Near-Field Optics for Materials Characterization on the Nanoscale

Steven A. Buntin

Group Leader Surface and Interface Research Group Chemical Science and Technology Laboratory National Institute of Standards and Technology Gaithersburg, MD

Stephan Stranick and Chris Michaels

Measurement paradigms – materials analysis:

1) Serial:

throughput (significantly) enhanced by automation/scanning.
 e.g., mass spec, chromatography screening.

2) Parallel:

- 2D array-based detection "views" entire library.
 - e.g., IR thermography, hyperspectral imaging, anode-array REMPI.

\Rightarrow Multitasking:

- data on two or more distinct system properties using a single integrated measurement platform.
- serial or parallel based techniques.
 - e.g., CCD-based detection of selective oxidation of naphthalene:
 - LIF reaction product; NIR emission thermography
 - (H. Su and E.S. Yeung; JACS 122, 7422, '00; H. Su, Y. Hou,
 - R.S. Houk, G.L. Schrader and E.S. Yeung, Anal. Chem. 73, 4434, '01)

Multitasking Probe: motivation and systems.

- -Single instrument platform: simultaneous characterization of materials performance and properties.
- Dielectric thin films.

Integrated Multitasking/Multispectral Probe:

 \Rightarrow evanescent probe in the near-field; sharpened metal tip \approx 10 nm from surface

- 1) Part of μwave cavity: materials performance by NSμM (Near-field Scanning Microwave Microscopy)
 - dielectric loss spectroscopy.
 - probes local complex dielectric constant, ϵ^* .
- 2) External Vis/IR illumination: materials properties by aNSOM (apertureless Near-field Scanning Optical Microscopy)
 - local field enhanced IR absorption/Raman scattering.
 - probes local chemical functionality/structure.

Instrumentation: fully-integrated system (not yet realized)

Multitasking aNSOM/NSµM:

1) NSµM – Near-field Scanning Microwave Microscopy:

Developed in the mid '90s:

- X.-D. Xiang LBNL; S.M. Anlage, F.C. Wellstood U. Maryland
- Used primarily for HTS/HTE of advanced oxide materials:
 - e.g., APL 72, 2185 ('98); Mat.Sci. Eng. B. 56, 246 ('98); Biotech. Bioeng. 61, 227 ('99).

Advantages:

- 1) Non-contact
- 2) Sample geometry independent

3) Thin film samples⇒ Suitable for HTS/HTE.

NGST National Institute of Standards and Technology • Technology Administration • U.S. Department of Commerce

Dielectric Imaging: NSµM

- By measuring the frequency shift/broadening of the microscope's cavity response, the dielectric constant can be determined.

Spatial resolution \Rightarrow probe shape/radius; height from sample surface. ϵ^* precision $\Rightarrow \Delta f/f$ and cavity Q.

JST National Institute of Standards and Technology • Technology Administration • U.S. Department of Commerce

Near-field Scanning Microwave Microscope:

- Diffraction-limitless resolution.
 (~ 100 nm in xyz)
- Shear-force feedback height regulation. *(typically 10-50 nm)*
- Broadband Measurement. (45 MHz to 20 GHz)
- Network analyzer: Δf/f ≈10⁻⁵ to 10⁻⁶.
 (ε to about 1-5 %)

Demonstration of NSµM:

- continuous compositional gradient Barium Strontium Titanate (BST) film.
- prepared by dual-beam pulsed laser deposition:

P.K. Schenck, D.L. Kaiser and B. Hockey of MSEL/NIST

- Film thickness variation is evident.
- Quantitative analysis by spectrometric reflectometry.
- Compositional gradient quantified by wavelength-dispersive electron probe microanalysis: *R.B. Marinenko and J.T. Armstrong of CSTL/NIST.*

7

6

5

4

3

2

1

0

Ba/Sr Ratio

National Institute of Standards and Technology • Technology Administration • U.S. Department of Commerce

Dielectric Response Mapping using NSµM:

NGST National Institute of Standards and Technology • Technology Administration • U.S. Department of Commerce

Wickramasinghe, IBM '94; Kawata, Osaka U. '94

Similarities:

- near field scanned probe
- subwavelength resolution
- chemical imaging/spectroscopy

Differences:

- radiation coupling
- accessible wavelengths
- resolution: < 10 nm vs < 100 nm

Pohl, IBM '83; Lewis, Cornell U., '83

NIST; chemical-imaging using fiber-coupled Raman NSOM: *results illustrate expectations for aNSOM in multitasking application*

National Institute of Standards and Technology • Technology Administration • U.S. Department of Commerce

Fiber-coupled NSOM:

- Diffraction-limitless resolution. (~ 100 nm lateral)
- Shear-force feedback height regulation. (typically 10-50 nm)
- NUV to NIR (0.3 1 μm; Raman) IR (2.5 – 10 μm; IR absorption)
- Hyperspectral imaging. (spectrum at each spatial pixel)

Raman Scattering Spectroscopy/NSOM:

- Highly specific chemical information/species and structure.
 - Visible lasers/"standard" fiber optics.

 (\mathbf{H})

- Inefficient process: only one in 10¹³ photons Raman scatter.
 NSOM probes have low throughput: ~ 10⁻⁵ 10⁻⁶.

National Institute of Standards and Technology • Technology Administration • U.S. Department of Commerce

• 50 nm Ag film on glass, 0.7 μMol Rhodamine-B sol.

NGST National Institute of Standards and Technology • Technology Administration • U.S. Department of Commerce

Summary:

Program Goal - multitasking scanned probe for HTE/HTS:

- simultaneously obtain data for materials performance (dielectric constant) and properties (chemical composition/structure).
- targeting continuous compositional gradient materials libraries with performance/property variation on a sub-μm length scale.

Integrated NSµM/aNSOM platform:

- not yet fully realized.
- have demonstrated independently the workability of Raman/IR fiber-coupled NSOM and NSµM on (nearly) identical platforms.
- work towards demonstrating Raman-based aNSOM and improving NSµM performance.