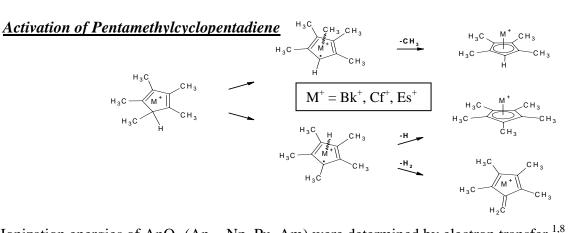
Gas-Phase Actinide Ion Chemistry-Reaction Kinetics and Molecular Thermodynamics*

John K. Gibson Oak Ridge National Laboratory gibsonjk@ornl.gov http://www.ornl.gov/sci/csd


Collaborators: R. G. Haire, D. C. Duckworth-ORNL J. Marçalo, M. Santos, A. Pires de Matos-Instituto Tecnológico e Nuclear, Portugal

Overall research goals

The program's central objective is to perform basic experimental research to provide information for the overall understanding of the underlying science, properties and behavior of actinides. Gas-phase actinide ion chemistry is a valuable approach for obtaining such fundamental information and insights. These studies focus on experimental molecular actinide chemistry, but also provide a basis to develop and validate theoretical concepts of actinide chemistry. An underlying theme is the role of the 5f electrons/orbitals in molecular chemistry.

Selected recent accomplishments

• Gas-phase actinide ion reactions have revealed new transcurium organometallic chemistry.³

• Ionization energies of AnO_2 (An = Np, Pu, Am) were determined by electron transfer.^{1,8} Substantial corrections to previously available values.¹⁰

	$IE[AnO_2] / eV$	
U	6.13 ^a	5.5 ± 0.5^{c}
Np	6.33±0.18 ^b	5.0±0.5 ^c
Pu	7.02±0.12 ^b	9.4±0.5 ^c
Am	7.23±0.15 ^b	-

- ^a Ref. 9—photoionization
 ^b This project—electron transfer^{1,8}
- ^c Ref. 10—electron impact
- Synthesis and characterization of bare actinyls: $UO_2^{2+}(g)$, $NpO_2^{2+}(g)$, $PuO_2^{2+}(g)$.² Determined AnO_2^{2+} hydration enthalpies of ca. -1670 kJ mol⁻¹ (same as from DFT¹¹).
- Assessment of bonding in monoxides indicated a requirement for two metal d-electrons at the actinide metal center.⁶

Selected objectives for 2005-2006

- Study the oxidation chemistry of Pa⁺ and Pa²⁺, and determine bond energies and ionization energies of Pa oxides. Examine organometallic reactions of bare and oxo-ligated Pa ions.
- Determine ionization energies of UF_2 and UF_3 , and the reactivities of UF_2^+ and UF_3^+ . These fluorides are of particular interest for comparison with uranium oxides.
- Systematic examinations of reactions of An^{2+} with organic molecules (An = Th through Cm).
- Perform electrospray ionization mass spectrometry studies with transuranics to explore actinide solution speciation and gas-phase complexation.
- Carry out the first quantitative studies of gas-phase curium ion chemistry by FTICR-MS. Establish thermodynamics of molecular curium oxides.
- Explore comparative chemistries of particular ligated actinide ions to experimentally probe the concept of "autogenic isolobality".¹²

References of work supported by this project

- J. K. Gibson, R. G. Haire, J. Marçalo, M. Santos, J. P. Leal (2005), "Determination of the Ionization Energy of NpO₂ and Comparative Ionization Energies of Actinide Oxides," *J. Nucl. Materials* (in press).
- J. K. Gibson, R. G. Haire, M. Santos, J. Marçalo, A. Pires de Matos (2005), "Oxidation Studies of Dipositive Actinide Ions, An²⁺ (An = Th, U, Np, Pu, Am) in the Gas Phase: Synthesis and Characterization of the Isolated Uranyl, Neptunyl and Plutonyl Ions UO₂²⁺(g), NpO₂²⁺(g) and PuO₂²⁺(g)," *J. Phys. Chem. A*, web-published March 03, 2005.
- J. K. Gibson, R. G. Haire (2005), "Activation of Pentamethylcyclopentadiene by Bk⁺, Cf⁺ and Es⁺ Ions in the Gas Phase: A Probe of the Electronic Structures of Heavy Actinides," Organometallics, 24, 119-26.
- 4. G. P. Jackson, J. K. Gibson, D. C. Duckworth (2004), "Gas-Phase Reactions of Bare and Ligated Uranium Ions with Sulfur Hexafluoride," *J. Phys. Chem. A*, **108**, 1042-51.
- 5. J. K. Gibson, R. G. Haire (2004), "Ternary Gas-Phase Plutonium Oxide Cluster Ions, Pu_xM_yO_z⁺: Exploring the Oxidation Behavior of Pu," *J. Alloys Cmpds.*, **363**, 112-21.
- 6. J. K. Gibson (2003), "The Role of Atomic Electronics in f-Element Bond Formation: Bond Energies of Lanthanide and Actinide Oxide Molecules," *J. Phys. Chem. A*, **107**, 7891-99.
- 7. J. K. Gibson, R. G. Haire (2003), "Einsteinium Ion Chemistry in the Gas Phase: Divalent Character of the Heavy Actinides," *Radiochimica Acta*, **91**, 441-48.
- M. Santos, J. Marçalo, J. P. Leal, A. Pires de Matos, J. K. Gibson, R. G. Haire (2003), "FTICR-MS Study of the Gas-Phase Thermochemistry of Americium Oxides," *Int. J. Mass Spectrom.*, 228, 457-65.

Other references

- J. Han, L. A. Kaledin, V. Goncharov, A. V. Komissarov, M. C. Heaven (2003), "Accurate Ionization Potentials for UO and UO₂: A Rigorous Test of Relativistic Quantum Chemistry Calculations," J. Am. Chem. Soc., **125**, 7176-77.
- 10. D. L. Hildenbrand, L. V. Gurvich, V. S. Yungman (1985), "The Chemical Thermodynamics of Actinide Elements and Compounds. The Gaseous Actinide Ions," IAEA: Vienna.
- L. V. Moskaleva, S. Krüger, A. Spörl, N. Rösch (2004), "Role of Solvation in the Reduction of the Uranyl Dication by Water: A Density Functional Study," *Inorg. Chem.*, 43, 4080-90.
- 12. L. Gagliardi, P. Pyykkö (2004), "Theoretical Search for Very Short Metal-Actinide Bonds: NUIr and Isoelectronic Systems," *Angew. Chem. Int. Ed.*, **43**, 1573-76.

*Research sponsored by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy, under contract DE-AC05-000R22725 with Oak Ridge National Laboratory, managed and operated by UT-Battelle, LLC

> "The submitted manuscript has been authored by a contractor of the U.S. Government under contract No. DE-AC05-00OR22725. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes."