by elastic scattering, Bragg mirrors with asymmetric reflection χ≠0 are the
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best solution. The wavelength acceptance window can be widened (up to 10%). However, at a

given wavelength the angular acceptance will be then reduced (down to 1o per centimeter of

crystal thickness).

To increase the wavelength acceptance window the BM can be rotated synchronously

with the neutron pulse. The acceptance diagrams will then move in the (γ0, ∆k0/k) plane

following the variation of the Bragg angle on rotation. In this way a BM can be made to reflect a

large TOF spectrum of neutrons.  The aberration of the sample image recorded by a PSD can no

longer be canceled exactly because θ has become variable, but the Doppler effect can be

exploited for compensation. A small value of χ=will ensure a larger angular acceptance (i.e.,

several degrees).

6.2. Time-of-flight resolution

The time-of-flight is related to the wavevector transfer in the case of powder diffraction

or with the energy transfer in the case of inelastic scattering. These two cases are considered

below.

For diffraction, the window of the “elastic” peak will be wide (determined by the

wavelength acceptance window of the Bragg mirror) and only the diffraction lines generated by

neutron elastic scattering on sample will be registered in this window. In the case of elastic

scattering the neutron velocity is constant along the flight path and the BM contribution to the

time-of-flight uncertainty is given by the variation of the path induced by the position of the

point where reflection occurs. If one considers a diffraction line, there is a correlation between

the neutron speed and direction after scattering by the sample. By taking into account this

correlation on calculating the point where reflection occurs inside the BM, the following

expression is obtained for the BM time-of-flight contribution:

10

sin2
2sin)cos()sin(
)cos()cos()21(sincos

)sgn(2sin)cos()sin(
)cos()cos(cot

LLL
g

a
a

R
g

aT
t

S

M

e

M

BM

++
×

�
�
�

�

−++
−+−−+

+
×

−−+
−+=�

�

�
�
	


 ∆

θ
χχθχθ

χθχθχχ

χθχχθχθ
χθχθθ

     (37)

where a = - tanθS / tanθ is the usual dispersion parameter. In principle this contribution can be

canceled. Then the time of flight focusing occurs. The relation between θS and θ at time of flight

focusing is calculated in Fig. 15 for the optimal reflectivity configuration previously given in
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Fig. 10 and for different ratios between the first flight path (LS) and the distance from sample to

BM (L0). Data of such type of can help in assessing BM configurations for diffraction.

For inelastic scattering, a BM is simultaneously a monochromator and an imaging mirror.

The energy transfer resolution will include the BM energy resolution and the BM time-of-flight

contribution similar to the case of elastic scattering. In this case χ=0 and the expressions

simplify:
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Overall time-of-flight resolution values below 2% are expected.

7.   Discussion

7.1.  Alternative to Bragg Mirror

Alternative methods for microbeam-forming are used in synchrotron radiation (SR) research

[24]. Such methods can be useful for imaging in neutron scattering. Some are more promising

than others are.

� Pinhole camera - This method visualizes the sample on a PSD through a pinhole. The

method is aberration free and totally non-dispersive, but the angular acceptance is very low

(fraction ~10-6 from BM angular acceptance).

� Total reflecting mirrors - Ellipsoidal and Kirkpatrik-Baez mirrors have been used in SR

focusing arrangements. For this type of arrangement the angular acceptance is also low,

being determined by the critical angle in the equatorial plane. Using multilayer mirrors can

increase the angular range of specular reflection. In fact these mirrors are a sort of BM with a

large d-spacing and a d-spacing gradient through the thickness. For cold neutrons (λ>4Å) the

performance of a multilayer toroidal mirror should be similar to that of a BM based on single

crystals.

� Refractive lens – It seems sensible that refractive technique [25] are only applicable to very

cold neutrons and the influence of gravity complicates the lens design. For cold neutrons
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simply adding a large number of non-absorbing lenses can increase the refraction effect [26],

but the technical possibility to build large aperture optical devices based on refraction has not

been demonstrated.

� Diffraction lens - In SR microscopy zone plates and Bragg-Fresnel optics are widely used

[24]. The use of such high precision devices is limited to high brilliance radiation source.

They provide a submicron image resolution, but the lens dimensions have also to very small

(sub-millimeter). Demonstration of such devices in neutron scattering is likely a long way

off.

7.2.  Materials Science Impact

The instruments currently used in neutron scattering only provide data averaged over the

sampling volume (sometimes called “gauge volume”). The “Bragg mirror” system will provide a

high spatial resolution image of neutron scattering from inside the specimen nondestructive.

Although the instrument resolution in energy (or ∆Q/Q in diffraction) will be moderate, the

exceptional spatial distribution data can help materials scientists to accomplish novel solid state

and materials science studies including:

•  Real-time microstructure analysis of the deformation of materials under static or dynamic

load (mapping peak positions & widths);

•  Real-time study of phase transformations induced by diffusion or solid state reactions

(integrated intensity of selected diffraction lines versus time and position in sample);

•  High resolution internal strain mapping (peak positions & integrated intensities);

•  Stroboscopic examination of periodic motions in materials (Doppler shift of diffraction

lines);

•  In-situ observation of the diffusion of water or hydrocarbons in materials by inelastic neutron

scattering (intensity of selected inelastic scattering lines versus time and position in sample);

•  Dynamic structure factors and frequency distributions in inhomogeneous samples (mapping

inelastic scattering intensity as function of T, P, H, etc.).

7.3. Estimates

At a modest spatial resolution of 1 mm the BM can deliver to a PSD a two-dimensional image of

over 500 points. For diffraction an angular acceptance of 3*10-3 sterad is achievable. One BM at

a pulsed source is equivalent from the point of view of data collection speed to a detection
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system covering 1/8 of the full sphere around the sample and collecting data from a single point

of the sample. A BM peak reflectivity of 50% and only one diffraction peak of interest were

assumed. The basic limitation of the BM use is the small wavelength window (~ 4%). An

increase up to 20% can be obtained by rotating the BM synchronously with the neutron pulse.
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Notation summary

A, B: material constants describing the elastic deformation of the crystal in the thin plate

approximation;

a: dispersion parameter a=−=tanθS/tanθ=;

aij: elements of matrix relating the lattice distortion inside the with the scattering location in the

crystal coordinate system [see relation (7)];

Aijk,Bijk: general aberration coefficients [see relation (34)];

bij: elements of matrix relating the lattice distortion inside the crystal with the scattering location

in the neutron beam coordinate system [see relation (9)];

Cij: reflection matrix elements [see relation (10)];
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λ : relative wavelength window;

T
t∆ : relative time-of-flight deviation;

τ
τ

τ
τ 21 , ∆∆ : relative deviations of current reciprocal-lattice vector along ττττ0000 and perpendicular to it

in the diffraction plane;

f: characteristic distances defined for elastic bending [relation (18’)] used to calculate the

reflection matrix elements and the phase space acceptance window [see relations (18) and (19)] ;

f0, f1: first and second focal lengths (before and after diffraction, respectively), relation (2);

fa: focal length in the axial (sagittal) plane, relation (31);

MMM zlg ,,  : coordinates in the crystal (thickness, lateral extent and height);
maxmaxmax ,, MMM zlg : crystal dimensions (thickness, lateral extent and height);

γ0 , δ0 : angular deviations of incoming neutron, in the diffraction plane and out of diffraction plane;
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γ1 , δ1 : angular deviations of scattered neutron;

L0, L1: distances from source to crystal and from crystal to image, respectively;

L0
*, L1

*: optimal distances for imaging in the ideal bending case [see relation (20’) and (30a)];

LS: distance from neutron moderator to sample in the time-of-flight arrangement;

M: magnification, defined in general by relation (33);

χθ , := crystal Bragg and cutting angles, respectively ( 0=χ  for symmetric reflection);

Sθ : scattering angle of the sample; the detector angle in diffraction is 2θS;

Re, Ra: crystal radius of curvature in the equatorial and axial planes, respectively;

ττττ0000 : reciprocal-lattice vector of the unbent crystal;

vn : neutron velocity;

y0,z0 : neutron coordinates across the incoming beam;

y1,z1 : neutron coordinates across the diffracted beam.
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Fig. 1 Geometry of the diffraction process in reciprocal space.

Fig. 2 Geometry of the diffraction process in real space.
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Fig. 3 Schematic of the BM imaging system. Each pixel in the PSD provides scattering
information corresponding to a specific location in the sample.
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Fig. 4 Bragg Mirror working zones as a function of the take-off angle 2θ and the inclination
angle relative to the incoming beam=α=θ+χ ; vertical grating – real image; cross
hatched zone – real image, reflection geometry, M>1.
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Fig. 5 Bragg Mirror demonstration experiment. a) – neutron beam after slits; b) –
neutron beam before Bragg Mirror; c) – image of the slits for M = 1; d) – image
of the slits for M = 1.5 .
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L2 ~ 15 cm L2 = 80 cm L2 = 90 cm

L2 = 95 cm L2 = 100 cm L2 = 105 cm

L2 = 110 cm L2 = 120 cm

Fig. 6 Image formation: beam profile at different distances after BM. L1 ~ 100 cm and
Re ~ 230 cm.
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Fig. 7

Fig. 8
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Fig. 9

Fig. 10
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Fig. 11

Fig. 12
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Fig. 13

Fig. 14
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Fig. 15
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