Reactions of Unsaturated and Saturated Organic Aerosol Particles with NO₃ Radicals

Lin Wang, Aiko Matsunaga, Christen Strollo, Janet Arey, Roger Atkinson, and Paul Ziemann

Air Pollution Research Center

UNIVERSITY OF CALIFORNIA

RIVERSIDE

Funding: U. S Department of Energy National Science Foundation

Heterogeneous Oxidation of Organic Particles

Radical-Initiated Reactions of Organics

Functional groups located anywhere. Complex mixture Functional groups localized near C=C bond. Additional -NO₃ compared to H-atom abstraction

Investigated Compounds

Mechanism of Oleic Acid + NO₃ Reaction

Reactions of Alkyl Peroxy Radicals

Experimental Methods

- Particles generated by evaporation-condensation and reacted in chamber with N_2O_5 as NO_3 source. Methacrolein added as a reference compound and decay measured by GC-FID to determine NO_3 concentration for kinetics. When particles ~60-100% reacted, NO added to remove N_2O_5 .
- Particles analyzed in real-time and by temperatureprogrammed thermal desorption with TDPBMS.
- Filter samples separated by HPLC and analyzed with UV and TDPBMS detection to identify and quantify products, and by high resolution ESI-APCI-MS for identification.
- Particle size distribution measured by scanning mobility particle sizer (SMPS).
- Gas-phase aldehydes collected/derivatized on solid-phase micro-extraction (SPME) fibers and quantified by GC-FID.

HPLC Analysis of Oleic Acid + NO₃ Reaction Products

- HN and CN concentrations measured using authentic standards
- HN:CN yields = 0.41:0.59¹
- HN:CN yields = 0.48:0.52²

¹Calculated from peaks 1-3

²Calculated from peaks 1-3 + 4-6 (weighted using ESI-APCI-MS signals)

HPLC/ESI-APCI-MS of Oleic Acid + NO₃ Products

Peak	Molecular	Predicted	Measured	∆ Mass
	Formula	Mass	Mass	(ppm)
1.	HN+H-HNO ₃ -2H ₂ O	263.2375	263.2384	3.5
	HN+H-HNO ₃ -H ₂ O	281.2481	281.2487	2.3
	HN+H-HNO ₃	299.2586	299.2591	1.6
	HN+Na	384.2362	384.2366	1.0
2.	Identical to Peak 1			
3.	CN+H-HNO ₃ -H ₂ O	279.2324	279.2325	0.3
	CN+H-HNO ₃	297.2430	297.2431	0.4
	CN+Na	382.2206	382.2209	0.9
	CN+K	398.1945	398.1947	0.5
4.	HN+H-HNO ₃ -2H ₂ O	263.2375	263.2359	6.0
	HN+H-HNO ₃ -H ₂ O	281.2481	281.2473	2.7
	HN+H-HNO ₃	299.2586	299.2576	3.4
	CN+Na	382.2206	382.2197	2.2

HPLC/ESI-APCI-MS of Oleic Acid + NO₃ Products

Peak	Molecular	Predicted	Measured	∆ Mass
	Formula	Mass	Mass	(ppm)
6.	$HN+H-HNO_{3}-H_{2}O$ $HN+H-HNO_{3}$ $HN+Na$ $HN+H-HNO_{3}$ $HN+CN+-H_{2}O+Na$ $HN+CN+Na$	281.2481 299.2586 382.2206 297.2430 725.4564 743.4670	281.2473 299.2570 382.2201 297.2427 725.4543 743.4641	1.5 5.4 1.2 0.9 2.9 3.8
	HN+CN-H ₂ O+K	741.4304	741.4287	2.3
	HN+CN+K	759.4409	759.4412	0.3
	$\begin{array}{l} HN+2CN-2H_2O+Na\\ HN+2CN-2H_2O+K\\ HN+2CN-H_2O+K\\ 2HN+CN-H_2O+Na\\ 2HN+CN-H_2O+K\\ 2HN+CN-2H_2O+K\\ 3HN-2H_2O+K\\ \end{array}$	1066.6767 1082.6506 1100.6612 1068.6923 1102.6768 1084.6662 1086.6818	1066.6729 1082.6504 1100.6651 1068.6859 1102.6709 1084.6711 1086.6869	3.6 0.2 3.6 6.0 5.4 4.5 4.7
	2HN+2 <mark>CN</mark> -2H ₂ O+Na	1427.9230	1427.9161	4.8
	2HN+2 <mark>CN</mark> -2H ₂ O+K	1443.8970	1443.8958	0.8

Possible Oligomer Linkages

Volatilization of Oleic Acid + NO₃ Reaction Products

Thermal desorption profile from oleic acid + NO₃

m/z 144 characteristic of 9-ONA Should desorb ~28°C if present

- Gas-phase nonanal yield = 2%
- No 9-oxononanoic acid detected in particles by TDPBMS
- Measured relative mass change $\Delta m = [V_f \rho_f / V_i \rho_i - 1] = 1.27$
- Predicted relative mass change, assuming no volatilization and equal HN and CN yields

$$\Delta m = \frac{MW_{HN} + MW_{CN}}{2 \times MW_{OA}} = 1.28$$

Conclusions: Products and Mechanism of the Reaction of Oleic Acid with NO_3 Radicals

- The primary products of the reaction of oleic acid + NO₃ are the hydroxy nitrate and carbonyl nitrate (2 isomers each)
- The hydroxy nitrate and carbonyl nitrate are both formed with yields of ~0.5, indicating that the major reaction pathway for β-nitrooxy peroxy radicals is the formation an alcohol + carbonyl pair (the Russell mechanism)
- The formation of volatile products is negligible (~0.02 yield)
- The hydroxy nitrate and carbonyl nitrate can react in the particles to form oligomers, apparently through some combination of hemiacetal, ester, and anhydride linkages

Heterogeneous Kinetics

Near-surface reaction

Plot $[I/I_o]^{1/2}$ -1 vs. $P_{NO3}t$ $\gamma_{NS} = [-slope][V/S][8RTM_o/c]$

• Bulk reaction (fast NO₃ diffusion)

Plot $ln[I/I_o]$ vs. $P_{NO3}t$ $\gamma_B = [-slope][V/S][4RTM_o/c]$

 $\begin{array}{l} \gamma = \mbox{reactive uptake coefficient} \\ I/I_o = \mbox{organic signal ratio} & P_{NO3} = NO_3 \mbox{ pressure} \\ V/S = \mbox{particle volume/surface area} & t = time \\ M_o = \mbox{pure organic concentration} & R = \mbox{gas constant} \\ c = NO_3 \mbox{ gas mean thermal speed} & T = \mbox{temperature} \end{array}$

Heterogeneous Kinetics

Near-surface reaction

 $k_{NS} = \gamma c / [4RTH(DM_o)^{1/2}]$

Bulk reaction

 $k_B = \gamma c/[4RTHM_o(V/S)]$

For liquid organics 1 and 2, assuming same H and D:

• Near-surface reaction $k_1/k_2 = [\gamma_1/\gamma_2][M_{o2}/M_{o1}]^{1/2}$ • Bulk reaction $k_1/k_2 = [\gamma_1/\gamma_2][M_{o2}/M_{o1}]^{1/2}$

k = rate constant for NO₃ + organic in particle H = Henry's law constant of NO₃ in organic

DOS + NO₃ Kinetics Plots

Uptake Coefficients and Rate Constants

	γ _{NS}	γ_{B}	k _{NS} /k _{C16}	k _B /k _{C16}	k/k _{C16} 1
DOS	6.0 x 10 ⁻³	7.1 x 10 ⁻³	8.5	4.4	2.7
Squalane	4.2 x 10 ⁻³	4.6 x 10 ⁻³	4.7	3.0	3.6

C₁₆ (film)² $\gamma = 2.6 \times 10^{-3}$ C₁₈ (SAM)³ $\gamma = 8.8 \times 10^{-4}$

¹Ratio calculated using estimation method for NO₃ gas phase rate constants: Aschmann and Atkinson. *Atmos. Environ*. 29, 2311-2316 (1995)
 ²Measured for hexadecane film: Moise et al. *J. Geophys. Res.* 107, D2, 4014, 10.1029/2001JD000334, (2002)
 ³Measured for C = solf assembled menolower: Knopf et al. *Geophys. Res.*

³Measured for C₁₈ self-assembled monolayer: Knopf et al. *Geophys. Res. Lett*. 33, doi: 10.1029/2006GL026884, (2006)

Conclusions: Kinetics of the Reaction of Saturated Organic Compounds with NO₃ Radicals

- Reactive uptake coefficients measured for the reactions of DOS (C_{26} diester) and squalane (C_{30} branched alkane) liquid aerosol particles with NO₃ radicals are ~2-8 times larger than those measured by others for a C_{16} liquid alkane film and a self-assembled C_{18} alkyl monolayer.
- The larger reactive uptake coefficients are consistent with larger condensed-phase reaction rate constants for DOS and squalane, which are explained at least in part by the greater number of CH₂ groups and higher chain branching.