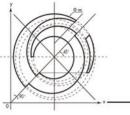

ALSTOM Flue Gas Desulfurization Technologies ALSTOM

Agenda

ALSTOM **Environmental Control Systems FGD Technologies** Wet Flue Gas Desulfurization **Dry Flue Gas Desulfurization** Seawater Flue Gas Desulfurization Summary

ALSTOM Today

Transport



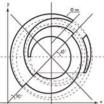
Energy

The global specialist in energy and transport infrastructure.

Power

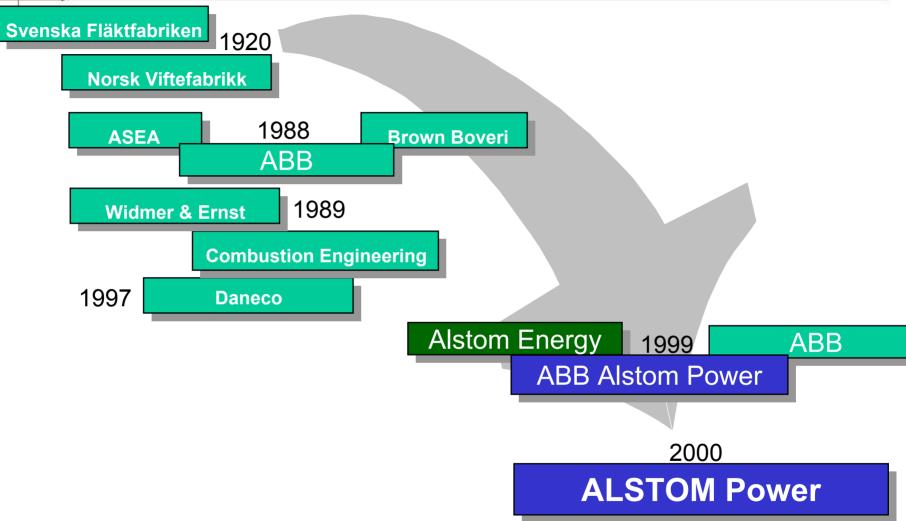
Sales: 10.9 billion euros

Orders received: 8.4 billion euros

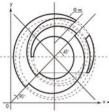

Reorganized into three sectors:

- Power Service
 - No. 1 in service
 - Largest installed base of equipment
- Power Turbo Systems
 - No 1 to No. 3 in steam turbines, generators and power plant engineering construction

Power Environment

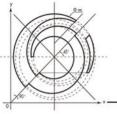

- No. 1 in boilers, environmental and hydro
- New regulations driving market growth

The Full Service Provider in Power Generation

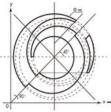


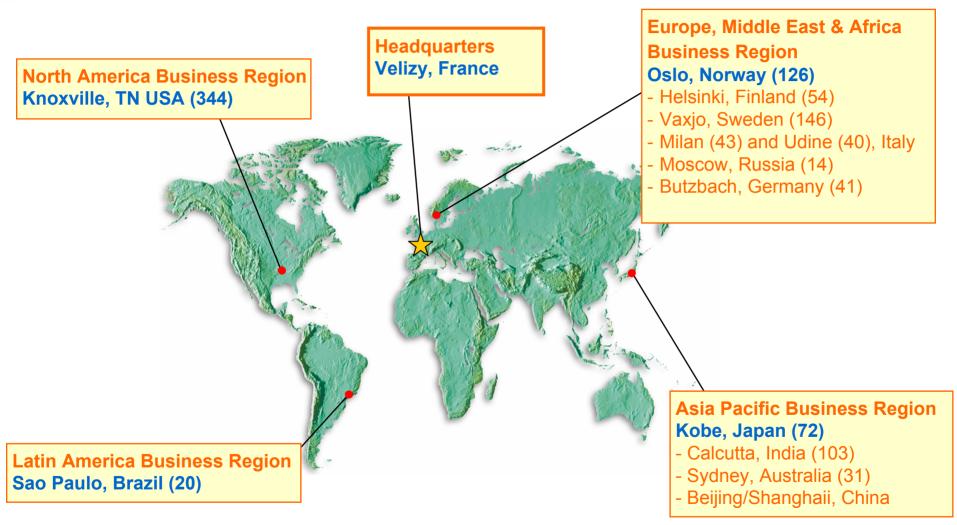
In the rear mirror

1000 people worldwide with a 600 MEUR business

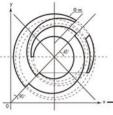


- Particulate Removal
 - Electrostatic precipitators (wet and dry) & SO3 conditioning
 - Fabric Filters
- Gaseous Emissions, FGD
 - Limestone (wet), lime (wet/dry) and seawater desulfurization
- Post Combustion DeNOx
 - Selective Catalytic Reduction (boilers)
 - SCONOx (GT)
 - Hug™ urea to ammonia systems
- Knowledge Based IT Solutions
 - Pegasus neural network applications
- Integrated Emission / Heat Recovery
 - ETS for petrochemical



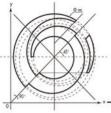


- Green field, retrofit, upgrade installations
- Full range of environmental systems, products, components & services
- Turnkey project management and Engineering from initial concept to handover
- Post-installation maintenance & assistance
- More than 30 years of global references in Power plants and industrial applications



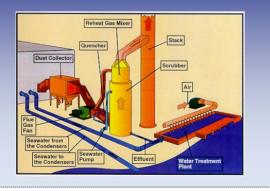
Who We Are

GLOBAL Experience LOCAL Solutions ENVIRONMENTAL Compliance


FGD Experience

Personnel

- International FGD Offices
 - Oslo, Norway
 - Vaxjo, Sweden
 - Milan, Italy
 - Sydney, Australia
 - Kobe, Japan
 - Knoxville, USA
- Over 1500 man-years of FGD knowledge and experience in USA office alone
- Multi-Discipline International Engineering Capabilities
- Global Equipment Sourcing

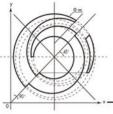


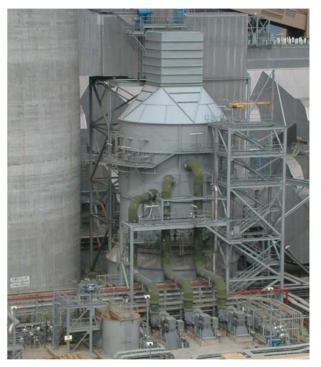
ALSTOM Flue Gas Desulfurization

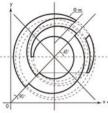
Wet Flue Gas Desulfurization

Seawater Flue Gas Desulfurization

Dry Flue Gas Desulfurization Spray Dryer Absorber

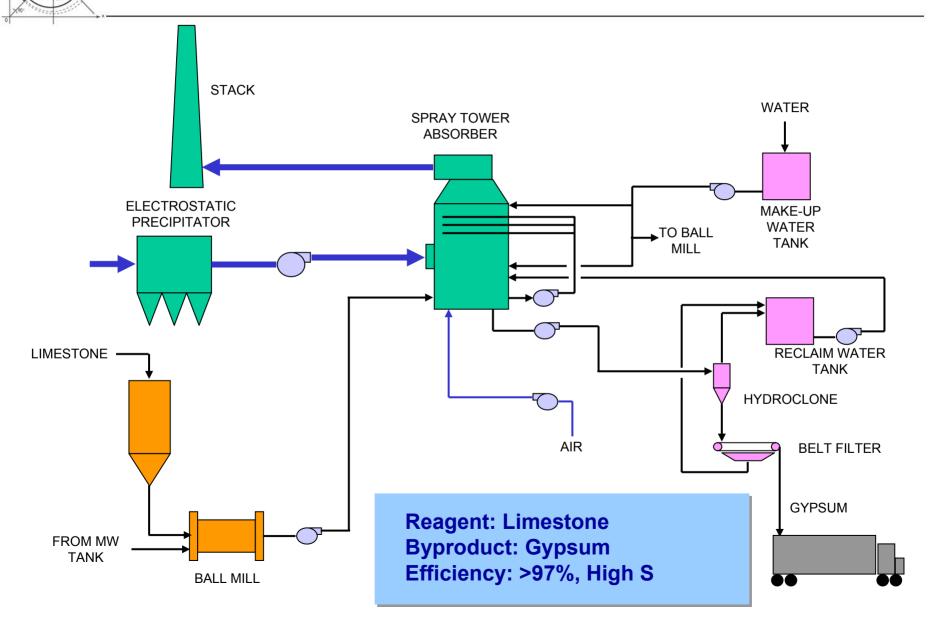

Dry Flue Gas Desulfurization NID

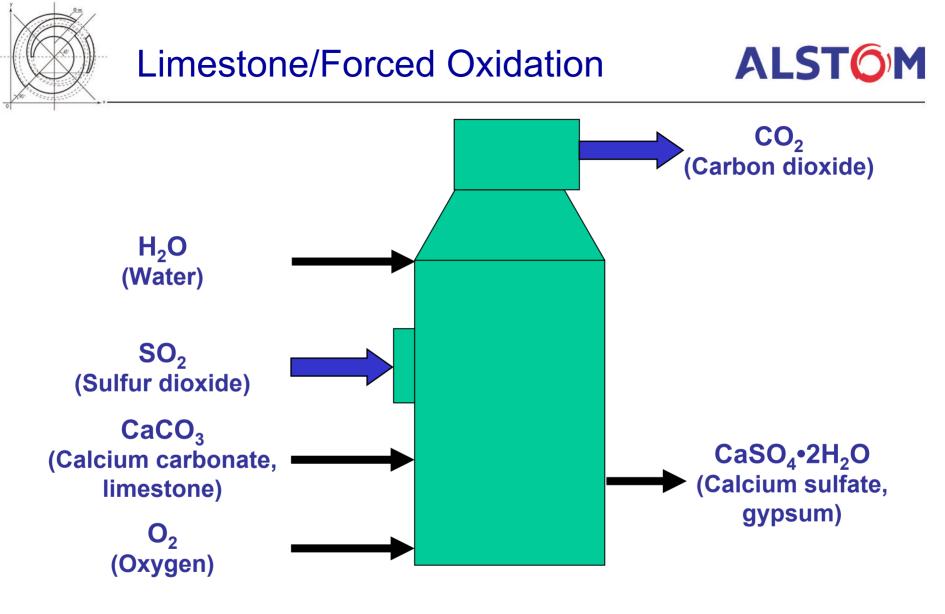

Wet Flue Gas Desulfurization Systems



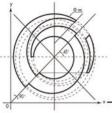
- SO₂ Removal Efficiencies Greater than 98%
- Availability Greater than 98%
- Experience with Low to High Sulfur Fuels (4.5% S; >5,000 ppm SO₂)
- Commercial Grade Byproducts such as Gypsum or Byproducts for Landfill
- Low Cost/Optimal Design
- New and Retrofit Projects

Sual Units 1 & 2 Generating Station Sual, Philippines

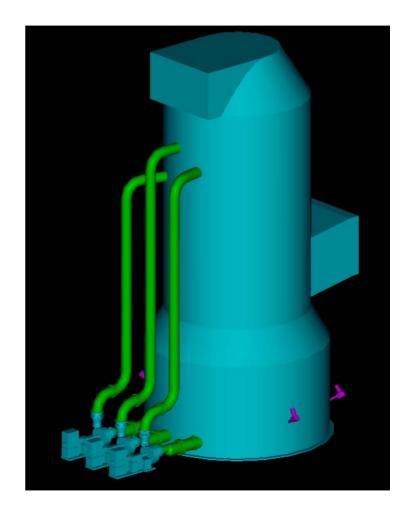

Recent WFGD References

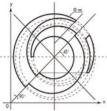


Customer	<u>Plant</u>	MW	<u>%S</u>	<u>Start-Up</u>	Country
San Antonio CPSB	J.K. Spruce 1	546	0.6	1992	US
lsefjordverket	Asnaes 5	650	2.5	1993	DK
Taiwan Power Co.	Lin Kou 1&2	2x350	2.0	1994	TW
Tennessee Valley Authority	Cumberland 1&2	2x1300	4.0	1994	US
Virginia Power	Clover 1&2	2x440	1.7	1994/95	US
GPU-GENCO	Conemaugh 1&2	2x936	2.8	1995	US
Ohio Edison Company	Niles	133	3.5	1995	US
ZEPAK	Konin 7&8	110	1.0	1997	PL
Salt River Project	Navajo 1,2,3	3x803	0.6	1997-99	US
Mirant	Sual 1&2	2x609	1.0	1998	PH
Energotrans	Melnik I	6x55	2.0	1997	CZ
ENDESA	Compostilla II	330	1.8	1997	ES
KKAB	Karlshamn	340	3.5	1997	SE
EGAT	Mae Moh 4-7	4x150	2.4	1999	TH
Community of Randers	Randers	2x40	2.0	1999	DK
TransAlta/PacifiCorp	Centralia 1 & 2	2x730	1.0	2001-02	US
Edison Mission Energy	Homer City	692	3.7	2001	US
PPC (Greek Power Authority)	Florina	330	3.0	2003	GR


32,900 MW Total Installed/Under Contract

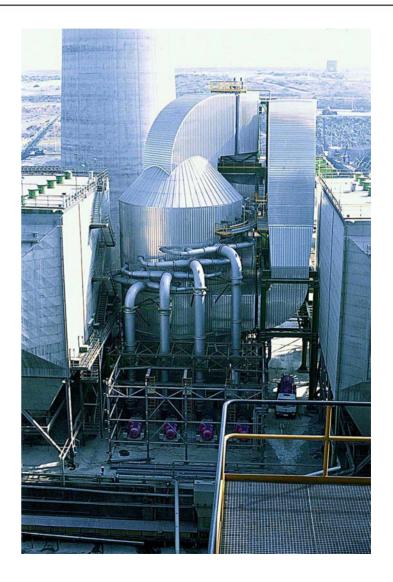
WFGD Process Flow Diagram

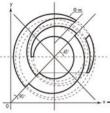




 $SO_2 + CaCO_3 + \frac{1}{2}O_2 + H_2O \rightarrow CaSO_4 \cdot 2H_2O + CO_2$

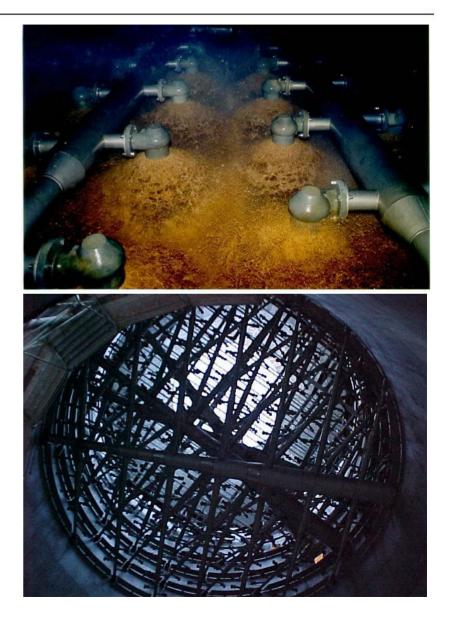
- Countercurrent flue gas / scrubbing liquor
- Size/cost increases with:
 - Gas flow
 - Sulfur inlet loading
 - Removal efficiency
- Materials of construction:
 - Flake-lined steel
 - Rubber-lined steel
 - Stainless steel
 - Nickel-based alloys
 - FRP
 - Tile Lined

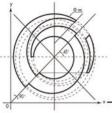



WFGD Design Basis

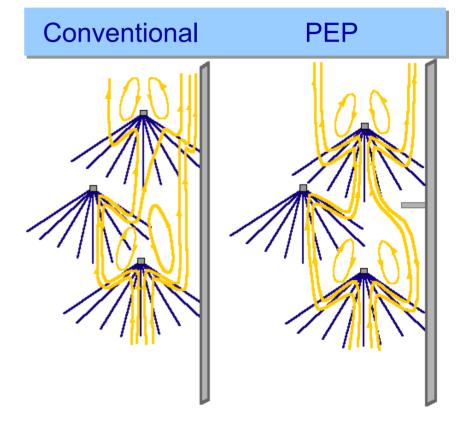
Absorber Design

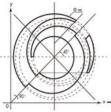
- Liquid to Gas Ratio (L/G)
 - Inlet SO₂ Concentration
 - SO₂ Removal Requirement
 - Scrubbing Liquor pH
 - Spray Zone Height
 - Spray Nozzle Characteristics
 - Chlorides (HCl gas)
 - PEP
 - Absorber Gas Velocity
 - Similar Plant Experience
- Reaction Tank
 - Limestone dissolution, gypsum formation
 - Liquid Residence Time
 - Solids Residence Time




Absorber Spray Zone

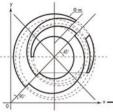
Spray Headers


- Countercurrent slurry spray
- Staggered headers
- Single vessel penetration
- Excellent gas / liquid contact
- Excellent turndown
- Low pressure loss
- High reliability, low scale potential
 Performance Enhancement Plates
 Materials of Construction
- FRP
- Metallic



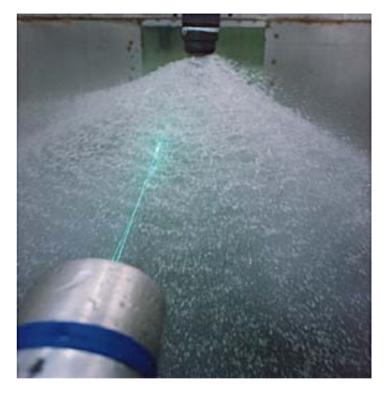
Performance Enhancement Plates (PEP)

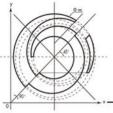
- Prevents wall sneakage
- Reintroduce wall slurry
- Improves efficiency/ reduces L/G
- Power savings due to lower L/G
- FRP or alloy construction


Savings: 400-500 kW for 500 MW plant

Spray Zone SO₂ Mapping

- Differential Optical Absorption Spectroscopy
 - Alstom proprietary
 - SO₂ measurement inside absorber
 - 1 inch space resolution
 - 5 ppm SO₂ resolution
- Computational Fluid Dynamics
- Test Facilities
 - Switzerland (Chemistry)
 - Sweden (Mass Transfer)
 - USA (CFD, Mist Eliminators)

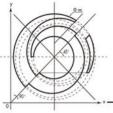




Spray Nozzles

- Hollow cone, ramp style
- Nitride bonded silicon carbide
- 8 psig at 250-400 gpm
- 90-120° Spray cone angle
- 300-600% spray coverage
- Droplet size range 200-2000 microns

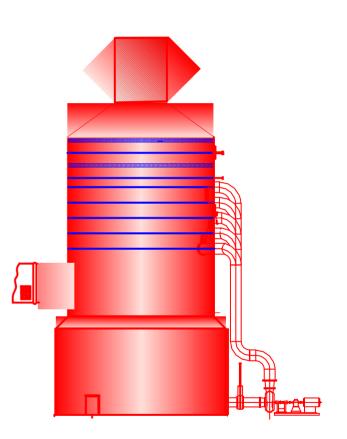
Laser Measurement of Droplet Size Distribution

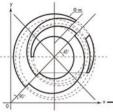


Absorber Recycle Pumps

- Each pump has its own dedicated spray level
- Scrubber liquor flow can be tailored to system requirements to meet turndown needs.
- High availability with spare pump / level
- Heavy duty, high efficiency pumps (>90%)
- Newer, higher capacity pumps reduce FGD costs.

Advanced WFGD Features

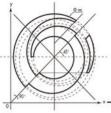

SO2 Removal:97%Availability97%Gas Velocity:13.1No. Spray Elevations:3-4Spray Zone:Hig


Spray Pumps:

Spare Absorber: Absorber / Stack: Mist Eliminators:

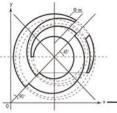
Materials:

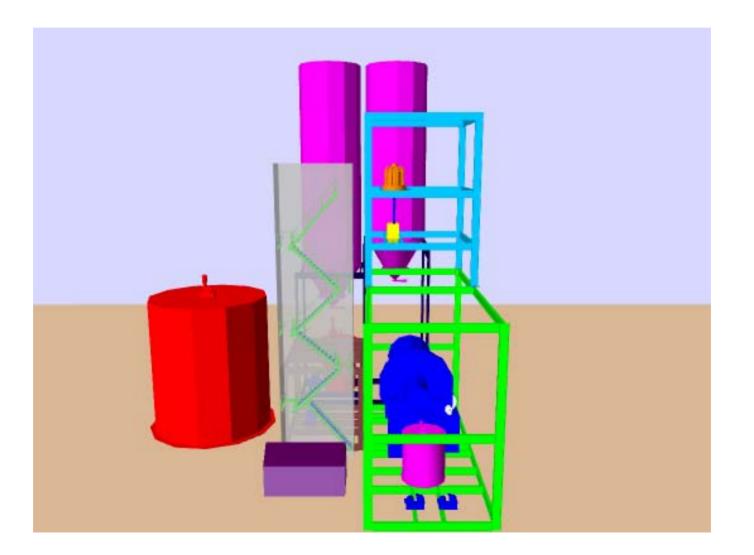
Oxidation: Reheat: Byproduct: 97%-98% 97%-98% 13.1 ft/sec (4.0 m/sec) High efficiency spray zone; PEP, Increased spray height Increased capacity: 72,000+ gpm each No Combined 2+2 Plus, Koch, Munters Flakeglass or Rubber Lined CS, SS or Alloy C276 Roll-Clad Lance Injection No Commercial gypsum

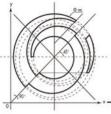


Limestone grinding

- Horizontal/vertical wet ball mills
- On-site vs. off-site preparation
- Product ground to 90-95% < 40 μ; 30-35% solids
- Rubber-lined with hardened steel balls

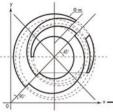



- Single 100% capacity mill
- Pre-ground limestone silo provided in case of unplanned mill outage
- Most applicable to:
 - Smaller units (< 500 MW)</p>
 - Lower sulfur coals (< 2% S)
- Careful consideration to:
 - Pre-ground limestone supply
 - Mill maintenance planning



Savings: \$3-5 million

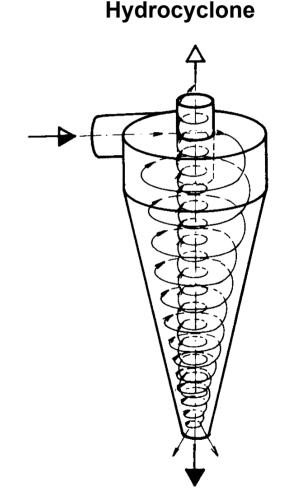
Limestone Preparation Island

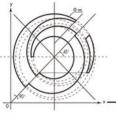

Typical specification:

- >95% CaSO₄.2H₂O
- <0.5-1.0% CaSO₃.¹/₂H₂O
- <100 ppm Cl
- <10% moisture
- pH 6 8
- 30-40µ MMD

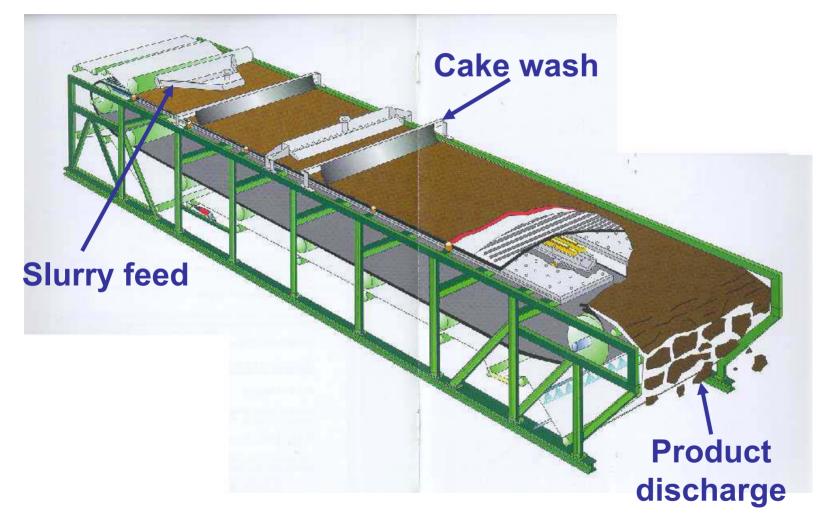
Requires:

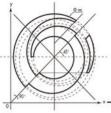
- High purity limestone (95-96%)
- High efficiency ESP
- 99+% oxidation
- Belt filter or centrifuge
- Cake washing/purge stream

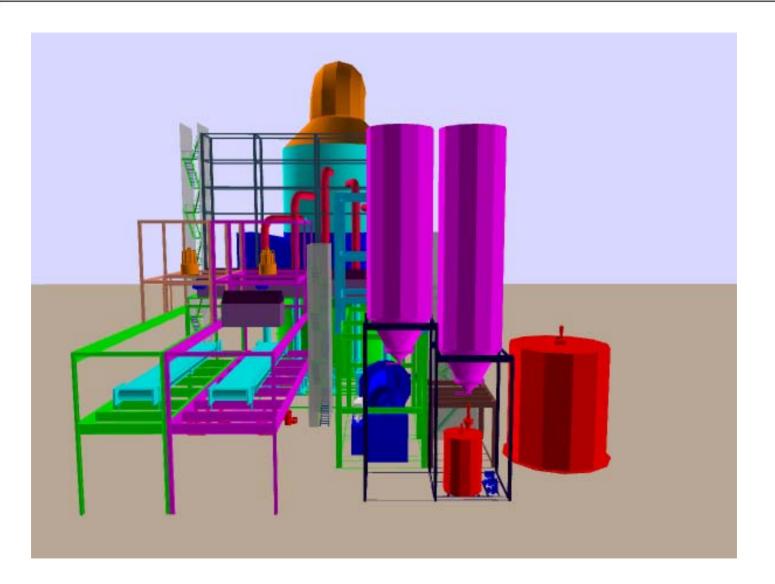


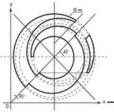


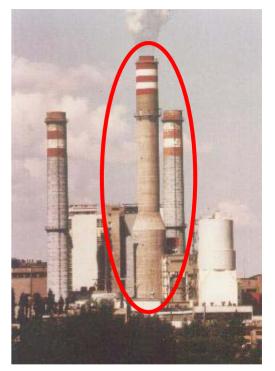
Gypsum Hydrocyclone:


- Heavy, coarse particles to underflow to secondary dewatering
- Lighter, fine particles to overflow including flyash, limestone
- No moving parts

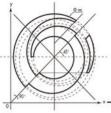



Vacuum Belt Filter





WFGD General Arrangement



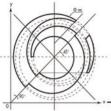
- Absorber/chimney integrated into single structure
- Advantages:
 - Lower capital cost
 - Smaller footprint
 - Shorter construction duration
- Konin Units 7 & 8
 - 2 x 55 MW in Poland
 - Began operation in 1997
 - Rubber-lined/concrete construction

Regional Power Company of Poland Konin Station Units 7&8 - 2 x 55 MW Adamon, Konin, Poland

Savings: Up to \$2-5 million; 1-2 months

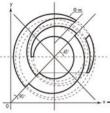
Range of Experience

175 to 2,600 130 to 1,300 Coal, lignite, Orimulsion, oil 130 to 700 0.5 to 4.5 5,200 ppm / 15,000 mg/Nm³ 85 to 99 Limestone, Lime, Flyash Gypsum, Landfill Wet Stack, By-Pass, Indirect, Regenerative 1.000 to 120.000 River, Lake, Plant Waste, Seawater



Recent WFGD Project

Details


TransAlta

Project Scope	Consortium Alliance: absorbers, reagent prep, dewatering, ductwork, ID fan modifications, stack, buildings, electrical, DCS piping, BOP
Location	Washington, USA
Capacity	2 x 700 MW
Scheduled Start-Up	Unit 2 – Dec 31, 2001 Unit 1 – Dec 31, 2002
Commercial Operation	Unit 2 – Nov 16, 2001 Unit 1 – Dec 31, 2002
Fuel	1.05% sulfur coal
SO ₂ Removal	91%
No. Absorbers	1 per boiler
No. Spray Levels	3+1
Absorber Size	58 ft. (17.7 m) dia.
Byproduct	Wallboard gypsum
Highlights	30 mo. Schedule;

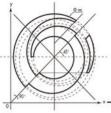
317LMN absorber

TransAlta Centralia Units 1 & 2 - 2 x 700 MW Lewis County, WA

TransAlta Centralia Units 1 & 2

Materials of Construction

Absorber	Solid 317 LMN
Reaction Tank	Solid 317 LMN
Internal Spray Headers	317 LMN
External Spray Pipe	FRP
PEP	317 LMN
Outlet Duct	Solid 317 LMN
Recycle Pumps	Rubber lined casing, metal impeller
Inlet Duct	Alloy 276 solid, 12 feet
Mist Eliminators	FRP, Munters
Mist Eliminator Wash Pipe / Nozzles	FRP
Oxidation Air Lances	317 LMN


Homer City Unit 3

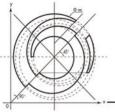
Edison Mission Energy

ALSTOM Scope	Turnkey: absorbers, reagent prep, foundations, dewatering, ductwork, stack, buildings, electrical, piping, BOP, waste water treatment
Location	Pennsylvania, USA
Capacity	1 x 650 MW
Start-Up	Sept 2001
Fuel	3.7% sulfur coal
SO ₂ Removal	98%
No. Absorbers	1
No. Spray Levels	4+1
Absorber Size	59 ft. (18.0 m) dia.
Byproduct	Wallboard gypsum
Highlights	29 mo. Schedule; C-276 roll-clad absorber; SCRs on Units 1, 2, & 3.

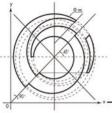
Edison Mission Energy Homer City Unit 1 - 1 x 650 MW Homer City, PA

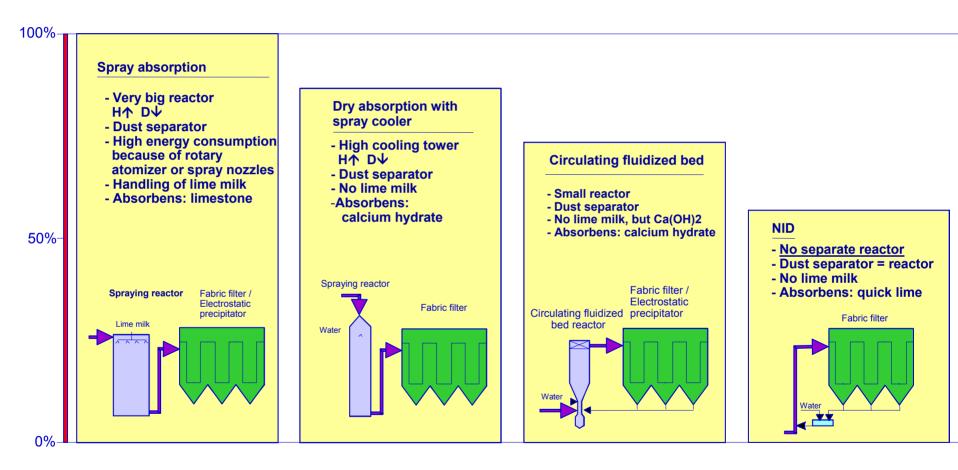
Project Features

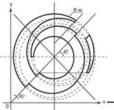
- Turnkey Alstom Project
- Award: April 17, 1999
- FGD In Service: September 21, 2001
- Performance Test: October, 2001
- Single 650 MW Absorber
- Wet FGD with SCR
- Construction Management: Alstom
- Contractors: Chattanooga Boiler & Tank, McCalls, Duke Fluor Daniel, MPS
- 29 Month Project Schedule


Edison Mission Energy Homer City Unit 1 - 1 x 650 MW Homer City, PA

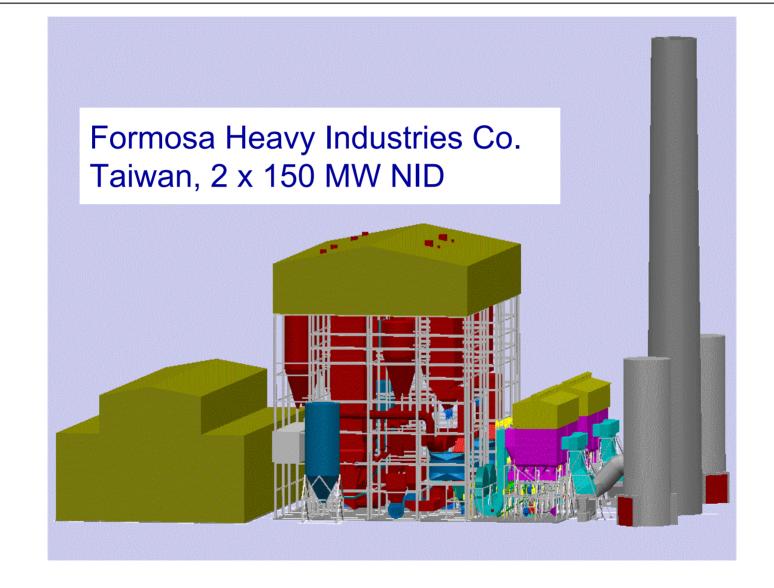
Dry Flue Gas Desulfurization SDA and NID ALSTOM

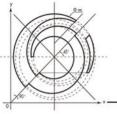

Alstom started DryFGD in 1980 ALSTOM

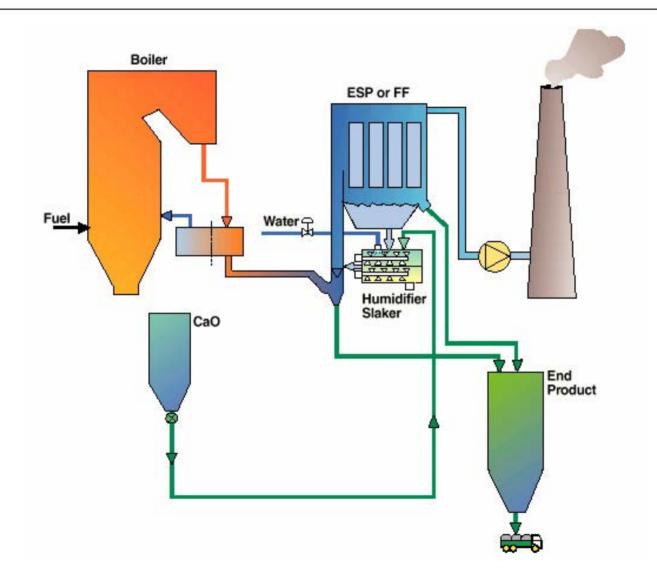

- More than 20 years of experience in Dry FGD
- More than 120 systems installed today
- Rotary SDA, Nozzle SDA, Fluidized bed and NID systems for all kind of different fuels in operation

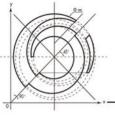

Dry Flue Gas Desulfurization

South Carolina Electric & Gas Cope Unit 1, 385 MW

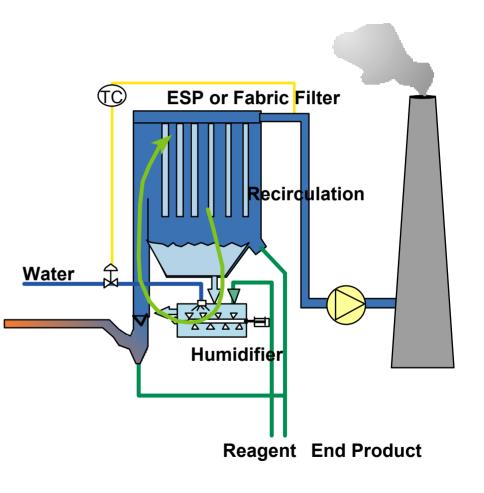


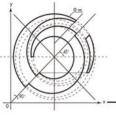

A History of Dry FGD Systems

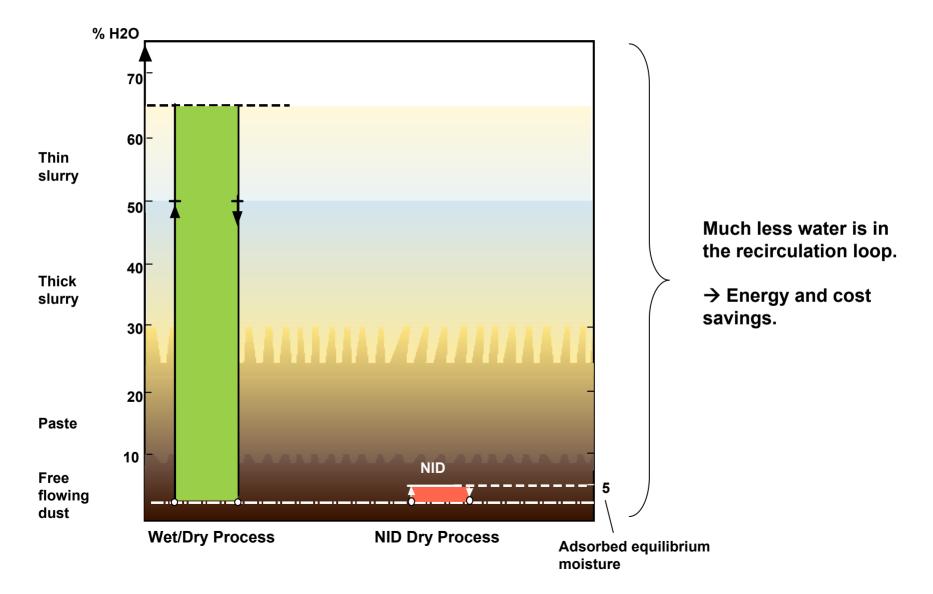


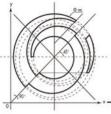


The NID Process



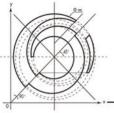

NID Process Concept


- No slurry handling
- Direct usage of CaO
- "Dry" product
- High utilization of reagent



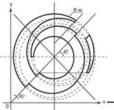
SDA and NID – Moisture Content in Dust

• Flue Gas SO₂ Content

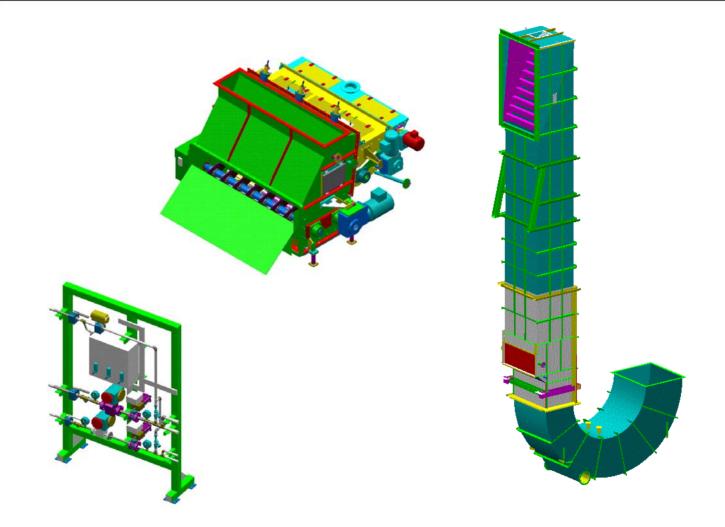

- Tested up to 3500 ppm
- Most applications are for low and medium sulfur coal.

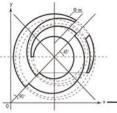
• Flue Gas Inlet Temperature

▪ Low temp preferred; max approx.. 200 °C

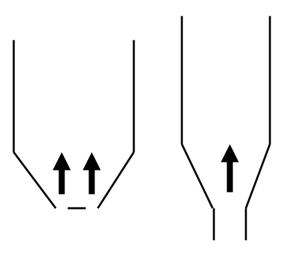

Gas flow

- Operating range from 20,000 Nm3/h
- Single Reactor module up to Nm3/h
- Parallel reactors for higher flows

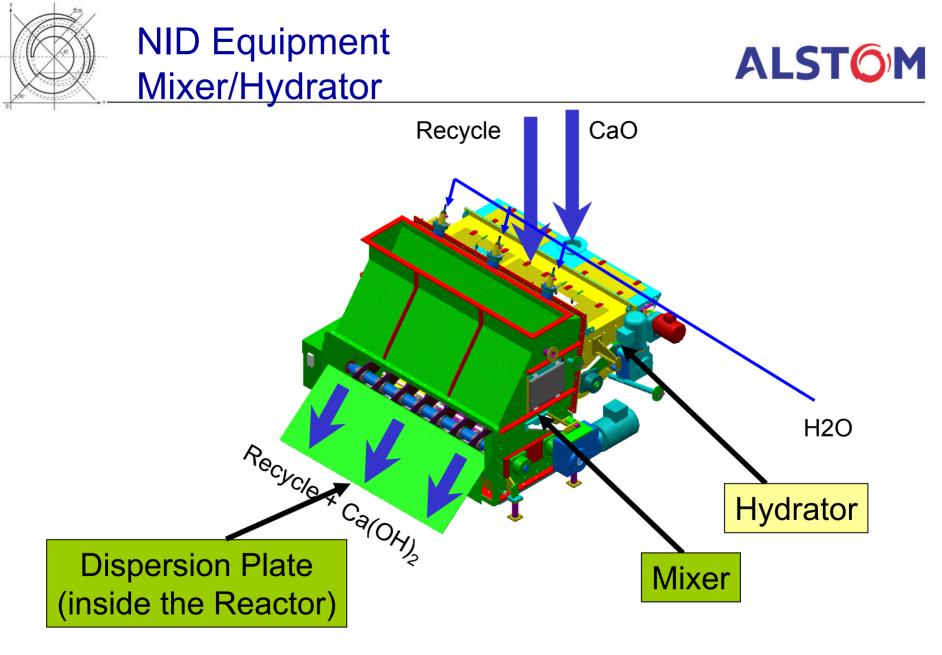



- Integrated FGD and ESP or Fabric Filter saves space
- High SO2 removal efficiency
- Lower operating cost than comparable systems
- Lower investment than ESP + Wet FGD
- No separate Dust Removal system necessary
- Less maintenance due to less equipment
- Less maintenance due to no corrosion No water spraying and 100 % removal of SO3.

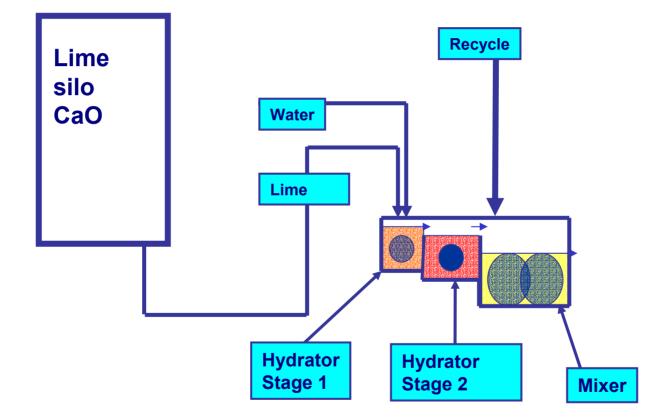
NID Standardised components

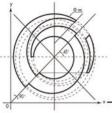


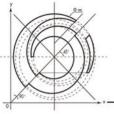
NID


Same flow velocity in whole reactor.
Same lifting force all the time
Agglomerates are following the flow
No water spraying inside reactor/flue gas

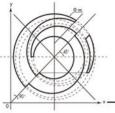
Other

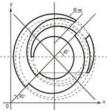

Lower velocity in upper part of reactor, acceleration through venturi
Lower lifting force in upper part
Agglomerates are to a higher extend collected in the reactor and can't leave it


Water addition inside reactor



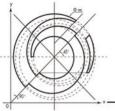
Mixer/Hydrator installation




- Mechanically Stirred Fluidised Bed
- Low Specific Power Consumption enables a Very Large Capacity per unit
- Positive wetting of all recycle as opposed to other system with wetting inside Reactor.
- Enabling factor for CFB + NID; residence time in mixer is long enough to allow activation of ash, in total 15 -25 minutes (20 s x no. of passes)

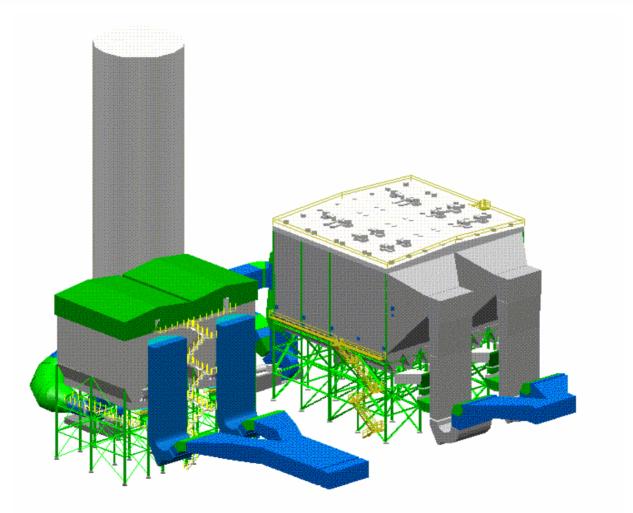
Journey through the NID Reference List

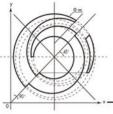
- I. NID and ESP
- II. NID and Fabric Filter
- III. NID for Waste to Energy Plants
- IV. CFB Boiler and NID



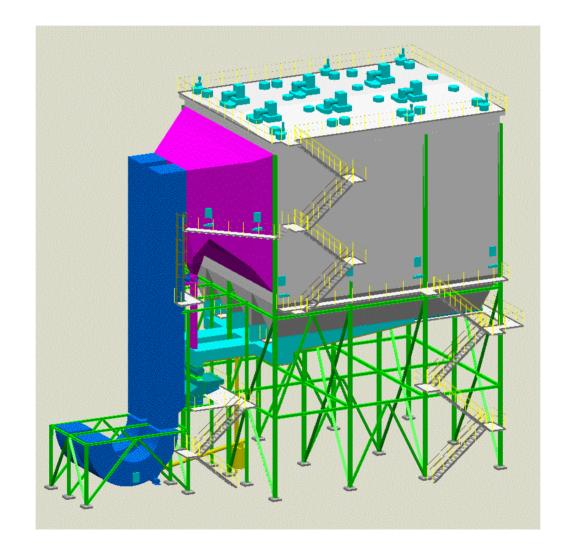
NID Reference Plants

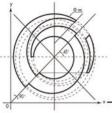
Power



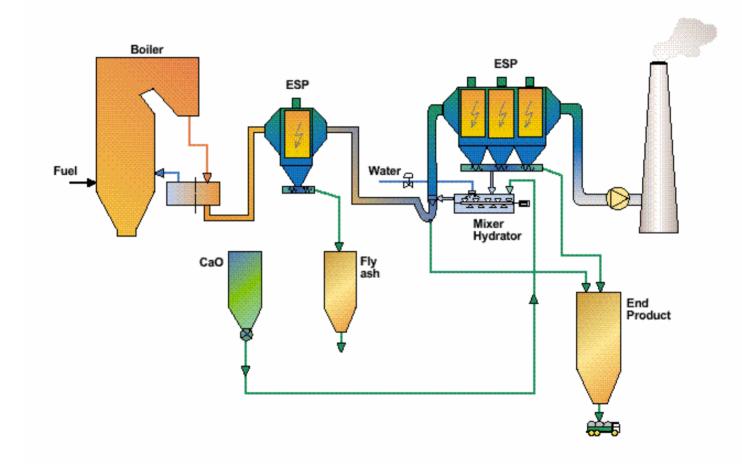

Plant	Fuel	Nm3/h	Year
Laziska, PL	Coal	2 x 518,000	96/97
Vaasa, Fl	Diesel	145,000	1998
Nuremberg, DE	Coal	168,200	1999
Fifoots Point, UK	Coal	3 x 450,000	2000
Zhejiang #8, CN	Coal	330,000	2001
Mai Liao RF-1, TW	Petcoke	2 x 511,500	2002
Seward, US	Coal	2 x 930,000	2004
Gilbert, US	Coal	900,000	2004
Elektrenai #8, Ll	Orimulsion	520,000	2004
HuaYingShan, CN	Coal	451.000	2003
Baotou #2, CN	Coal	850,000	2004

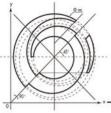
NID End Collector Options FF and ESP

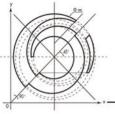




NID + ESP



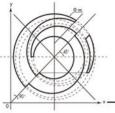

NID-ESP, Juhua Group Co. P. R. China



Zhejiang, Juhua Group Co. NID plant data boiler No 8

Power production Main fuel Flue gas flow **Temperature** Inlet SO₂ SO₂ removal efficiency **Absorbent** Dust emission, outlet NID End product conveying End product In operation

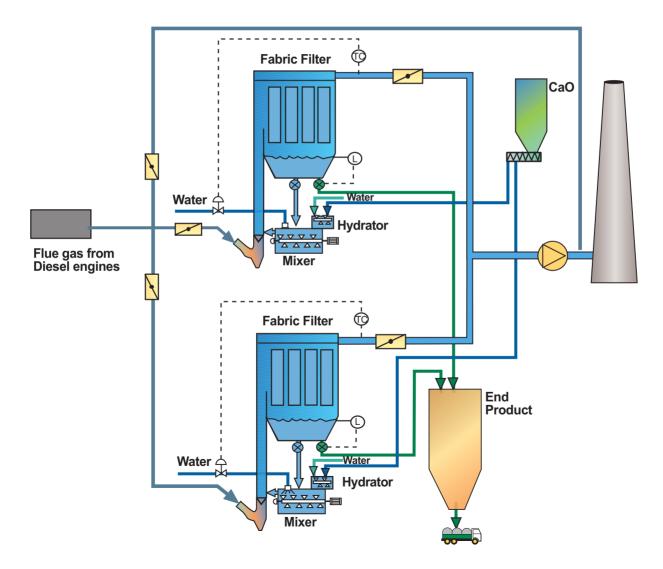
Steam plus 55 MWe Coal 330 000 Nm³/h 148 °C max. 1 100 ppm 85 % Ca(OH)₂ alternatively CaO max. 200 mg/Nm³ Dense phase pneumatic system Landfill Year 2001

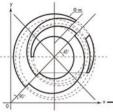

•Low operating temperature -> insulation

•High dust load -> purging, rapping

•Control and rectifiers EPIC II control T/R of correct size

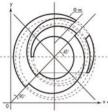
•Slightly higher ESP power consumption than in operation with low resistive coal


•Sizing of ESP: For coal case and NID case

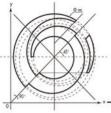


NID + Fabric Filter

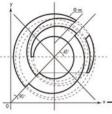
Vaasa Diesel Power Plant process description



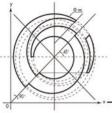
Vaasa Diesel Power Plant



EWAG Nürnberg Replacement of SDA with NID

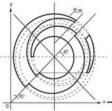


EWAG Nürnberg NID basic plant data

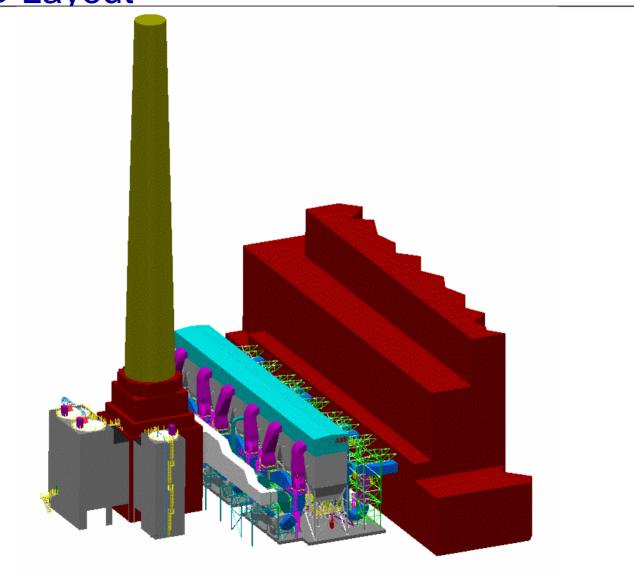

Power production Main fuel Flue gas flow **Temperature** Inlet SO₂ Outlet SO₂ **Absorbent** Dust emission, outlet NID End product conveying End product In operation

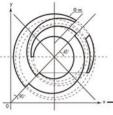
114 MWt Coal 157 000 Nm³/h 140 °C 1800 mg/Nm³ max. 180 mg/Nm³ CaO max. 10 mg/Nm³ Dense phase pneumatic system Landfill Year 1999

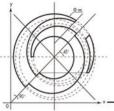
Power production Main fuel Flue gas flow Temperature, max SO2 inlet SO2 removal efficiency SO2 removal efficiency Absorbent Dust load, inlet NID Dust emission, outlet NID Dust emission, outlet NID End product utilisation End product conveying Conveying distance

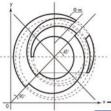

2 x 120 MW Coal, max 1.4% S 2 x 518.000 Nm3/h 165°C 1,500 – 4,000 mg/Nm3 80% (guaranteed) 95% (measured) CaO 22,000 mg/Nm3 (no precollector 50 mg/Nm3 (guaranteed) 15 mg/Nm3 (measured) Stabilisate/fire prevention in coal mines Dense phase pneumatic system 1,200 m (tested)

Fifoots Point - Exterior

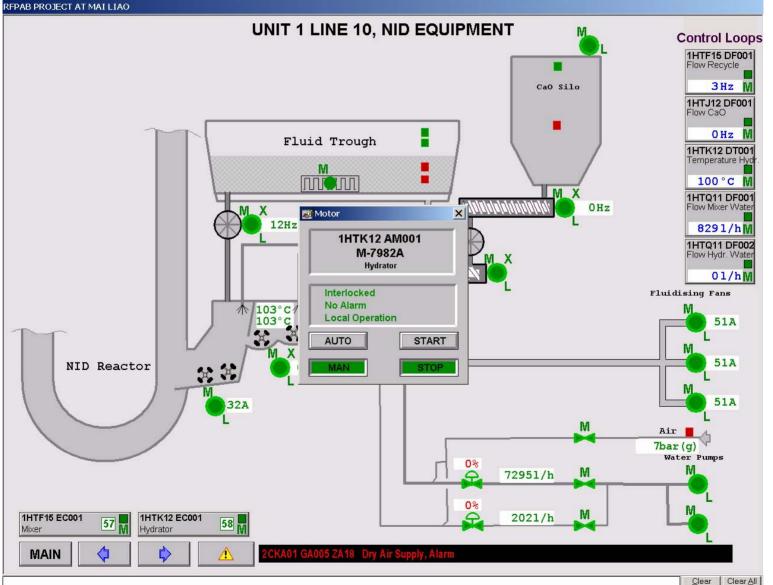


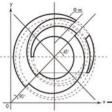


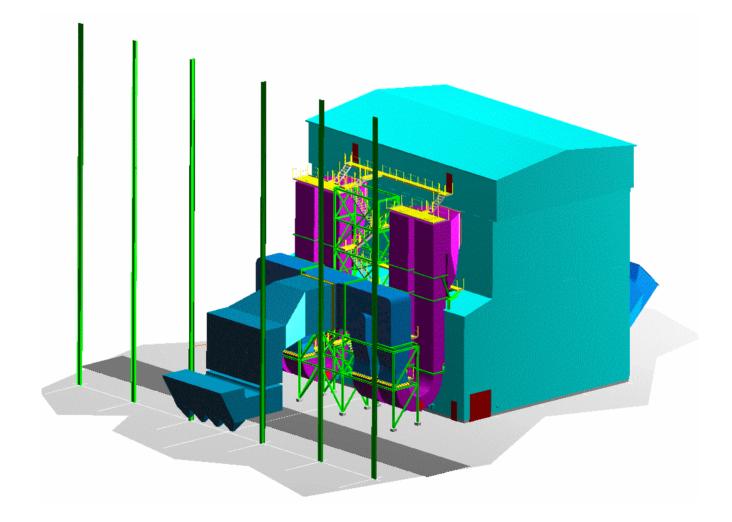

AES Fifoots Point NID Layout

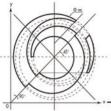


Power production Main fuel Flue gas flow Temperature SO2 inlet SO2 removal efficiency Absorbent Dust emission, outlet NID End product conveying 3 x 120 MW Coal, 1.2% S 3 x 450.000 Nm3/h 133°C 800 ppm 80% (guaranteed) CaO 25 mg/Nm3 (guaranteed) Dense phase pneumatic system

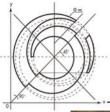



Mai Liao Site sept 2002


Mai Laio - Control Screen

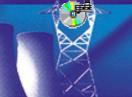


Seward, USA NID for CFB 2*250 MW

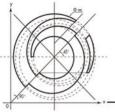


Seward, USA NID - Technical data

Type Size Gas flow In operation	CFB + NID 2*250 2*906 000 Dec 2003	MWel Nm³/h
Emissions guarantees Dust SO2 emission SO2 removal overall (Boiler + NID)	10 318 95	mg/Nm³ ppm %


ALSTOM Technology moves on **ALSTOM**

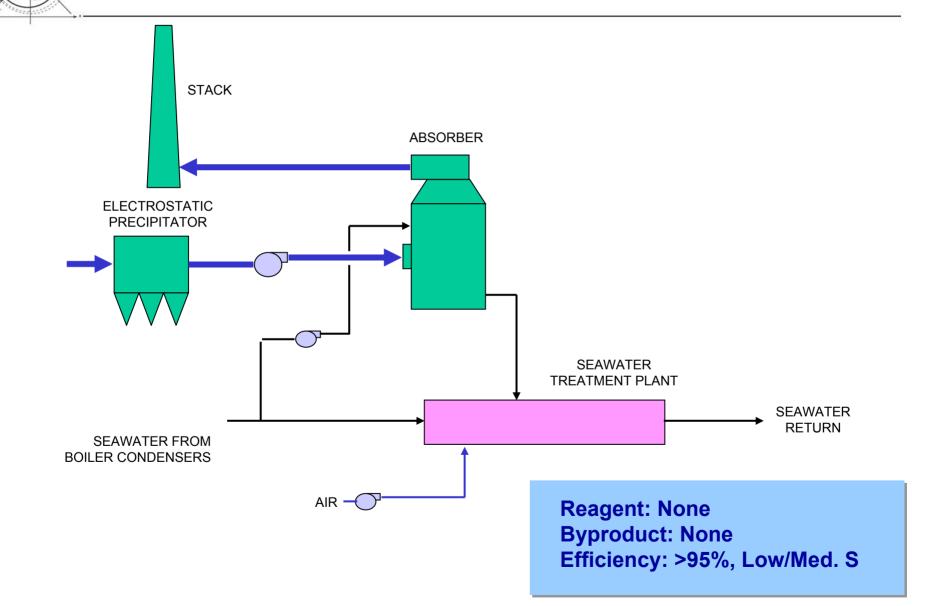
NID Pilot Plant in Alstom's Laboratory: R+D test runs lead to new developments



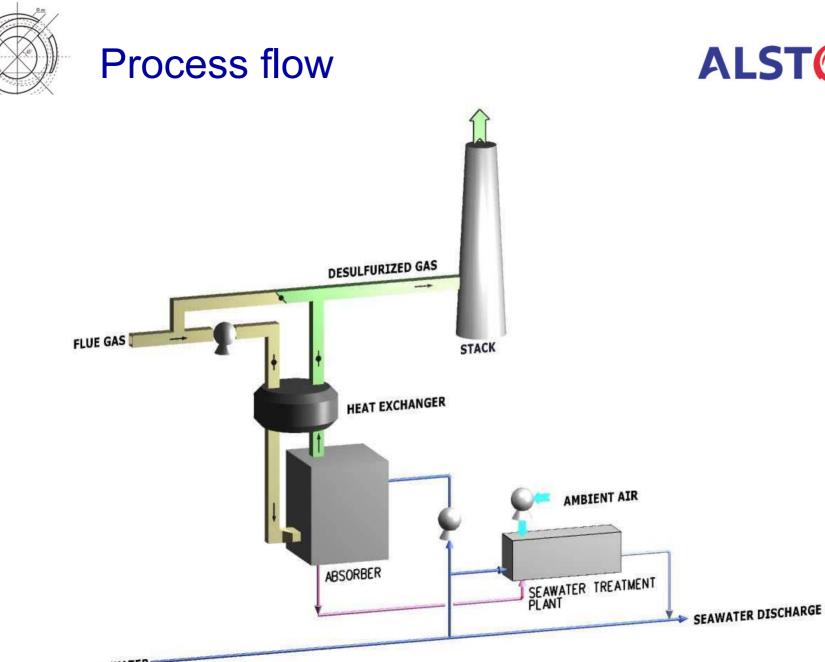
ALSTOM Seawater FGD

30 years operation and development

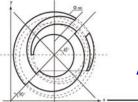
Successful applications

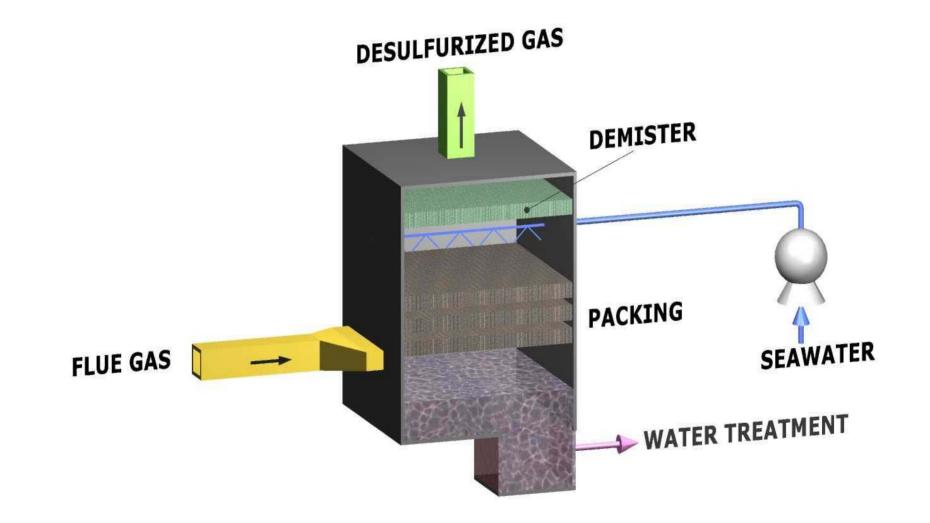

Seawater available Low-medium sulfur content

Coal and Oil-fired Power Stations

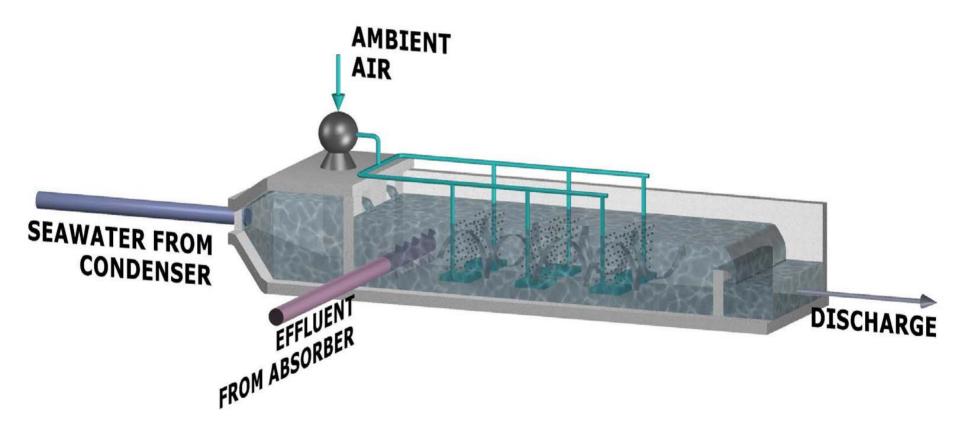

Metal smelters

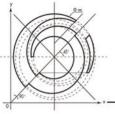
Oil industry

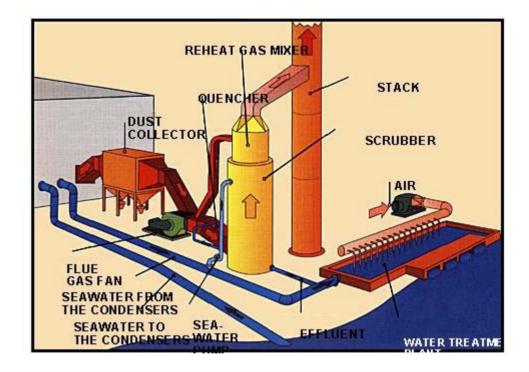

Seawater FGD Process Diagram ALSTOM

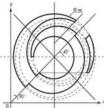


SEAWATER -



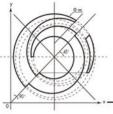






Seawater FGD

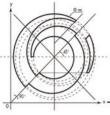
- Utilizes natural alkalinity of seawater
- High efficiency via packed tower
- No reagent, no byproduct
- Effluent treated via oxidation prior to discharge

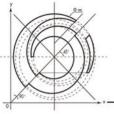


Recent SWFGD References

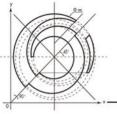
Customer	<u>Fuel</u>	<u>MW</u>	<u>Start-Up</u>
UNELCO Tenerife, SP	Oil	2 x 160	1995
Shenzhen West Power Unit 4, CN	Coal	300	1998
Mitsui Paiton, ID	Coal	2 x 670	1998/1999
TNBJ Manjung, MY	Coal	3 x 700	2002/2003
Shenzhen West Power Unit 5 + 6, CN	Coal	2 x 300	2004
Vasilikos II EA Cyprus	Oil	130	2005

Over 8,000 MW Operating or Under Contract


Shenzen West SWFGD

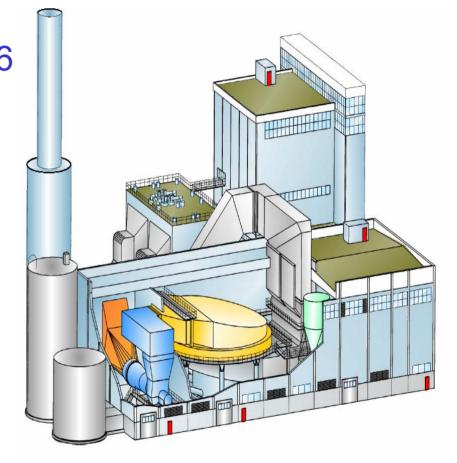

Summary

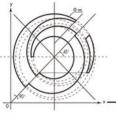
FGD Alternatives


	WFGD	DFGD - SDA	DFGD - NID	SWFGD
Installed	33,000 MW	12,000 MW	3,000 MW	8,000 MW
Capacity				
First Installation	1968	1980	1996	1968
Reagent	Limestone	Lime	Lime	Seawater
			(Limestone with CFB)	
Byproduct	Salable gypsum or	Landfill	Landfill or Use in	Treated Seawater
	landfill		Cement/Road Constr	
Sulfur	<6%	<2.5%	<6%	<2%
Removal	>98%	90-95%	90-95%	>95%
Efficiency			(98% w/CFB)	
Footprint	Small in power island	Large in power island	Small in power island	Small in power island
	area; large overall	area; small overall	area and overall	area; moderate overall
Pros	 Low cost reagent 	 Low capital cost 	 Low capital cost 	 No reagent
	Marketable	Low power	Low power	 No byproduct
	byproduct	consumption	consumption	 Fuel flexibility
	Large reference list	 Dry byproduct 	 Dry byproduct 	
	Fuel flexibility	Operational	Operational	
	Ease of retrofit	simplicity, medium maintenance costs	simplicity, low maintenance costs	
Cons	High capital cost	High cost reagent	High cost reagent	Moderate capital
	High power	Byproduct use	Byproduct use	cost
	consumption	limited	limited	Effluent discharge
				Limited applicability

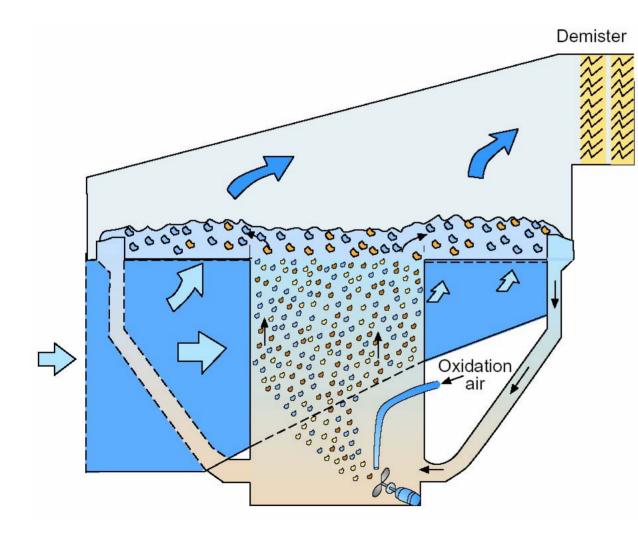
Why ALSTOM?

- A diverse portfolio of proven FGD technologies
 - Wet Flue Gas Desulfurization
 - SDA Dry Flue Gas Desulfurization
 - NID Dry Flue Gas Desulfurization
 - Seawater FGD
- Numerous and recent references in all technologies with over 55,000 MW of FGD installations
- Experience over a wide range of site and process conditions
- FGD personnel and offices located around the world with both FGD and large project capability

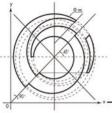



Karlshamn Full Scale Experience

Start-up: November 1996
 340 MW Flowpac WFGD
 Patent Owner: Alstom



New Developments



No Recycle Pumps

Energy from oxidation blower and fan used in place of recycle pumps.

- 97-98% SO₂ collecting efficiency with high sulfur content. Excellent reagent utilization.
- 70% SO₃ removal and high particle collecting efficiency
- No scaling or corrosion problems
- Lower maintenance and supervision costs due to low overall height and absence of slurry pumps, absorber headers, and nozzles

Karlshamn - Sweden

