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Abstract

We describe algebraic methods for creating implicit sur-
faces using linear combinations of radial basis inter-
polants to form complex models from scattered surface
points. Shapes with arbitrary topology are easily repre-
sented without the usual interpolation or aliasing errors
arising from discrete sampling. These methods were first
applied to implicit surfaces by Savchenko, et al. and
later developed independently by Turk and O’Brien as
a means of performing shape interpolation. Earlier ap-
proaches were limited as a modeling mechanism because
of the order of the computational complexity involved.
We explore and extend these implicit interpolating meth-
ods to make them suitable for systems of large numbers
of scattered surface points by using compactly supported
radial basis interpolants. The use of compactly supported
elements generates a sparse solution space, reducing the
computational complexity and making the technique prac-
tical for large models. The local nature of compactly sup-
ported radial basis functions permits the use of computa-
tional techniques and data structures such as k-d trees for
spatial subdivision, promoting fast solvers and methods
to divide and conquer many of the subproblems associ-
ated with these methods. Moreover, the representation of
complex models permits the exploration of diverse sur-
face geometry. This reduction in computational complex-
ity enables the application of these methods to the study
of shape properties of large complex shapes.

1 Introduction

As a research field of growing interest, implicit surface
representations have a colorful history, with their founda-

tions established early in the development of 3D curves
and surfaces in computer graphics (Blinn, 1982). How-
ever, the computation of implicit surfaces has often been
hampered by the constraints of available processing power
and the limited complexity of the models that can be cre-
ated. As CPU speeds, available memory, and comput-
ing costs have evolved, more complex models and tech-
niques have become possible, spurring general interest in
implicit surfaces (Bloomenthal, 1997; Hart and D. Ebert,
1997). However, managing complex models remains dif-
ficult. The core research in modeling with implicit sur-
faces centers around primitives that do not always facili-
tate the control of the exact surface. While alternatives to
surface control through simple primitives exist, they also
have drawbacks. In their recent work on adaptive particle
sampling and control of implicit surfaces, Heckbert and
Witkin (1994) report that particle control of such surfaces
is slippery and elusive.

Recent growth in level set techniques (Osher and
Sethian, 1988; Sethian, 1996) and variational methods
(Kimia et al., 1994) have created new interest in under-
standing and manipulating complex surface models di-
rectly from the surface representation. Whitaker and
Breen (1998) have shown how level set techniques can be
used to model and manipulate computer graphic shapes,
effectively morphing from one to another. They charac-
terize the level set as an implicit representation where the
primitives are distributed throughout an active volumet-
ric cloud layer near the surface boundary. They utilize
Sethian’s notion of the active set, to reduce the size of
the volume representation to a sparse collar of primitives.
However, even with this reduction, the representations are
cumbersome, and the bookkeeping to support these meth-
ods are intricate and difficult to maintain.

1



Other recent work has developed techniques for inter-
polating an implicit surface directly from surface point
data (Savchenko et al., 1995; Turk and O’Brien, 1998).
This work provides some insight into how to manage and
employ a collection of implicit primitives while simulta-
neously directly controlling the surface parameters. This
method allows direct specification of a complex surface
from sparse, irregular surface samples. The method is
quite flexible and has been extended to higher dimensions
to support shape interpolation (Turk and O’Brien, 1999).
However, because of computational and storage complex-
ity, the technique as described cannot be used to model
surfaces where large numbers of surface points are in-
cluded, making it unsuitable for applications where range
data or tomographic reconstruction often lead to data de-
scribed by hundreds of thousands of surface points.

In our work, we directly address the topic of com-
putational complexity. We explore an adaptation of the
methods in (Savchenko et al., 1995; Turk and O’Brien,
1998), applying compactly supported radial basis func-
tions (Wendland, 1995) to create an efficient algorithm for
computing interpolating interpolated surfaces. Our tech-
nique produces significant improvements in memory uti-
lization and computational efficiency. We discuss both the
advantages of our technique as well as the consequences
or prerequisite requirements imposed by our methods in
later sections.

This more efficient approach is creating opportunities
to explore complex shapes through implicit modeling
methods. In particular, the thin-plate-spline radial basis
function and the Green’s function solutions with their or-
der O(n2) solutions are impractical when the number of
constraints exceeds a few thousand points. By shifting to
a compactly supported radial basis function, we can cre-
ate differentiable analytic representations of large com-
plex models. These efficient solutions make possible tech-
niques for studying the deep structure of solid shapes. In
the discussion section of this paper, we present early ap-
plications of these implicit surfaces to problems such as
surface shape analysis.

2 Background / Problem

The key idea in both (Savchenko et al., 1995) and (Turk
and O’Brien, 1998) is that one may produce an implicit
surface from known surface points by interpolating the
embedding function within which the surface is implicitly
defined. While we primarily follow here the presentation
found in (Turk and O’Brien, 1998), we also encourage the
interested reader to see an alternative and earlier formula-
tion in (Savchenko et al., 1995).

2.1 Interpolating Surfaces by Interpolating
Embedding Functions

An implicit surface is defined by {x : f(x) = 0} for some
embedding function f : IRn → IR. The key idea behind
interpolated implicit surfaces is to find a smooth embed-
ding function f such that f(xi) = 0 for each known sur-
face point xi, and f(yi) = 1 for one or more points yi

known to be inside the shape. (Alternatively, constraints
of the form f(yi) = −1 may be added for points outside
the shape.) Turk and O’Brien select these interior points
using normals at the surface points as shown in Fig. 1.

This may be generalized to a scattered-data interpola-
tion problem as follows. Given a set of positions ci and
corresponding values hi, solve for an embedding function
f such that f(ci) = hi. Thus, surface interpolation may
be turned into higher-dimensional scattered-data interpo-
lation, a well-studied field.

Turk and O’Brien chose to use thin-plate splines, which
minimize the bending energy of the embedding function:

E =
∫

Ω

f2
xx(x) + f2

xy(x) + f2
yy(x) dx (1)

They called their method variational implicit surfaces, be-
cause they formulate the problem as one of variational in-
terpolation (minimizing an energy functional subject to
interpolative constraints). They did not, however, solve
for the embedding function using an iterative minimiza-
tion approach but instead solve for the known closed-form
solution using radial basis functions as described in Sec-
tion 2.2. (Savchenko, et al. use similar splines based on
the use of Green’s function.)

2.2 Radial Basis Functions

Scattered data interpolation can be achieved using radial
basis functions centered at the constraints. Radial basis
functions are circularly-symmetric functions centered at a
particular point.

Duchon (1978) has shown that solving for thin-plate
splines through known points in two dimensions is equiv-

Figure 1: Implicit curve interpolated using zero-
constraints along the curve and positive constraints just
inside these points in the direction opposite the known (or
desired) normals. (Figure courtesy of Greg Turk.)
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alent to interpolating these points using the biharmonic
radial basis function φ(r) = r2 log |r| (Figure 2a). In
three dimensions, the thin-plate solution is equivalent to
interpolating these points using the radial basis function
φ(r) = |r|3 (Figure 2b). This is the approach taken by
Turk and O’Brien.

Radial basis functions may be used to interpolate a
function with n points by using n radial basis functions
centered at these points. The resulting interpolated func-
tion thus becomes

f(x) =
n∑

i=1

diφ(‖x − ci‖) (2)

where ci is the position of the known values, di is the
weight of the radial basis function positioned at that point.
In some cases (including the thin-plate spline solution),
it is necessary to add a first-degree polynomial P to ac-
count for the linear and constant portions of f and ensure
positive-definiteness of the solution:

f(x) =
n∑

i=1

diφ(‖x − ci‖) + P (x) (3)

To solve for the set of weights di that satisfy the known
constraints f(ci) = hi, we substitute each ci into Eq. 3:

f(ci) =
n∑

j=1

djφ(‖ci − cj‖) = hi (4)

or, if a polynomial is required:

f(ci) =
n∑

j=1

djφ(‖ci − cj‖) + P (x) = hi (5)

Solving for the weights dj using Eq. 4 and denoting φij =
φ(‖ci − cj‖) produces the following system:


φ11 φ12 . . . φ1n

φ21 φ22 . . . φ2n

...
...

. . .
...

φn1 φn2 . . . φnn







d1

d2

...
dn


 =




h1

h2

...
hn


 (6)

If a polynomial is required, Eq. 5 similarly becomes


φ11 φ12 . . . φ1n cx
1 cy

1 cz
1 1

φ21 φ22 . . . φ2n cx
2 cy

2 cz
2 1

...
...

. . .
...

...
...

...
...

φn1 φn2 . . . φnn cx
n cy

n cz
n 1

cx
1 cx

2 . . . cx
n 0 0 0 0

cy
1 cy

2 . . . cy
n 0 0 0 0

cz
1 cz

2 . . . cz
n 0 0 0 0

1 1 . . . 1 0 0 0 0







d1

d2

...
dn

px

py

pz

1




=




h1

h2

...
hn

0
0
0
0




(7)

In both Eqs. 6 and 7 the matrix is obviously real sym-
metric, and with proper selection of basis functions it can
be made positive-definite. Thus, a solution always exists
to these systems.

2.3 Algorithmic Complexity

Calculating and using implicit surfaces that interpolate
may be analyzed in three parts:

1. Constructing the system of equations,

2. Solving the system of equations, and

3. Evaluating the interpolating function (as required).

2.3.1 Constructing the System of Equations

A significant portion of the computational cost involved in
calculating these implicit surfaces is the cost required to
construct the matrix (or submatrix) φij = φ(‖ci − cj‖).
Recall that the thin-plate radial basis function is φ(r) =
r2 log r (two dimensions) or φ(r) = r3 (three dimen-
sions). This means that the matrix is entirely non-zero
except along the diagonal, requiring the calculation of all
inter-point distances within the set {ci}. Although the
symmetry of the matrix cuts the computational cost in
half, the computational complexity is still O(n2). Further-
more, storage of such a matrix requires O(n2) floating-
point values—potentially a more prohibiting factor than
the computational complexity.

2.3.2 Solving the System of Equations

Although Turk and O’Brien use LU factorization (an
O(n3) algorithm) to solve Eq. 6, they correctly point out
that it is possible to solve this system in O(n2) by iterative
means. Thus, while solution of the system may appear to
be the limiting step, it need only be as computationally
expensive as constructing the system.

2.3.3 Evaluating the Function

For nearly all applications it is not enough to simply solve
for the weights of the respective radial basis functions.
Rather, it is necessary to evaluate this embedding function
at potentially many points in order to extract the isosur-
face, calculate normals or other derivative quantities, etc.
Because the terms φ(‖x − ci‖) in Eq. 2 are all non-zero
for the thin-plate solution (except for one zero term when
x ∈ {ci}), all of the terms must be used in calculating
any one point. Thus, each evaluation of the interpolated
function is O(n).

2.4 Problems with the Thin-Plate Solution

While the thin-plate spline embedding function does in-
deed minimize the smoothness functional in Eq. 1, it has
the following drawbacks:
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Figure 2: Comparison of different radial basis functions

1. O(n2) computation is required to build the system of
equations.

2. O(n2) storage is required (for the nearly-full matrix)
to represent the system.

3. O(n2) computation is required to solve the system of
equations.

4. O(n) computation is required per evaluation

5. Because every known point affects the result, a small
change in even one constraint is felt throughout the
entire resulting interpolated surface, an undesirable
property for shape modelling.

3 Using Compactly-Supported
Radial Basis Functions

3.1 Alternative Radial Basis Functions

Using the radial basis function φ(r) = r3 to interpo-
late known constraints produces an embedding function
that is the thin-plate solution to these constraints. How-
ever, other functionals may be optimized using other basis
functions.

3.1.1 Gaussian Radial Basis Functions

For example, minimizing the functional

E =
∫

Ω

|fxx(x)| + |fxy(x)| + |fyy(x)| dx

produces the Gaussian (Figure 2c) as the interpolating ra-
dial basis function. Although the problems with global
effects of each constraint are greatly reduced, the Gaus-
sian still has all the other problems enumerated previously
(Section 2.4). It is tempting to simply truncate the Gaus-
sian for all values below some threshold. This localizes
the effects of moving a single constraint, and it greatly
simplifies the system, but it has the problem that the re-
sulting matrix is not positive-definite, hence the system of
equations may have no solution.

3.1.2 Compactly-Supported Radial Basis Functions

Wendland (1995) has recently solved for the minimum-
degree polynomial solution for compact, locally-
supported radial basis functions that guarantee positive-
definiteness of the matrix (Figure 2d). All of the solutions
have the form

φ(r) =
{

(1 − r)pP (r) if r < 1
0 otherwise

(8)
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For various degrees of desired continuity (Ck) and dimen-
sionality (d) of the interpolated function, he has derived
the following radial basis functions:

d = 1 (1 − r)+ C0

(1 − r)3+(3r + 1) C2

(1 − r)5+(8r2 + 5r + 1) C4

d = 3 (1 − r)2+ C0

(1 − r)4+(4r + 1) C2

(1 − r)6+(35r2 + 18r + 3) C6

(1 − r)8+(32r3′
+ 25r2 + 8r + 1) C6

d = 5 (1 − r)3+ C0

(1 − r)5+(5r + 1) C2

(1 − r)7+(16r2 + 7r + 1) C4

These functions have radius of support equal to 1. Scaling
of the basis functions (i.e., φ(r/α)) allows any desired
radius of support α.

3.2 Example

Figure 3 illustrates using both thin-plate and compactly-
supported radial basis functions to compute embedding
functions. The constraint points consist of 36 points in
an ovoid shape with 36 normal (positive valued) con-
straints placed just inside (3a). A thin-plate radial basis
function produces a globally-smooth embedding function
(3b). A compactly-supported radial basis function pro-
duces an embedding function that does not have global
smoothness but is as smooth as the thin-plate spline in-
terpolation in a narrow band surrounding the shape both
inside and out.

3.3 Algorithm

Using compactly-supported radial basis functions pro-
vides advantages in all three phases of the implicit-surface
interpolation algorithm.

3.3.1 Constructing the system

Because the radial basis functions have finite support,
φ(‖ci − cj‖) = 0 for all (ci, cj) farther apart than the
radius of support. By using a k-d tree (Bentley, 1975), the
set of all points within distance r of a particular point ci

can be determined in O(log n) time.
A k-d tree is a multidimensional binary tree with the

following sorting property for a tree with point x at the
root and subtrees Tleft and Tright.

∀y ∈ Tleft : yd ≤ xd

∀y ∈ Tright : yd > xd

where the sorting dimension d changes at each level of the
tree.

a)
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Figure 3: Interpolating a simple 36-point ovoid (a) us-
ing thin-plate (b) and compactly-supported (c) radial basis
functions.

k-d trees can be used to find all points within distance
r of a particular constraint in O(n log n) time using the
following algorithm (C pseudocode):

void Search (KDtree T, Point P, int radius)
{

if (T->point[T->dim]) < P[dim] + radius)
Search(T->right);

if (T->point[T->dim]) > P[dim] - radius)
Search(T->left);

Test(T->point,P,radius);
}

While a number of points must still be tested explicitly,
the multidimensional sorting nature of the k-d tree allows
a large number of points to be rejected at each level of the
tree.
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Figure 4: Structure of the matrices produced by thin-
plate and compactly-supported radial basis functions (Fig-
ure 3). The compactly-supported basis function produce
a matrix that is sparse (black), while the thin-plate basis
functions produce a matrix that is nearly full (white).

The resulting matrix is extremely sparse, as shown in
Figure 4. Using a sparse-matrix representation (we use the
Hartwell-Boeing format), only O(n) storage is required.

3.3.2 Solving the system

If the average number of points within the radius of sup-
port of each constraint ci is less than some constant k,
the number of non-zero entries in the matrix is O(n). We
use a direct (LU) sparse matrix solver (Dongarra et al.,
1990) to find the solution to the system of equations. The
computational complexity of such a solver depends on
the amount of matrix “fill in” that occurs during the solu-
tion, but some authors have reported behavior in the range
O(n1.2) to O(n1.5) (Saleh et al., 1989). Our own experi-
ence (Section 4) agrees with this.

3.3.3 Evaluating the interpolating function

We can exploit the spatial locality of the compactly-
supported radial basis functions during evaluation of the
embedding function f by recognizing that only a frac-
tion of the terms of Eq. 2 are non-zero for a given x:
φ(ci − cj) 
= 0 iff ‖ci − cj‖ < 1. By again using a k-d
tree to organize the constraints spatially, each evaluation
of the interpolating function requires only O(log n) oper-
ations to determine these non-zero terms.

3.4 Thin-Plate vs. Compactly-Supported
Radial Basis Functions

Using compactly-supported radial basis functions directly
addresses each of the five problems identified previously
with the thin-plate spline basis functions (Section 2.4) as
shown in Table 1.

Thin-plate Compact
Computation to build O(n2) O(n log n)
Computation to solve O(n2) O(n1.5)
Storage to build/solve O(n2) O(n)
Computation to evaluate O(n) O(log n)
Effect of a single point Global Local

Table 1: Comparison of the computational complexity,
storage complexity, and locality properties of interpo-
lated implicit surfaces using thin-plate and compactly-
supported radial basis functions.

4 Results

Figure 5 compares the results of interpolating an 800-
point model of the Stanford bunny using both thin-plate
and compactly-supported radial basis functions. The re-
sults of of the two methods are qualitatively identical.

Interpolation of larger models is possible using
compactly-supported radial basis functions. The 8000-
point model in Figure 6 was interpolated using compactly-
supported radial basis functions, and the resulting isosur-
face was tesselated to 41,864 points.1 The interpolated
image shows sharpness and detail hidden by the flat poly-
hedra of the original model.

Table 2 summarizes the time required to calculate var-
ious differing-resolution models of the same figure (Stan-
ford bunny). The radius of support used for each model
was selected so as to keep the number of points in the ra-
dius of support (approximately) constant, thus allowing
comparison of the results. The dominant term in the com-
putation required (Table 1 is the time to solve the system
of equations. Figure 7 shows that this seems to demon-
strate O(n1.5) complexity.

Table 3 compares these running times to the time re-
quired to calculate comparable thin-plate interpolations
(using same-size or smaller models). The O(n2) time re-
quired to compute these models using thin-plate radial ba-
sis functions quickly becomes prohibitive.

Similarly, Table 4 compares the memory required to
represent the matrix for the models described in Table 3.
As with the computational complexity, the O(n2) storage
required to compute these models using thin-plate radial
basis functions also quickly becomes prohibitive.

1A similar thin-plate interpolation would require almost 2 GB of stor-
age for the matrix alone and could not be calculated on our system.

6



800-point model Interpolated (thin-plate) Interpolated (compact)

Figure 5: Comparison of original model to implicit surfaces extracted from embedding functions calculated using both
thin-plate and compactly-supported basis functions. The results of the interpolations are qualitatively identical.

8000-point model Interpolated to 41,864 points

Figure 6: Interpolation of an 8000-point model of the Stanford bunny
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Points Constraints Radius Non-zero Per Row % Full Build k-d Build Matrix Solve Matrix Total
2922 5848 0.200 476173 81.4 1.39% 0.02 1.05 5.93 7.00
5839 11682 0.150 973423 83.3 0.71% 0.04 2.09 17.29 19.42
11831 23666 0.100 1663733 70.3 0.30% 0.08 4.00 45.44 49.52
35947 71898 0.004 5061542 70.4 0.10% 0.93 31.51∗ 284.01∗ 316.45∗
∗ some virtual memory swapping

Table 2: Execution times in seconds for various phases of computation for interpolated implicit surfaces using
compactly-supported radial basis functions.

Computational Complexity
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Figure 7: Timing results for four different-resolution models of the same figure (Table 2). The linear graph when
plotted on a time

2
3 vertical axis indicates O(n1.5) complexity.

Thin-Plate Compactly-Supported
Points Build Solve Points Build Solve
800 0.58 sec 2.56 min 800 0.57 sec 1.53 sec
2000 6.3 sec 2:05 hrs 2922 1.07 sec 5.93 sec
4000 25.0 sec 16:11 hrs∗ 5839 2.13 sec 17.29 sec
8000 n/a (1) n/a 11831 4.08 sec 97.53 sec
35947 n/a (2) n/a 35947 31.44 sec 284.01 sec
∗ significant virtual memory swapping

Table 3: Comparison of execution times required to calculate embedding functions using thin-plate vs. compactly-
supported radial basis functions

Thin-Plate Compactly-Supported
Points Memory (MB) Points Memory (MB)
800 19.5 800 1.0
2000 122.1 2922 3.6
4000 488.3 5839 7.4
8000 1,953.1 11831 12.7
35947 39,434.4 35947 38.6

Table 4: Comparison of memory requirements (matrix only, double-precision floating-point values) required to calcu-
late embedding functions using thin-plate vs. compactly-supported radial basis functions

8



5 Considerations

The finite nature of the compactly-supported radial basis
functions introduces two factors that must be considered
when using them to interpolate embedding functions.

5.1 Selecting the Radius of Support

The finite radius of support introduces an additional pa-
rameter that doesn’t exist in the thin-plate implementa-
tion. Proper selection of the radius of support is critical to
achieving optimal efficiency of computation and results.
Too small a radius can produce basis functions that are
unable to span the inter-constraint gaps. Too large a ra-
dius does not adversely affect the results but reduces the
sparseness of the matrix, thus increasing the computation
required. It is thus necessary to select a radius of support
that is both large enough to produce effective results and
not so large that the computation becomes impractical.

5.2 Isosurface Extraction

Because of the finite extent of the compactly-supported
radial basis functions, only those points within the radius
of support of one of the original positions have non-zero
values. For all points outside this band, all of the terms
of Eq. 2 are zero. (Figure 3c illustrates this.) In this way,
these embedding functions are not the same as those nor-
mally used for implicit surfaces—the implicit surface rep-
resented is not the only set of zero-valued points in the
space. However, the implicit surface does form a unique
contiguous locus of zero-valued points passing through
the constraints. In this sense, the method presented here is
somewhat similar to the narrow-band active set approach
of Sethian (1996) or Whitaker and Breen (1998).

An isosurface extractor may be used to extract this sur-
face by seeding it with any one of the initial constraints.
However, care must be taken so that the step size of the ex-
tractor does not cause it to jump outside the band of non-
zero points. It is, however, rather easy to explicitly recog-
nize when no non-zero terms are found in Eq. 2 (none of
the constraint points lie within the radius of support of the
point being evaluated).

Because the zero set of the embedding function is not
uniquely the surface of interest, the resulting embed-
ding function has limited application in CSG, interpola-
tion (Turk and O’Brien, 1999), or similar applications.
However, we are now experimenting with hybrid embed-
ding functions that interpolate a subset of the points using
radial basis functions with infinite support and interpolate
the difference using basis functions with compact support.

6 Discussion: Analytic Approaches
Enabled by Efficient Algorithms

An efficient framework for finding embedding functions
that define implicit surfaces from scattered data points in-
creases the practicality of studying complex shape models
represented by large numbers of such points. Models
captured from physical phenomena usually contain large
numbers of surface points, polygons, or other surface
primitives that are not easily reduced. For instance, polyg-
onal representations of medical data often begin with
models containing millions of triangles, which can later
be simplified to hundreds of thousands of polygons.

While the polygonal representations of these models
can be rendered using current graphics hardware, the dis-
crete sampling introduced by the process of producing the
polyons raises barriers to deeper studies of the geometry
of the surfaces themselves. Implicit methods solve this
difficulty by creating analytic functions that smoothly re-
construct a surface from a constellation of points. In ad-
dition, the implicit surface constructed using the method
presented here is differentiable. Local surface geometry
now becomes approachable since numerically stable so-
lutions can be found to sample higher order derivatives of
the implicit surface.

6.1 Differential Geometry of Shape

Differential geometry is the study of multilocal surface
behavior, employing the normal vector and tangent plane
at each surface point as a reference environment. To mea-
sure curvature and other geometric features relative to the
surface tangent, second order derivatives must be com-
puted (Thirion, 1993). Volumetric approaches can com-
pute approximations to these measurements based on dis-
cretely sampled grids (Sethian, 1996). However, the ac-
curacy and behavior of the sampled derivatives is subject
to aliasing and sampling issues, exacerbated by the noise-
amplifying effects of higher-order functions.

Implicit surfaces allow us to reconstruct smooth surface
representations from a set of oriented points and sample
higher order derivatives with instantaneous precision. An-
alytic representations of not only surface shape, but also
of the embedding function, simplifies the computation of
the normal vector, the tangent plane, and the principal cur-
vatures of the implicit surface at any arbitrary location.

Figure 8 shows the Gaussian curvature (the product of
the principal curvatures) of an array of implicit surfaces
calculated using the method presented here. Blue areas
represent positive Gaussian curvature (elliptical regions)
and red areas represent negative Gaussian curvature (hy-
perbolic or saddle-shaped regions). The yellow contour
lines indicate the places where the Gaussian curvature is
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Figure 8: Gaussian curvature computed over an
analytically-defined implicit surface calculated from scat-
tered surface points

zero, separating the red and blue surface regions. The yel-
low contours denote parabolic curves where specular and
diffuse highlights fuse or reproduce under changing light-
ing conditions.

Note: the polygonalization of the surface and the in-
terpolation errors are artifacts of the visualization tech-
nique. The implicit surface itself can be sampled with
arbitrary precision to generate smooth models with corre-
spondingly smooth representations of curvature.

6.2 Future Directions: Scale Space, Ray
Tracing, and Other Topics

Linear scale space filtering was introduced by
Witkin (1983) as a means of measuring the saliency
of features within an image. Further work established
the general field of scale-space theory in computer
vision (Lindeberg, 1994). The fundamental notion of this
type of analysis is that significant details of an image, or
in our case, a surface representation, will persist as the
scale or the fractal measurement aperture is increased. In
the pursuit of multiscale image descriptions, a Gaussian
kernel is usually used as the measurement aperture
function.

From this perspective, a scale space representation of
the implicit models presented in this paper can be con-
structed as a convolution of a Gaussian kernel with the
embedding function, f(x̄) ⊗ g(x̄, σ). Since convolution
is both commutative and distributive with respect to ad-
dition, this is equivalent to convolving each of the radial
basis interpolants with a Gaussian. This process can be
approximated by solving for the implicit surface with a
particular radius of support, and later dilating the com-

Figure 9: A dumbell figure reconstructed from sam-
ple points and represented at successively larger scales
by convolving the embedding function with successively
larger Gaussian kernels

pactly supported radial basis function during the evalua-
tion to create a scale space level set representation of the
basic function.

Figure 9 shows a 2-D implicit figure represented at
a range of scales. The original model has been recon-
structed from oriented points as an implicit surface. In the
subsequent representations, the embedding function has
been convolved with an approximation to a Gaussian ker-
nel, and the implicit surface reconstructed. Fine details
such as the corners and discontinuities associated with
the cross member in the figure are suppressed at moder-
ate scales. Eventually at the largest scales, the figure is
viewed as a single topologically simple object. This ap-
proach to representing object shape may have applications
in modeling and computer graphics in the representation
of objects at multiple levels of detail.

Beyond the application of scale-space image-analysis
techniques to implicit surface representations, there re-
main interesting problems of rendering these models. Im-
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plicit surfaces based on signed distance functions and
other embedding functions with similar properties are eas-
ily rendered through ray tracing. Because of the multiple
zero level sets created by the compactly supported radial
basis function approach, a basic ray tracing method is in-
sufficient for rendering these models. However, in the
visualization of discrete volume data, complex transfer
functions that include geometric information such as gra-
dient magnitude and isosurface curvature are able to cap-
ture surfaces based on features other than simple isoval-
ues. Future work will include the development of transfer
functions for raycast rendering of these models.

7 Conclusion

Given a set of points C = {c1, c2, c3, . . . cn}, the method
presented here interpolates an implicit surface passing
through those points by solving for a scalar embedding
function f(x) whose zero level set, {x : f(x) = 0},
passes through all points in C. Following Turk and
O’Brien (1998) (see also Savchenko,1995), we employ
radial basis interpolating functions in a linear system of n
equations and n unknowns, expressed as an n×n matrix.
Unlike the original use of φ(r) = |r|3 as the underlying
interpolant, we use a family of radial basis functions with
the necessary continuity but also with finite, compact local
support. The result is a sparsely populated linear system
whose solution can be accelerated. The result is a single,
accelerated, closed form analytic representation of the de-
sired surface.

The shift from a radial basis function of infinite extent
to one that has compact local support creates dramatic
gains in memory utilization and computational complex-
ity. Previous work described solutions for systems of
equations of order O(n2) complexity. The shift to fi-
nite interpolants and sparse matrices has shifted the com-
plexity of the matrix solution to order O(n1.5), the load-
ing of the matrix data structures to O(n log n), and the
memory requirements to order O(n). Evaluation of the
interpolated embedding function is similarly reduced to
O(log n).

These improvements in efficiency make possible a va-
riety of applications that were previously impractical with
an infinite radial basis function. We have briefly surveyed
our first probes into the differential geometry of surface
shape and explorations in scale space analysis of complex
models using implicit surfaces interpolated from scattered
surface data points.
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