

U.S. Department of Energy Office of Civilian Radioactive Waste Management

Probabilistic Seismic Hazard Analysis for Yucca Mountain

Presented to: Nuclear Waste Technical Review Board Joint Meeting of the Natural System and Engineered System Panels

Presented by: Carl C. Stepp Innovative Design Technologies, Inc.

Ivan G. Wong Senior Consulting Seismologist URS Corporation

February 24, 2003 Las Vegas, Nevada

Scope of Presentation

- Objective of Yucca Mountain (YM) Probabilistic Seismic Hazard Analysis (PSHA)
- PSHA Methodology and Guidance
- Project Implementation
- Ground Motion Hazard Results
- Fault Displacement Hazard Results
- Summary

Objective of Yucca Mountain PSHA

- Obtain ground motion and fault displacement hazard results for preclosure seismic design and for postclosure performance assessment
- Quantify uncertainty in hazard results based on current uncertainty of the informed scientific community about:
 - Seismic source interpretations
 - Earthquake recurrence and maximum earthquakes
 - Engineering estimation of ground motion
 - Assessment of fault displacement potential

Objective of Yucca Mountain PSHA (Continued)

- Minimize unquantified data uncertainty by using a common, uniform database for all evaluations
- Quantify uncertainty by conducting a formal expert elicitation for all evaluations input to hazard computations

PSHA Methodology and Guidance

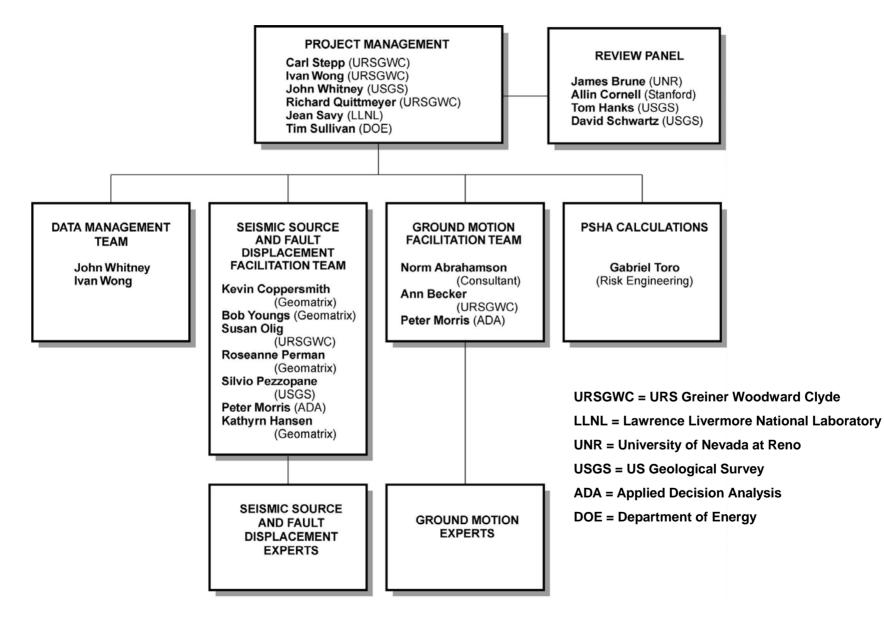
- Level 4 PSHA, as defined by the Senior Seismic Hazard Analysis Committee (SSHAC): NUREG/ CR-6372
 - Reviewed by the National Academy of Sciences
 - Accepted by the NRC for application in nuclear facility licensing
- NRC Branch technical position on the use of expert elicitation in the high-level radioactive waste program: NUREG-1563
- NRC Staff technical position on investigations to identify fault displacement hazards and seismic hazards at a geologic repository: NUREG-1451

PSHA Methodology and Guidance

- NRC Staff technical position on consideration of fault displacement hazards in geologic repository design: NUREG-1494
- DOE Seismic Topical Report #1: Methodology to Assess Fault Displacement and Vibratory Ground Motion Hazards at Yucca Mountain, Rev. 1
 - Reviewed and provisionally accepted by NRC for application at Yucca Mountain
- DOE Seismic Topical Report #2: Preclosure Seismic Design Methodology for a Geologic Repository at Yucca Mountain, Rev. 2
 - Reviewed and provisionally accepted by NRC for application at Yucca Mountain

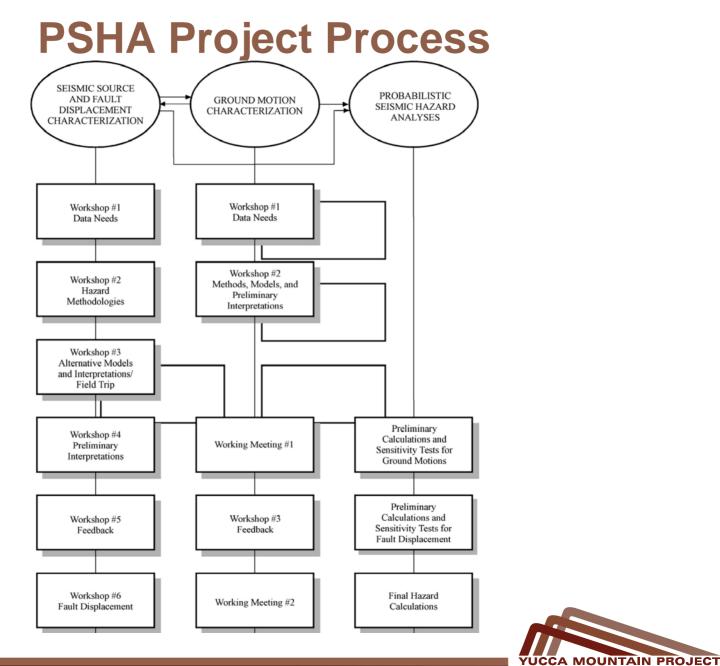
Project Implementation

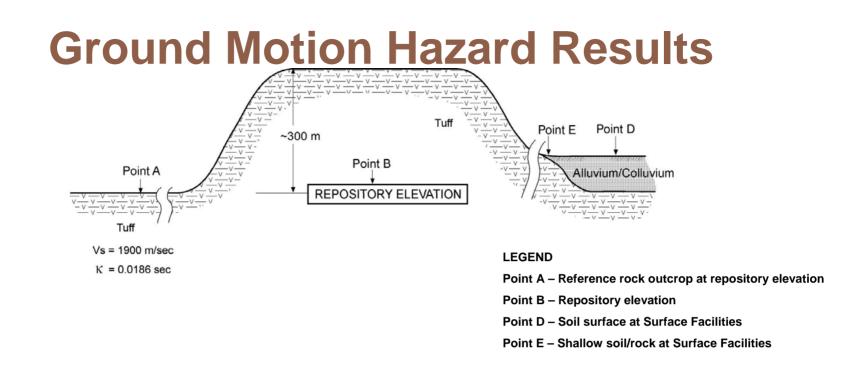
- SSHAC Level 4 Methodology
 - Focus on quantification of epistemic (knowledge) uncertainty with alternative interpretations by multiple experts
 - Six teams of three experts performed seismic source and fault displacement (SSFD) assessments
 - Basin and Range tectonics expert
 - Seismology expert
 - Quaternary fault expert
 - Seven ground motion experts representing credible ground motion modeling approaches and empirical ground motion estimation
 - Common database for all expert evaluations



Project Implementation (Continued)

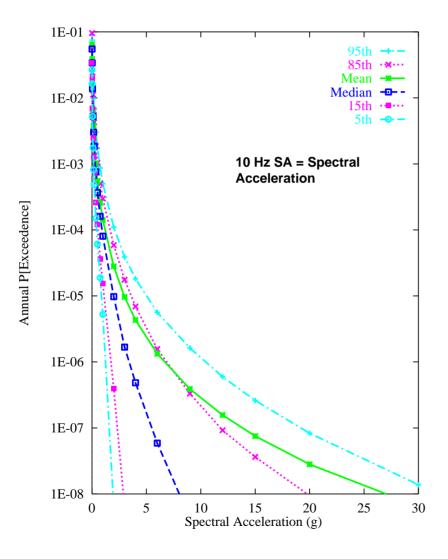
- Structured expert interactions in multiple workshops and field trips
- Comprehensive Identification of issues to be addressed in the evaluations
- Presentation of alternative viewpoints and conceptual models – challenge, defense, feedback
- Participatory Peer Review
- Integration of expert evaluations to represent state of knowledge of larger informed technical community


PSHA Project Organization

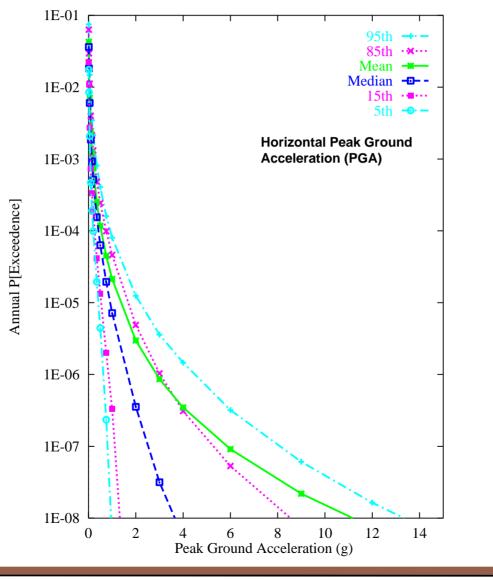


PSHA Experts

SSFD Expert Teams	Affiliation		
Walter J. Arabasz (AAR)	University of Utah		
R. Ernie Anderson	U.S. Geological Survey		
Alan R. Ramelli	Nevada Bureau of Mines & Geology		
Jon P. Ake (ASM)	U.S. Bureau of Reclamation		
D. Burton Slemmons	Consultant		
James McCalpin	GEO-HAZ Consulting, Inc.		
Diane I. Doser (DFS)	University of Texas, El Paso		
Christopher J. Fridrich	U.S. Geological Survey		
Frank H. (Bert) Swan	Geomatrix Consultants, Inc.		
	Scomatrix consultants, inc.		
Albert M. Rogers (RYA)	GeoRisk Associates, Inc.		
James C. Yount	U.S. Geological Survey		
Larry W. Anderson	U.S. Bureau of Reclamation		
Kannath D. Smith (SDK)	University of Neveda, Dens		
Kenneth D. Smith (SBK)	University of Nevada, Reno		
Ronald Bruhn	University of Utah		
Peter L. K. Knuepfer	Binghamton University		
Robert B. Smith (SDO)	University of Utah		
Craig dePolo	Nevada Bureau of Mines & Geology		
Dennis W. O'Leary	U.S. Geological Survey		
GM Experts	Affiliation		
John G. Anderson	University of Nevada, Reno		
David M. Boore	U.S. Geological Survey		
Kenneth W. Campbell	EQE International Inc.		
Arthur F. McGarr	U.S. Geological Survey		
Walter J. Silva	Pacific Engineering & Analysis		
Paul G. Somerville	URS Greiner Woodward-Clyde		
Marianne C. Walck	Sandia National Laboratories		

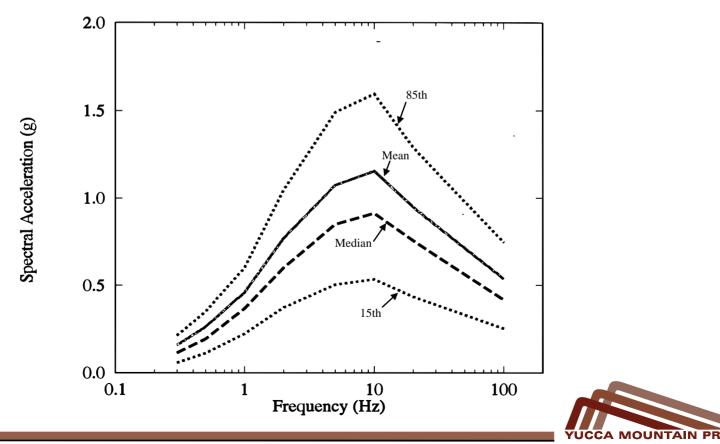


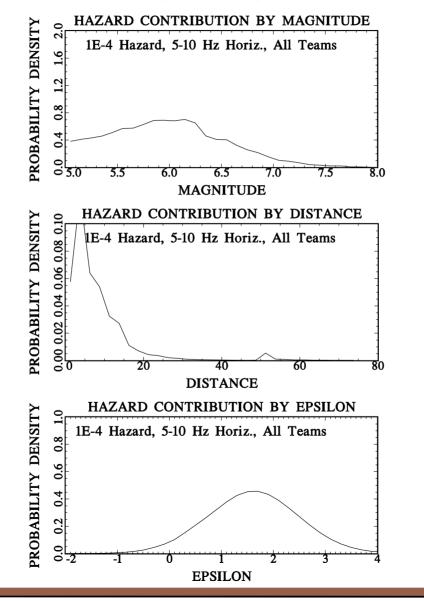
- Ground motion hazard computed at control location Point A
 - Rock properties at control location are properties of rock at the waste emplacement level
- Aleatory variability of ground motion about median motion for M & D not truncated



(Continued)

Hazard probability distribution is reasonably symmetric to annual frequency of 1 x 10⁻⁵

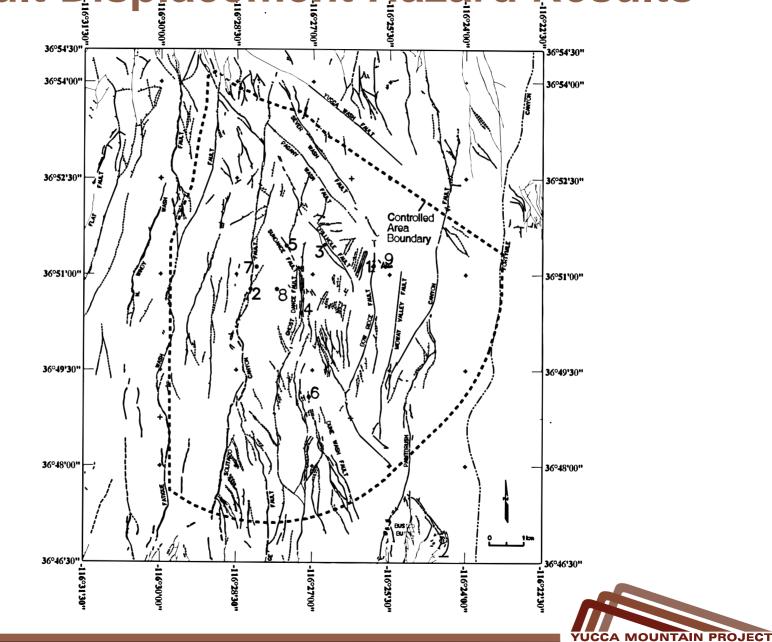




BSC Presentations_NWTRB_YMStepp_Wong_02/24/03.ppt

(Continued)

1 x 10⁻³, 5 x 10⁻⁴, and 1 x 10⁻⁴ uniform hazard spectra to derive hazard-consistent seismic design ground motion spectra at locations of repository facilities – Points B, D, and E


BSC Presentations_NWTRB_YMStepp_Wong_02/24/03.ppt

- Ground motions for postclosure seismic analysis derived based on scaled peak ground velocity (PGV)
- Hazard probability distribution highly asymmetric for low annual frequencies required to be considered for postclosure performance assessment
 - Mean ground motions for lower than about 1 x 10⁻⁶ are likely physically unrealistic
 - Reflect uncertainty in hazard estimation
 - Consistent approach to obtain mean hazard that reflects uncertainties in inputs – no truncation of ground motion uncertainty or ground motion level

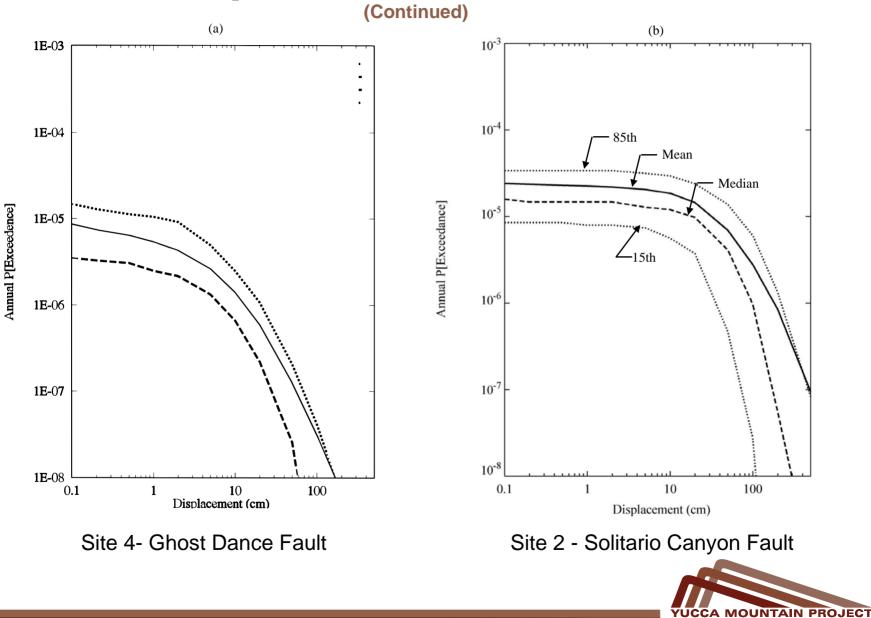
(Continued) HAZARD CONTRIBUTION BY MAGNITUDE PROBABILITY DENSITY 0 -ci 1E-7 Hazard, 5-10 Hz Horiz., All Teams **I**.6 2 0.8 4 ö 0|___ 0 5.0 5.5 6.0 7.0 6.5 7.5 8.0 MAGNITUDE HAZARD CONTRIBUTION BY DISTANCE 0.00 0.02 0.04 0.06 0.08 0.10 PROBABILITY DENSITY 1E-7 Hazard, 5-10 Hz Horiz., All Teams 20 40 60 80 DISTANCE HAZARD CONTRIBUTION BY EPSILON PROBABILITY DENSITY 1E-7 Hazard, 5-10 Hz Horiz., All Teams ø 0 9 ö 0.4 0.2 8-2 -1 **EPSILON**

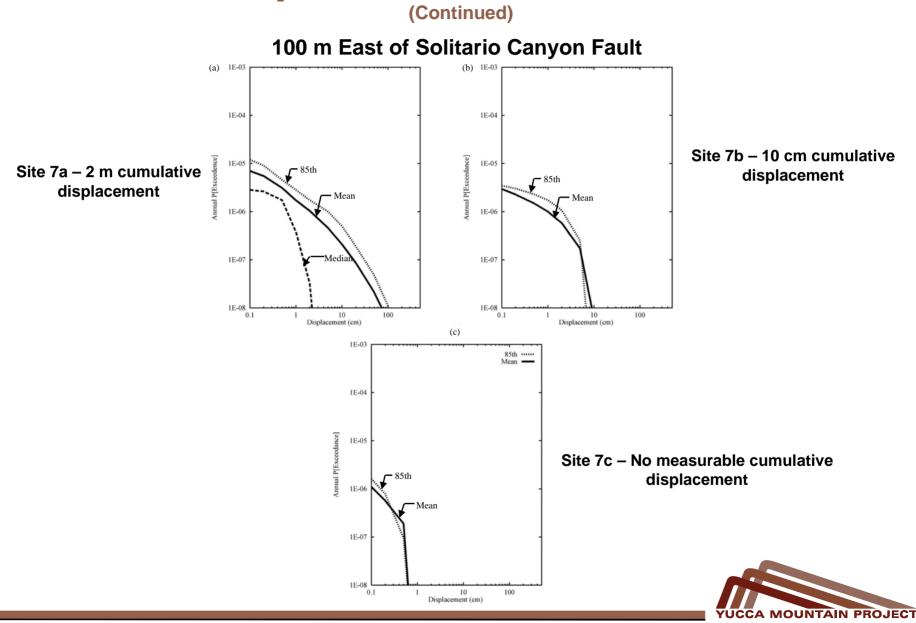
YUCCA MOUNTAIN PROJECT

(Continued)

Fault displacement hazard assessed for a total of 15 faulting conditions known to exist within the Yucca Mountain Controlled Area.

		Displacement (cm)	
	· · ·	Annual Exceedance	
		Probability	
Case	Location Description	10 ⁻⁴	10 ⁻⁵
1	Bow Ridge fault	<0.1	7.8
2	Solitario Canyon fault	<0.1	32
3	Drill Hole Wash fault	<0.1	<0.1
4	Ghost Dance fault	<0.1	<0.1
5	Sundance fault	<0.1	<0.1
6	Unnamed fault west of Dune Wash	<0.1	<0.1
7	100 m east of Solitario Canyon fault		
7a	2-m small fault	<0.1	<0.1
7b	10-cm shear	<0.1	<0.1
7c	Fracture	<0.1	<0.1
7d	Intact rock	<0.1	<0.1
8	Between Solitario Canyon and Ghost		
	Dance faults		
8a	2-m small fault	<0.1	<0.1
8b	10-cm shear	<0.1	<0.1
8c	Fracture	<0.1	<0.1
8d	Intact rock	<0.1	<0.1
9	Midway Valley	<0.1	0.1

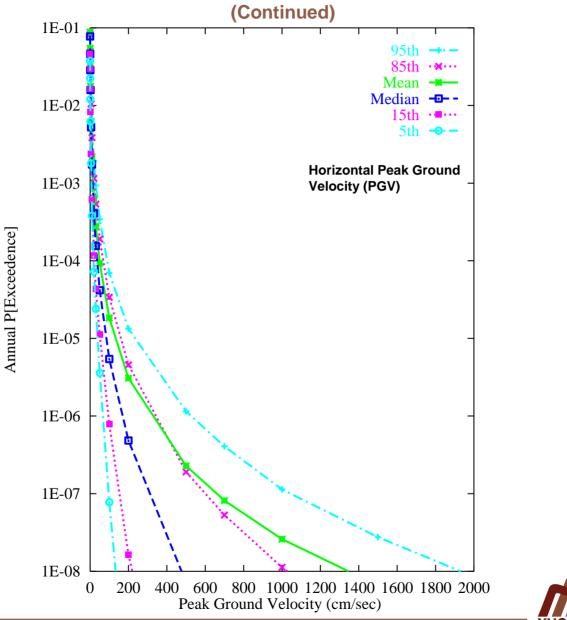



- Fault displacement hazard for preclosure design is negligible except for the Bow Ridge and Solitario Canyon faults
- Probability distribution for fault displacement becomes increasingly asymmetric with decreasing annual frequency
- Fault displacement for mean annual frequency below about 1 x 10⁻⁶ are likely unrealistically large considering physical dimensions and observed characteristics of faulting – driven by uncertainty in characterization of fault displacement potential
- Analysis of fault displacement for postclosure is currently in progress – effects will likely be screened out of the Total System Performance due to low consequence

- Fault displacement hazard for preclosure design is negligible except for the Bow Ridge and Solitario Canyon faults
- Probability distribution for fault displacement becomes increasingly asymmetric with decreasing annual frequency
- Fault displacement for mean annual hazard below about 1x 10⁻⁶ are unrealistically large considering physical dimensions and characteristics of faulting – driven by uncertainty in characterization of fault displacement potential
- Analysis of fault displacement for postclosure is currently in progress

BSC Presentations_NWTRB_YMStepp_Wong_02/24/03.ppt

- PSHA for Yucca Mountain was conducted in accordance with available guidance for methodologies to perform formal expert elicitation
- Focus of elicitation process is the quantification of epistemic uncertainties in seismic source and fault displacement inputs and epistemic and aleatory (random variability) uncertainties in ground motion estimation
- Integrated evaluations of all experts and expert teams is representative of the state of knowledge of the informed technical community
- Quantification of uncertainties leads to mean ground motion estimates at all annual frequency levels – at very low annual frequencies, ground motions are likely not physically realistic



- Ground motions derived from the PSHA are fundamental basis for deriving hazard-consistent ground motions at surface and subsurface facilities
- Fault displacement hazard was quantified for 15 representative faulting conditions identified at Yucca Mountain and can be applied throughout the geologic repository operations area
- Fault displacement hazard is negligible for preclosure design, except for Bow Ridge and Solitario Canyon faults – evaluations for postclosure in progress

