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Potential of multiangular spectral measurements to
characterize land surfaces: Conceptual approach
and exploratory application
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Abstract. New sensors exhibiting advanced technical specifications motivate the
development of improved algorithms to take advantage of the enhanced performances of
these sensors. In the particular case of the Multiangle Imaging Spectroradiometer (MISR)
instrument, the angular sampling of the scattered radiance field, coupled with high spatial
resolution and accurate radiometric calibration, justifies the implementation of physically
based algorithms to optimally interpret the data and extract high-level information. This
paper proposes a new approach to the reliable and accurate characterization of vegetated
areas on the basis of data gathered in space and to the delivery of improved products to
meet increasingly demanding user requests. An exploratory study based on advanced very
high-resolution radiometer (AVHRR) data shows the potential of approaches based on
advanced models but also points out the limitations associated with the use of data from

monodirectional instruments. By contrast, a preliminary investigation conducted with
synthetic MISR-like multiangular data illustrates the potential of analyzing data of high
radiometric quality with advanced models to move toward a more complete

characterization of terrestrial surfaces.

1. Introduction

Over the past decades, significant advances have taken place
in the understanding of the scattering of light by the atmo-
sphere, plant canopies, and soil surfaces [e.g., Ross, 1981; Sim-
mer and Gerstl, 1985; Shultis and Myneni, 1988; Marshak, 1989;
Knyazikhin et al., 1992; Liang and Strahler, 1993; Govaerts and
Verstraete, 1997; Pinty and Verstraete, 1998]. Progress in our
understanding of the radiation regime of plant canopies has
not resulted yet, however, in decisively better applications at
the global scale. This is due, in large part, to the limited spatial,
temporal, spectral, and directional sampling afforded by exist-
ing instruments, as well as by their relatively low radiometric
accuracy. Advances in remote sensing technology during the
past decade has changed this situation. Several instruments
were designed specifically for multiangular spectral measure-
ments, namely the Along-Track Scanning Radiometer
(ATSR-2: two observation angles and a spatial resolution of 1
km) was launched in 1995 [Stricker et al., 1995], and the Po-
larization and Directionality of Earth Reflectances
(POLDER) instrument (up to 14 observation angles and a
spatial resolution of 7 km), which was operated for an 8-month
period [Deschamps et al., 1994]. The Multiangle Imaging Spec-
troradiometer (MISR) instrument will provide multiangle and
multispectral surface reflectance data at nine observation an-
gles and a spatial resolution of 275 m-1.1 km [Diner et al.,
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1998a]. These developments create new opportunities to con-
duct quantitative global and regional investigation of terres-
trial surfaces. In this context we explore a new two-step ap-
proach to the quantitative characterization of land surfaces.
The method consists first in creating a large look-up table
(LUT) of simulated spectral and directional reflectance fields
for a wide range of typical terrestrial surfaces, characterized by
a small but critical set of field-measurable physical parameters.
Remote sensing data are then analyzed through comparisons
of the measurements with the entries of this LUT. When an
acceptable match is found between a string of spectral and
directional measurements and a corresponding string in the
LUT for identical illumination and viewing geometries, the
values of all the physical parameters associated with the gen-
eration of that entry in the LUT are considered as a possible
solution to the radiative transfer problem. Clearly, it may well
be that more than one combination of surface parameters may
yield fields of spectral and directional reflectances similar to
those retrieved from space measurements. In this case we
report multiple solutions and recognize that there is a basic
ambiguity in the satellite observations, in that they cannot
differentiate between those geophysical situations. In the ab-
sence of any additional constraint or observation these equiv-
alent solutions are used as a measure of the degree of ambi-
guity or accuracy of the retrieval. However, with
complementary models and/or measurements it may be possi-
ble to decrease further the uncertainty about the state of the
geophysical system.

We document the feasibility and limitations of this approach
by conducting a couple of studies. The first one investigates to
what extent quantitative information on terrestrial environ-
ments can be derived from multiangular spectral measure-
ments acquired with AVHRR. We have thus constructed a first
LUT suitable to describe the spectral and directional reflec-
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tances of all major biomes and analyzed global AVHRR data
accumulated over time. It will be seen that the number of
combinations of surface parameters that may explain a partic-
ular set of such measurements is rather large. The wide range
of surface parameter values identified as potential solutions
are interpreted in part as a basic indicator of the limitations
inherent in these AVHRR data.

In the second study we wanted to investigate to what extent
MISR-like data would provide a better constraint on this prob-
lem and yield more reliable results when analyzed in the same
manner. Advanced interpretation tools are being developed to
fully exploit the high performances of this instrument [Diner et
al., 1997, 1998b, c; Martonchik et al., 1998a, b]. It turned out
that the predicted radiometric accuracy as well as the spectral
and directional sampling of the MISR instrument were of
sufficient quality that we increased the difficulty of the test and
modified the study design to investigate the capability of MISR
data to discriminate between surface conditions differing only
in relatively minor ways from each other. Specifically, since the
leaf area index (LAI) of plant canopies so largely controls the
reflectance of the surface, we fixed that parameter to a single
value (LAI = 3) and investigated to what extent MISR data
could, in principle, differentiate between canopies with the
same LAI but different leaf size and orientations, heights, or
optical properties of the leaves and of the underlying soil. This
is a more stringent test than was used for AVHRR data, and it
will be seen that the availability of multiangular data of high
radiometric accuracy is critical to limit the range of variability
that each state variable can assume, given the constraints of the
observations and the method of inversion.

This paper thus explores a new approach to the problem of
land cover characterization and investigates the performance
and limitations of this approach by documenting to what extent
the availability of high radiometric accuracy multiangular data
permits the identification of a unique set of surface parameters
capable of accounting for the observations.

2. On the Role and Importance of Models

Conceptually, all approaches to remote sensing data inter-
pretation rely on a model. The model can be explicit, as in the
case of radiation transfer models, or implicit, as for vegetation
indices that imply or assume an underlying model [Tucker et
al., 1985; Kaufman and Tanré, 1992; Pinty and Verstraete, 1992;
Myneni et al., 1995; Verstraete et al., 1996]. In any case models
provide a link between the radiation measurements and the
variables and processes controlling these observations. Conse-
quently, remote sensing data can yield information only on
those variables and processes that are explicitly represented in
the model, independently of their intrinsic relevance for a
particular application. However, other types of information
can be derived if there are additional auxiliary or ancillary data
sources, as well as additional models to derive this information.

The selection of a model depends (1) on the nature of the
application and the accuracy required by the ultimate user of
the derived information, (2) on the availability and quality of
the data, and (3) on the allowable cost of producing the desired
information. Clearly, accuracy requirements and computing
constraints restrict the type of approaches that can be followed
in any particular case. The selection of a specific model to
interpret a given data set implies that the chosen model is
capable of representing the observed radiative situation at the
level of accuracy defined a priori. There must be a balance
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between the number of state variables required by the selected
model and the characteristics of the available data sets in terms
of radiometry, signal to noise ratio, spectral and angular sam-
pling, etc. However, the higher the number of free state vari-
ables, the larger the probability of fitting well the data set and
the larger the probability of finding multiple solutions to the
radiation transfer problem. The latter point constitutes a key
stumbling block, since identifying too many possible solutions
is useless for the end user, but retrieving wrong information, as
may be the case when applying very simplistic models, is also
unsatisfactory.

A large panoply of data interpretation schemes has been
suggested in the literature, from classical vegetation indices to
computer graphics models enabling the representation of the
radiation regime in very complex three-dimensional heteroge-
neous situations. Since the number of state variables remains a
key issue for inversion purposes, the dimensionality of the
model to be applied remains a critical choice to be made by the
user early in the investigation. Typically, one-dimensional
models are appropriate for spatially homogeneous surfaces,
when average values are sufficient for the intended purpose, or
when only limited detail is needed: such models typically use 5
to 7 state variables. These one-dimensional models can be
combined to derive mixing models suitable for idealized het-
erogeneous surfaces, for which the radiative interactions be-
tween the components of the scene can be neglected. In this
case the models may require 5 to 7 state variables per geo-
physical medium present in the scene. Only three-dimensional
models are able to describe complex spatially heterogeneous
surfaces and to provide a very detailed description of the
scene; they imply a very large number of state variables on the
order of the number of cell properties times the number of
cells. As mentioned previously, the optimal choice of a model
results from a compromise between the nature and the accu-
racy of the desired information, the type and quality of mea-
surements, and the allowable exploitation cost. In the context
of land surface applications, the desired information ranges
from state variables of the radiation transfer problem, such as
the leaf area index (LAI), to ecological mapping and monitor-
ing to address land cover issues. The implication of choosing a
particular interpreting tool is illustrated in Table 1.

Table 1 links the desired information to the input knowledge
used in the development of the interpretation tool, which itself
controls the nature of the retrieved output. The last column
outlines some of the main drawbacks of each approach, in
relation to the assumptions made about the geophysical me-
dium being studied. The specificity and accuracy of the desired
information increase downward in the table, as does the com-
plexity and dimensionality of the model. However, the gain in
accuracy of the description and therefore the knowledge ob-
tained on the scene are also increasing downward. For in-
stance, the broad patterns of vegetation distribution can be
easily and economically described with vegetation indices,
without requiring the formal inversion of sophisticated models.
Since such multiple indices have been proposed [e.g., Huete,
1988; Price and Bausch, 1995; Pinty and Verstraete, 1992], the
selection of a particular formula will be controlled at least in
part by the type and amount of a priori knowledge available for
the system. Nevertheless, the actual interpretation of index
values must always be made in light of the explicit and implicit
assumptions associated with the chosen index.

The importance of this tool selection problem is also related
to the fact that the degree of general applicability of the in-
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Table 1.
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Selection of a Particular Interpretation Tool Depends on the Information Requirements and the a Priori

Knowledge Available About the Observed Target, Affects the Type and Reliability of Products Generated, and

Automatically Defines the Possible Sources of Error

Interpretation Sources of Data
Desired Information Input Knowledge Tool Output Retrieved Misinterpretation
Presence of vegetation leaf spectral properties NDVI* single value to be correlated atm, soil, aniso
above + soil line SAVI® with desired info atm, aniso
above + atm GEMI® aniso

Quantification of
vegetation attributes

oriented point particles

uniformly distributed

model

oriented plates uniformly

distributed effects
Land cover

identification

specification of radiative

properties in the 3-D space distribution

inclusion of LAD and
plate-scattering

inclusion of leaf size

inclusion of spatial

same as above but leaf
R,, T, and
orientation

same as above, plus canopy
height leaf size and
number

explicit scene

compactness and
heterogeneity

spatial heterogeneity

validity of the representation
of the scene

Atm and aniso designate the atmospheric and anisotropic perturbing effects, respectively. LAD, R, and 7, correspond to the leaf angle
distribution functions, the leaf reflectance, and transmittance models, respectively.

“Normalized difference vegetation index [Rouse et al., 1973].
®Soil adjusted vegetation index [Huete, 1988].
“Global environment monitoring index [Pinty and Verstraete, 1992].

terpretation tool decreases downward in the table. Thus a
specific three-dimensional model may resolve the radiation
transfer problem in great detail and very accurately but for a
very limited number of specific cases. This approach will pro-
vide a very good local solution, but the number of model
implementations required to address global issues may be very
large. On the contrary, a more generic one-dimensional model
may describe the radiation transfer problem globally but at the
cost of a poorer information content in any given case. Since
the retrieval of information from remote sensing data always
reduces to the fitting of a model to the data set, it is critical that
model complexity and data accuracy and reliability be
matched. As better constraints can be provided by new instru-
ments, we are naturally using more advanced models to exploit
these new opportunities. In other words the justification for
using increasingly complex models depends on the quantity
and quality of the data obtained by sampling the radiation field
in the spectral and angular domains. Clearly, data of higher
radiometric quality, acquired under a more extensive sampling
scheme, should provide a better constraint on the model in-
version process and should thus lead to a finer discrimination
between competing representations of the geophysical envi-
ronments of interest. It is in this context that the improved
Earth Observing System strategy implemented through the
new generation of sensors will probably yield improved envi-
ronmental information and new applications.

3. Exploratory Application Using Global
AVHRR Data

Most land surface applications at the global scale are based
on AHVRR data and use vegetation indices as the main in-
terpretation tool. As seen from Table 1, vegetation indices may
provide an easy way to detect signatures related to the pres-
ence of vegetation, but it is only recently that they have become
optimized to retrieve quantitative information [e.g., Gobron et
al., 1999], and despite the many limitations associated both
with AVHRR data and with the simplicity of the algorithm,
important results have been obtained [e.g., Sellers, 1985; Town-
shend et al., 1987, Lambin and Ehrlich, 1995; Myneni et al.,
1997]. Our objective here is to show that physically based

approaches permit a much clearer assessment of the accuracy
and reliability of the retrieved information and require less a
priori knowledge about the observed environment. In particu-
lar, such an approach can take advantage of sources of vari-
ability (for instance, because of anisotropy of the radiance
field) which are necessarily considered as noise in empirical,
index-basis analyses.

3.1. Data Processing

Our initial exploration uses an existing data set extracted
from the global vegetation index (GVI) database [Kidwell,
1990]. These data have been further processed to avoid cloud
contamination and to reduce some of the most perturbing
atmospheric effects [Berthelot et al., 1997]. The spectral mea-
surements assigned to a GVI pixel are obtained by selecting,
within a window of five lines by three columns in an global area
coverage (GAC) data set, the spectral values associated with
the pixel for which the NDVI has the highest value. The
AVHRR/GAC pixel values, in turn, are obtained by averaging
the spectral values of the first four pixels within a line and
ignoring the fifth pixel as well as the following two lines within
a local area coverage (LAC) full resolution AVHRR data set.
Hence since the GVI data used here are heavily subsampled
and averaged compared to the original data, their spatial res-
olution is nominally about 15 km. However, global data sets
are available and can be processed in a reasonable amount of
time.

The spectral bidirectional reflectance factors or radiances
derived from AVHRR measurements are controlled by a se-
ries of radiative processes (including water vapor absorption as
well as molecular and aerosol scattering) with which the solar
radiation has interacted before it reaches the sensor. The suc-
cessful application of advanced methods and algorithms to
interpret surface bidirectional reflectance fields is conditioned
by the availability of (1) high-quality data gathered by space
sensors and (2) a reliable and accurate inversion technique to
retrieve the radiative surface properties from the former. The
AVHRR sensor is a multispectral but single view angle instru-
ment which renders the handling of aerosol effects over land
very problematic. In effect, AVHRR data do not provide
enough constraints, specially in the angular domain [Marton-
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chik et al., 1998a], for solving accurately the inverse atmo-
spheric problem. This, in turn, translates into a high degree of
ambiguity to permit the estimation of accurate surface bidirec-
tional reflectance factors [Lyapustin, 1999]. These limitations
are not, however, compensated by any additional source of
fundamental aerosol load and properties available all over the
globe and at temporal and spatial scales compatible with the
original AVHRR measurements. Therefore the derivation of
accurate surface retrievals for global applications remains a
key issue which cannot be performed completely satisfactorily
on the basis of actual AVHRR data and/or in situ measure-
ments.

Nevertheless, low-level algorithms can be applied to account
for at least some typical effects due, for instance, to molecular
scattering. In the particular case of AVHRR/GVI data, the
radiative effects due to absorption and scattering by the main
atmospheric constituents have been tentatively reduced by ap-
plication of a procedure described by Berthelot et al. [1997].
These corrections were implemented with the Simplified
Method for the Atmospheric Correction (SMAC) tool [Rah-
man and Dedieu, 1994], a simplified but fast parametric radi-
ation transfer code in the atmosphere adapted from 5S [Tanré
et al., 1990] to correct AVHRR spectral observations. In this
endeavor, Rayleigh scattering is prescribed following the pro-
files of a standard atmosphere, vertically integrated water va-
por amounts are assumed to be those provided by the clima-
tology of Oort [1983], and total ozone amounts are derived
from Total Ozone Mapping Spectrometer (TOMS) data [Mc-
Peters et al., 1998]. The latter two components are varying
spatially and temporally. Finally, the latitudinal profile of
aerosol load is imposed as suggested by Berthelot and Dedieu
[1997] and Berthelot et al. [1997]. Since there is no unique way
to address these atmospheric effects, the procedure imple-
mented by the team generating the Land Surface Reflec-
tances (LASUR) data sets must be considered a first at-
tempt to provide a useful solution to the problem
of correcting AVHRR data for these atmospheric effects.

The AVHRR/GVI/LASUR data have been further compos-
ited in time to limit the effect resulting from the presence of
clouds. Thus exactly 2 AVHRR spectral measurements (red
and near infrared) are available for each pixel of about 15 by
15 km, every 7 days. Since AVHRR is a monodirectional in-
strument, the only way to emulate multiangular observations
was to accumulate data in time, assuming the surface did not
change during that period. Our analysis is based on a monthly
compilation of these 7-day periods to accumulate sufficient
angular sampling to apply the algorithm.

3.2. Selection of a Particular Model and Inversion
Technique

The application of a complex three-dimensional model
would have required a complete documentation of the struc-
ture and properties of a large number of terrestrial environ-
ments. For the purpose of this exploratory research we have
opted, instead, to select a flexible one-dimensional radiation
transfer model [Gobron et al., 1997b] to represent the interac-
tion of light with plant canopies. It implements a statistical
description of the discrete nature of the canopy to relax the
continuous (turbid) medium assumption and includes an ex-
plicit representation of architectural effects for homogeneous
canopies.

In this model, the first 2 orders of scattering (by the soil and
by the leaves) are calculated in three-dimensional space after
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an adaptation of a discrete model originally developed by Ver-
straete [1987] to account for the extinction of the direct incom-
ing solar radiation. This statistical description of the canopy
architecture permits an explicit representation of the enhanced
backscattering effects due to the finite size of leaves, also
known as the hot spot phenomenon in the first 2 orders of
scattering [Verstraete et al., 1990]. The multiple-scattering con-
tribution is calculated with a Discrete Ordinates Method using
an azimuthally averaged expression of the anisotropic scatter-
ing phase function proposed by Shultis and Myneni [1988].
Extensive comparisons against a ray-tracing model simulating
homogeneous canopies have demonstrated the high perfor-
mances of this semidiscrete model [e.g., Gobron et al., 1997b].

Another significant advantage in this choice of model is the
possibility to generate large look-up tables (LUTSs) relatively
quickly, on the basis of well-identified canopy parameters. In
its basic version the model requires seven input state variables,
namely, the leaf angle distribution function, the leaf reflec-
tance and transmittance coefficients, the soil albedo or BRF
values, and any three of the four following information items:
the height of canopy, the leaf area index, the equivalent leaf
diameter, and the number of leaves per unit volume. For most
practical purposes the use of LUTSs storing a large number of
bidirectional spectral reflectance factors is more effective than
classical inversion techniques allowing a wide range of solu-
tions, possibly distinguished only by numerical variations de-
pendent on the precision of the computer. The latter technique
has however proven useful for methodological research, where
operational constraints are largely absent [e.g., Pinty et al.,
1989; Camillo, 1987; Goel and Strebel, 1983; Privette et al.,
1995].

When implementing a LUT approach, the operator selects a
priori the number and type of radiative solutions that will be
considered. This implies that if no constraint is placed on the
maximum allowed value of the cost function, at least one
solution will always be chosen, but the accuracy of the solution
depends on the level of discretization of the LUT. This is a
definite advantage over classical techniques seeking the mini-
mum of a cost function with few constraints on the solutions.
Since the solution of an inverse problem by searching a match
between measurements and simulations available in a LUT
requires the initial identification and characterization of all
possible cases, the discretization of the LUT must be suffi-
ciently fine to ensure that at least one reasonable solution can
be associated with any likely set of measurements. On the
other hand, the generation of very highly discretized LUTs will
often result in the identification of multiple simulated cases
which could explain the observations and thus may lead to the
identification of nonunique solutions.

For this exploratory study, based on the AVHRR/GVI/
LASUR data, 35 “radiative biome types” supposed to span the
range of possible solutions for each GVI pixel have been de-
fined through the model parameter values given in Table 2.
Only canopies with standard healthy green leaves have been
considered, and little attention has been given to the represen-
tation of bare soil conditions. Canopy spectral reflectance and
transmittance properties have been extracted from the data set
provided by Price [1995]. The results shown below thus depend
in part on this specific hypothesis. In practice, it is obviously
feasible to increase the size of the LUT by adding more leaf
spectral properties, but this mainly leads to the identification of
multiple solutions to the inverse problem. After performing a
number of sensitivity experiments, we concluded that the set of
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Table 2. Definition of 35 Radiative Biome Types

LAI Diameter of a Single Leaf Height of the Canopy Leaf Angle Distribution

Brightness of Soil

1 small low

1 small low

1 large low

1 large low

1 large medium
1 large medium
2 small low

2 small low

2 large low

2 large low

2 large medium
2 large medium
3 small low

3 small low

3 large low

3 large low

3 large medium
3 large medium
5 small low

5 large low

5 large low

5 large medium
5 large medium
0

0

erectophile dark
planophile bright and dark
erectophile dark and bright
planophile dark
erectophile dark
planophile dark
erectophile dark
planophile dark and bright
erectophile dark and bright
planophile dark
erectophile dark
planophile dark
erectophile bright
planophile bright and dark
erectophile bright and dark
planophile bright and dark
erectophile bright and dark
planophile bright and dark
planophile bright
erectophile bright
planophile bright
erectophile dark and bright
planophile bright

dark

very bright

“Small” and “large” leaf diameters correspond to values of 1 and 5 cm, respectively; “low and medium”
heights of the canopy correspond to values of 0.5 and 2 m, respectively. The soil albedo values are fixed
at 0.07 for dark and 0.16 for bright soils in the visible band and at 0.09 for dark and 0.21 for bright soils
in the near-infrared band, respectively. Note that the two bare soil cases correspond to anisotropic surfaces
with a single-scattering albedo of 0.1 for dark and 0.7 for very bright soils in the visible band and 0.2 for
dark and 0.8 for very bright soils in the near-infrared band. The other two model parameters are the hot
spot parameter (0.1) and the asymmetry factor (—0.2).

35 radiative biome definitions described in Table 2 was ade-
quate to produce an acceptable trade-off between an accurate
but sufficiently unambiguous solution, without overtaxing the
computer resources available. Again, the strategic priority was
to identify at least one reasonable solution to the inverse prob-
lem for each pixel. The selection of model properties and the
design of the LUT were based on the assumptions that (1) all
pixel values do correspond to surface conditions which can be
effectively simulated by the semidiscrete model mentioned
above, (2) land surfaces do not evolve substantially during the
period of data accumulation (one calendar month), and (3) all
measured bidirectional reflectance factors were accurately de-
contaminated from atmospheric effects in the process of gener-
ating the LASUR product. These three assumptions clearly affect
the scope and representativity of this exploratory study, but it
should be noted that the severity of the assumptions will be largely
reduced with the progressive availability of better data from the
new generation of sensors, and in particular MISR, which will
provide four spectral measurements in each of nine observation
directions for each pixel within a period of a few minutes.

This being said, more than one solution may be found to
describe terrestrial environments even when analyzing MISR
data, depending on the discretization level of the LUT and on
the spectral and bidirectional sampling of the reflectance field.
Moreover, any set of environmental conditions (soil, canopy,
and atmospheric properties) which result in sufficiently similar
observed reflectance distributions, meaning sets of spectral
and directional reflectances not statistically different at the
level of precision of the measurements or of the computer, will
be indistinguishable and therefore constitute equally accept-
able solutions to the radiation transfer problem.

In addition, there are inherent limits to the retrievability of
some model parameters, independently from the approach
followed for data analysis or the selection of the interpretation
model. For instance, our understanding of the transfer of ra-
diation in terrestrial environments leads to the conclusion that
the leaf area index of a plant canopy cannot be reliably re-
trieved from any analysis of remote sensing data when its value
exceeds about 4 or so, or when the spectral and directional
properties of the underlying soil are too close to those of the
canopy [e.g., Privette et al., 1995; Gobron et al., 1997a; Pinty et
al., 1998]. Thus it is conceivable that two or more geophysical
situations lead to indistinguishable reflectance observations,
and the LUT should have a sufficient number of entries to
include at least one of these situations as a solution.

3.3. Design of the Inversion Algorithm

The algorithm applied to identify the most probable solu-
tions to the inverse problem among the set of possible solu-
tions predefined in the LUT operates in three basic steps. The
first one consists in calculating, for each of the 35 radiative
biomes b defined in Table 2, for each couple of AVHRR
spectral measurements () at a given date ¢, and for each pixel
p, the following cost function:

BZ(P, b7 )\a t)
_ [pgw(eﬁa 057 dqbpa )\) - plut(eﬁ’ 055 dd)pa ba A)]2
a [ngi(eg, 0’;7 d(rbp7 A) + plul(el(’b 9’1’;1 d(bpa ba A)]2’
)

where 04 and 6% are the illumination and observation zenith
angles, respectively, and d¢” is the relative azimuth angle
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between the solar and the viewing planes. In this equation,
Pei( 05, 07, d¢”, X) correspond to the measured bidirectional
reflectance factors and p,, (63, 02, d¢”, b, A) correspond to
the simulated bidirectional reflectance factors implemented in
the LUT for the biome b in the same spectral band and under
identical geometrical conditions.

This cost function measures the quadratic distance between
the bidirectional spectral reflectance factors available with the
AVHRR instrument and the model simulations. The pixels
associated with a 8 value larger than 0.2 (~30% of the relative
reflectance values) were disregarded from further analysis.
These spectral time-dependent cost functions are averaged
over a period of typically 1 month but with the constraint that
no more than one individual cost function may exceed 0.2. If
this constraint is not verified, the biome is not considered a
possible solution of the problem.

In the second step, the algorithm ranks the biomes in in-
creasing order of these averaged monthly cost functions sepa-
rately in the two channels, with a rank zero for the best solu-
tion(s). In the third and last step, a quality index is evaluated to
identify which entries in the LUT lead to the smallest cost
function in all spectral channels and thus represent the most
probable solutions. In this application all predefined biomes in
the LUT leading to a change in the 8 value of less than 0.0008
(~2% of the relative reflectance values) are considered as
indistinguishable and therefore generate multiple solutions in
that spectral band. In other words, if the spectral reflectances
that populate the LUT do not differ by at least 2% in at least
one spectral band, the corresponding biomes are given the
same rank.

This quality function is evaluated as follows:

1
Q(b7 nb) =1- m z (l)\kR(b, )\k) R(b7 )\A) <Rmax7
A
(2

where k is the total number of spectral bands available for the
analysis, 72, is the number of biomes defined as possible solu-
tions of the inverse problem, a,, is the spectral weight associ-
ated with the corresponding spectral band (set to 1 in our
initial application), and R ., specifies the highest allowed rank
beyond which the probability to find a given biome b is con-
sidered very low. R(b, A,) is the rank associated to the biome
b for each spectral band A,. Finally, the radiative biome(s) for
which Q(b, n,) is closest to 1 is (are) selected as the most
probable solution(s). Since multiple combinations of spectral
ranks may give the same value for the function Q (b, n,), there
is no guarantee of finding a unique solution [see Gobron,
1997].

Other inversion algorithms may be considered, and different
cost functions and quality indices combining the results in all
available spectral bands may be proposed. For instance, ap-
proaches based on the minimization of cost functions defined
as sums over all spectral channels of quadratic distances be-
tween data and model simulation may certainly be valuable.
However, their main drawback is to generally yield results
biased by the spectral and angular conditions responsible for
the largest differences between actual and simulated data.
Such a bias obviously affects the analysis of AVHRR data,
since the correction scheme for atmospheric effects assumes
simplified latitudinal aerosol profiles, which may not be accu-
rate enough. This will translate, in turn, into overestimated
bidirectional reflectance factors emerging the land surfaces in
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Figure 1. Frequency of finding the indicated number of ac-
ceptable solutions over global data set, on the basis of weeks
1-5 of GVI/LASUR data in January 1989.

the visible channel, which can themselves be understood as a
vegetation canopy less dense than is actually the case. In our
initial exploration the quality of the information derived from
each and every individual measurement is considered to be
equally reliable and independent of the spectral band or the
angular conditions of illumination and observation. The role of
the parameter R, in (2) is to restrict the search for solutions
among those which have a sufficient degree of quality in each
band separately. Our experience shows that this approach
leads to the identification of at least one solution for each pixel
and that solutions become highly improbable when at least one
of the spectral ranks becomes too high. Restricting the search
in this way thus reduces the time and computing resources
needed to identify the most probable solutions.

3.4. Results

The algorithm described above has been applied to the anal-
ysis of composite weekly data sets derived from the AVHRR/
GVI/LASUR database. Only a detailed case-by-case investiga-
tion of the geometries of illumination and observation for each
pixel and for the periods under investigation could establish
whether merging data from multiple consecutive periods ef-
fectively results in a useful increase in angular sampling. How-
ever, this assumption has been made and the algorithm has
been applied to data sets corresponding to composited
AVHRR/GVI/LASUR data for the entire calendar month,
namely January (5 weeks) 1989.

The solid line in Figure 1 shows the proportion of pixels in
these global data sets, analyzed as described above, which
yielded the indicated number of acceptable solutions (i.e., bi-
omes whose radiative properties matched the observations in
the sense given in the previous sections). The dotted line in the
same figure shows the cumulative number of pixels for which
the indicated number or fewer solutions were found. Hence
the accumulation of weekly AVHRR/GVI data for a period of
a month is sufficient to identify a unique biome type for about
40% of the terrestrial areas, including the warm and cold
desertic regions. In this preliminary study we set R, = 15, so
no pixel data ever led to the identification of more than 15
acceptable biomes, out of the 35 possible solutions identified in
Table 2.
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Range of LAI values using weeks 1-5 of GVI/LASUR data in January 1989. The map at the top

corresponds to the minimal values and the bottom one to the maximal values that could account for the

observations.

These first results illustrate that it is not possible to find a
unique solution for as much as 60% of the vegetated pixels on
the sole basis of information provided by radiation transfer
models and AVHRR/GVI/LASUR data. Moreover, we found
that these nonunique radiatively equivalent solutions can
sometimes span a large range of LAI values. This latter result
is shown on the global maps in Plate 1 which exhibits the
minimum and maximum values of LAI corresponding to the
radiatively equivalent biomes identified by our algorithm as
potentially accounting for the observed variability in the data,
for the month of January 1989. The proper interpretation of
these maps is that on the basis of the AVHRR data analyzed
here, and with the proposed approach, the estimated global
distribution of LAI lies between the two extremes shown. The
implied LAI values are reasonable in many places, but the
range of possible values is largest over equatorial regions that
are highly contaminated by smoke and clouds. In our experi-
ence, a wide range of values for retrieved parameters such as
the LAI is generally associated with a large number of radia-
tively equivalent solutions. A global map of the geographical
distribution of the number of acceptable solutions does not
show random patterns but rather suggests a relation between
this number and the type of biogeophysical system. However,
this latter result is difficult to interpret since it is strongly

dependent on the discretization of the possible solutions in the
LUT.

A careful inspection of the global maps in Plate 1 shows that
the determination of the land cover type for a particular pixel
is not trivial and often leads to nonunique solutions: typically,
even an important environmental parameter such as LAI may
vary by one unit or more among the radiatively acceptable
solutions. This result is determined in part by technical limi-
tations (including the 8 bits of coding of the AVHRR/GVI/
LASUR data and the relatively low signal to noise ratio of the
instrument), but also by fundamental physical limits, as can
occur when two or more different biogeophysical systems ex-
hibit, for a given set of illumination and observation geome-
tries, essentially similar spectral and directional reflectances
[e.g., Gobron et al., 1997a]. This problem is compounded by the
limitations and inaccuracies associated with the atmospheric
correction of the data. Indeed, the contamination of measure-
ments by inaccurate corrections for water vapor, clouds, and
aerosols, especially in tropical regions, may lead to systematic
biases and therefore the selection of solutions corresponding
to relatively high (low) reflectances in the visible (near infra-
red) channels and thus to an underestimation of the LAIL
Clearly, these problems limit the detailed interpretation of the
results, since for instance, it is difficult to guarantee that the
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accumulation of GVI data over time (1 month in that case)
does not add more noise than reliable information in the con-
structed data sets.

Nevertheless, the five color codes used to represent LAI in
Plate 1 (the black pixels identify targets for which no solution
was implemented in the LUT a priori) illustrates the great
spatial and temporal variabilities encountered over the Earth
surface and the sharpness of the major boundaries between
various biogeophysical systems over various continents.

As a preliminary conclusion from this experiment, it appears
that a significant amount of ancillary information may be re-
quired to narrow down the number of acceptable solutions
when analyzing AVHRR/GVI/LASUR data. This information
may come from additional models of terrestrial cover dynamics
in order to increase the constraints on the solutions to be
found with the filtered temporal signals, or from data of much
better quality with respect to such issues as the calibration, the
digitization level, the signal to noise ratio, and the atmospheric
correction procedures. Indeed, with the limited spectral, direc-
tional, spatial, and temporal sampling of AVHRR/GVI/
LASUR data, variations in the radiation field induced by a
change in the leaf spectral properties often cannot be distin-
guished from a possible concurrent change in canopy LAI, for
instance. Section 4 explores the benefits associated with the
second option in the context of the exploitation of MISR data
on the Terra platform.

4. Preliminary Investigation With Synthetic
MISR-like Data

The exploratory study described earlier shows the limits
inherent to the use of low-quality data, accumulated over time
from a monodirectional sensor. It has been seen that when
data quality is poor, in the sense that a significant part of the
variability of the signal cannot be definitely assigned to known
causes, it does not make sense to have a dense discretization of
the LUT, as multiple combinations of predefined geophysical
conditions will regularly result in indistinguishable solutions.
On the contrary, as users demand higher accuracy and reliabil-
ity in the products generated from remote sensing data, instru-
ments must be designed and operated in such a way that finer
distinctions must be made, so the level of discretization of the
LUT must be adjusted to the quality of data. In the remainder
of this section we will focus on exploring to what extent the
characteristics of the MISR instrument permit an effective
reliable and accurate determination of the global land cover
distribution. Our analysis supports the feasibility of a physically
based, look-up table driven approach for land surface from
multiangular remote sensing data. It differs from the algo-
rithms implemented in the MISR ground segment [Knyazikhin
et al., 1998; Diner et al., 1998c] but underscores the advantage
of instantaneous multidirectional measurements.

To investigate the performance of the algorithm described
earlier when applied to MISR data, we generated a new and
much larger LUT, including some 160 biome descriptions. By
experience, we anticipated that biomes differing significantly in
LAI would, by and large, be distinguishable relatively easily.
Hence to test the algorithm under more stringent conditions,
all entries in the LUT were chosen to represent biomes char-
acterized by a LAI of 3 and differed between themselves only
with respect to the other model parameters. Table 3 summa-
rizes the model parameter values used to generate the spectral
and angular radiance fields in the red and near-infrared wave-
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Table 3. Definition of the 160 Radiative Biome Types for
the MISR Study

Value

1and 5 cm

0.5,2,5,and 10 m

planophile, erectophile,
uniform, plagiophile, and
extremophile

Diameter of a single leaf
Height of the canopy
Leaf angle distribution

Leaf reflectance and transmittance

red domain (0.0876, 0.0465) or (0.06520,
0.0465)

near infrared domain (0.46849, 0.41511) or (0.41849,
0.40511)

Soil albedo

red domain 0.0743 (dark) and 0.16339
(bright)

near infrared domain 0.0913 (dark) and 0.2125
(bright)

lengths for the nine viewing angles of the MISR instrument. It
will be seen that the parameters were allowed to vary over a
wider range of values than in the previous exploratory study
based on AVHRR data. This is justified by the much better
digital encoding of MISR data (14 bits, compressed by square-
root encoding to 12 bits) than is available with the AVHRR/
GVI data (8 bits). For the purpose of this investigation, the
solar zenith angle was fixed at 30° and the relative azimuth
angle was set at 60° off the principal plane.

In this second study we have investigated to what extent our
proposed algorithm was able to identify the correct solution
given a fairly detailed LUT, with ample opportunities to select
similar radiometric solutions. Specifically, we chose the radia-
tive biome 127 as the target environment and assessed to what
extent simulated MISR measurements of this biome could be
confused for any one of the 160 radiative biomes described in
the LUT. This biome corresponds to a canopy where the leaf
angle distribution is erectophile with the height of 2.0 m, the
leaf diameter is 5 cm. The spectral leaf properties correspond
to the first one in the Table 3, and the underneath soil is the
dark one. The algorithm was applied sequentially to the data
generated by each of the MISR cameras separately, all possible
combinations of data produced by 2 to 8 MISR cameras, and
the data generated by all nine cameras together. Figure 2
shows the number of radiometrically acceptable solutions re-
trieved in this experiment, as a function of the number and
type of angular combinations that have been used. It can be
seen that the number of acceptable solutions decreases with
the number of cameras used in the inversion scheme. For
instance, the use of a single camera may yield from 3 to 15
acceptable solutions, while the combined use of six MISR
cameras results in the selection of, at most, six biome charac-
terizations. Figure 2 also shows, in a very preliminary way, the
advantage of analyzing multiangular data: given data in two
spectral bands, the addition of further measurements in other
view directions significantly restricts the range of biomes that
could be considered probable descriptions, given the observed
or simulated data set. Clearly, it will be important to document
to what extent additional spectral bands could also help reduce
the number of acceptable solutions.

The quality of the retrieval can be examined with Figures 3
and 4, which display the frequency of finding specific biomes
(i.e., the probable solutions) for each inversion experiment and
the location in spectral space (red versus near infrared) of the
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Figure 2. Number of solutions retrieved by applying the
LUT inversion procedure using two spectral bands (red and
near infrared), as a function of the number of angular mea-
surements used. The numbers in the diagram indicate how
many combinations of the chosen number of cameras, taken
among the nine possible MISR cameras, yield the specified
number of solutions. The sum of all these numbers in a given
vertical column corresponds to the total number of combina-
tions of m elements taken nine at a time.

9 inversion(s) with 1 camera(s)

36 inversion(s) with 2 camera(s)
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angular signatures of all biomes predefined in the LUT, re-
spectively. From Figure 3 it can be seen that (1) the “true”
solution (biome 127) is always selected as one of the most
probable solutions, (2) the progressive addition of cameras in
the inversion scheme reduces considerably the number of ac-
ceptable solutions (i.e., significantly contributes to the discrim-
ination between biome types), (3) the same five solutions are
systematically selected when data from six or more cameras are
used in the analysis, and (4) a single inversion applied using the
nine cameras together is enough to retrieve these five solutions
with an equal probability.

It must be emphasized that the identification of five equally
acceptable solutions in this particular exercise is largely con-
trolled by the number and type of possible solutions that were
included a priori in the LUT and represents the range of
possibilities allowed by the semidiscrete model under these
conditions. Figure 4 is very informative in this regard, since it
shows that the spectral reflectance fields generated by these
five solutions and sampled by the MISR instrument are indeed
very similar to each other and to the radiance fields corre-
sponding to the “true” solution. Although this conclusion is
quite obvious from a radiation transfer perspective, it under-
scores the difficulty of discriminating different geophysical sys-
tems which exhibit similar spectral and directional signatures.
In this particular application the only differences among the
five solutions retrieved concerned the leaf diameter and the
canopy height. When duplicating the experiment just described

84 inversion(s) with 3 camera(s)

20 |

S

B 127 ->

o

2]

47 3

Ll 2k ot

Retrisval Frequancy(%)
Retrieval Fraquency(%)

Aol

B 127 -> B 127 ->

- - N
= «w =]
T T T
L L L

Retrieval Frequency(%)

3

o

a, Ll

50 100 150
Biome Number

50

26 inversion(s) with 4 camera(s)

Bioms Number

26 inversion(s) with 5 camera(s)

50 100 150
Biome Number

100 150

o

o]

4 inversion(s) with 6 camera(s)

I

25 i

B 127 ->
20f 1

B 127 ->

Retrieval Frequency(%)

Biome Number

50 100 150
Biome Number

100 150

25 25F,
B 127 ->

e 20 B fe L
3 X 20
g g
H 3

151 B Ll
S 5 3215
£ £
< =
& sl 4 & 5[

Py T A . . 0 ‘

0 50 100 150 o 50
Biome Number
36 inversion(s) with 7 camera(s)
sf T T T4 25F
B 127 ->

= 20H ] ® 200
¥ ¥
3 B
H H
215} ] 3 15F
£ £
E 10 - ;', 107
i 2
o T
x gl 4 ® 5K

0 L L L ]

9 inversion(s) with 8 camera(s) 1

inversion(s) with 9 camera(s)
2 - T ]

B 127 -> B 127 &

Retrieval Frequency(%)

0 . ’ L

L L

S0 100
Biome Number

150 50

Biome Number

100 150 50 100 150

Biome Number

Figure 3. Retrieval frequency of the biome type as a function of the number and combinations of the MISR
cameras used in the inversion procedures. The “true” solution (B127) is indicated by an arrow.



17,548

TT T T T T

0.50

LI T B E S B B B S

0.45

0.40

0.35

Bidirectional reflectance factor in the near infrared domain

L B e B ) B e Bt B B B B B B B

o Lo L e Uy b L

PRSI TS S I OO NN NS S0 0 N S A ST H S R
0.020 0.030 0.040 0.050
Bidirectional reflectance factor in the red domain

Figure 4. Bidirectional reflectance factors (BRFs) of the 160
biome types predefined in Table 3 in the red-nir spectral space
and corresponding to the sampling by the nine MISR cameras.
The nine diamonds locate the BRF values generated by the
“true” solution (B127). The plus signs locate the BRF values
generated by the five biomes found to be equiprobable when
performing the inversion with the nine MISR cameras to-
gether.

with synthetic MISR data generated in the principal plane, the
inversion procedure identified only two biomes (biomes 7 and
127) instead of 5. These two biomes differ only by the values of
the height of the canopy and the leaf diameter equal respec-
tively to 0.5 m and 1 cm for biome 7. However it can be noticed
that the ratio of the leaf diameter by the height of the canopy
remains almost the same for biomes 7 and 127. This result is
consistent with the idea that the sampling of the radiance fields
in the principal plane allows a better discrimination of archi-
tectural properties than is achievable from other azimuthal
observation conditions.

The models used in the interpretation of the data play a
critical role in determining the type, amount, accuracy, and
reliability of the information retrieved from an analysis of
remote sensing data, as discussed earlier. The exploratory re-
trieval exercise just described is clearly based on a rather ideal
situation, in the sense that the same model is used for gener-
ating the possible solutions in the LUT and for identifying the
acceptable solution from an analysis of a particular data set.
However, further investigations in this direction would not be
justified if this approach could not be shown to work under
these circumstances.

5. Conclusions

One purpose of this research was to investigate a physically
based approach to the interpretation of multiangular remote
sensing data and to evaluate its advantages and drawbacks in
the context of the characterization of land surfaces.

Since physical models encapsulate our understanding of the
spectral and angular reflectance fields, they can objectively
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document the state of these surfaces in terms of relevant mea-
surable geophysical variables. Clearly, the ability to take full
advantage of the performance of such models depends criti-
cally on the quality of the data and on the density of the
directional and spectral sampling. This was illustrated by ap-
plying the same algorithm first to a heavily averaged and sub-
sampled AVHRR data set typical of the global observations
currently available and then to an idealized simulation of the
MISR instrument. The various sources of uncertainties in the
AVHRR data (e.g., calibration, radiometric, and spectral res-
olution), as well as the difficulty to account for atmospheric
corrections and surface anisotropy effects, result in large errors
and therefore in potentially frequent confusions between bi-
ome types. Thus the LUT must be rather small, and only a few
different biogeophysical systems can be effectively distin-
guished. Conversely, the high-quality data generated by instru-
ments such as the MISR sensor will permit a much more
refined and reliable characterization of land surfaces.

This exploratory study suggests that the feasibility of dis-
criminating between biomes of the basis of reflectance mea-
surements alone critically depends on the quality of the data
and specifically on the availability of multiangular surface level
observations, on the radiometric resolution of the measure-
ments, and on the proper calibration of the data.

The specific advantages of the MISR instrument were ex-
plored through a simulation study. The analysis of data ac-
quired almost simultaneously by multiple cameras under dif-
ferent observation angles appears to allow a much better
discrimination between surface types and a more detailed,
reliable, and accurate description of the corresponding biomes
than is feasible from monodirectional instruments.
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