
A Genetic Representation for Evolutionary Fault
Recovery in Virtex FPGAs

Jason Lohn1, Greg Larchev1, and Ronald DeMara2

1 Computational Sciences Division, NASA Ames Research Center,
Mail Stop 269-1, Moffett Field, CA 94035-1000, USA

email: {jlohn, glarchev}@email.arc.nasa.gov
2 School of Electrical Engineering and Computer Science, University of Central

Florida, Orlando, FL 32816-2450
email: demara@mail.ucf.edu

Abstract. Most evolutionary approaches to fault recovery in FPGAs
focus on evolving alternative logic configurations as opposed to evolving
the intra-cell routing. Since the majority of transistors in a typical FPGA
are dedicated to interconnect, nearly 80% according to one estimate,
evolutionary fault-recovery systems should benefit by accommodating
routing. In this paper, we propose an evolutionary fault-recovery system
employing a genetic representation that takes into account both logic and
routing configurations. Experiments were run using a software model of
the Xilinx Virtex FPGA. We report that using four Virtex combinational
logic blocks, we were able to evolve a 100% accurate quadrature decoder
finite state machine in the presence of a stuck-at-zero fault.

1 Introduction

Numerous advantages of Field Programmable Gate Arrays (FPGAs) in space-
borne electronics have been identified in recent research publications [3, 15] and
manufacturers’ literature [1, 16]. Benefits include reconfiguration capability to
support multiple missions, the ability to correct latent design errors after launch,
and the potential to accommodate on-chip and off-chip failures. Ground Support
Equipment (GSE) based FPGA applications primarily employ reprogrammable
devices as a means of amortizing development costs over multiple missions. In
GSE-enabled applications such as Reusable Launch Vehicles (RLVs), FPGAs
are configured or replaced between missions rather than being reprogrammed
during flight. For applications such as RLVs, comparatively short mission dura-
tions and low levels of ionizing radiation are involved. Hence for many ground
reconfigurable applications, conventional Triple Modular Redundancy (TMR)
techniques often provide sufficient fault handling coverage.
On the other hand, in-mission reconfigurable FPGAs are advantageous for

deep space probes, satellites, and extraterrestrial rovers. In these applications,
the radiation exposures, mission durations, and repair complexities are signifi-
cantly greater. The need for adequate fault coverage during these missions has
become further intensified by the increasing number of FPGAs being deployed.

For instance, NASA’s Stardust probe contains over 100 FPGA devices. Although
the Stardust’s FPGAs are based on a non-reprogrammable antifuse-based tech-
nology, a more recent space-qualified SRAM-based technology has become com-
mercially available.

In SRAM-based devices, the number of programming cycles is unlimited.
Hence new techniques become feasible for active recovery through reconfigura-
tion of a compromised FPGA. The approach developed here concentrates on
autonomous reconfiguration of SRAM-based devices while in-flight. The experi-
ments conducted involve Xilinx’s SRAM-based Virtex parts from the same device
family as the space-qualified QPRO radiation-hardened series.

Permanent Single-Event Latchup (SEL) failures may impact CLBs and/or
programmable interconnections within the FPGA itself. They may also involve
other supporting devices that the FPGA interfaces with or processes data from.
These failure modes also suggest that the ability to derive an alternative FPGA
configuration in-situ would be beneficial. Likewise, SEL exposures exist with re-
gards to the data processing path within the FPGA that is not involved with the
device’s programmable configuration. In the above cases, the FPGA configura-
tion derived at design time will no longer provide the required functionality for
the damaged part. Traditionally, redundant spares have been utilized to replace
the damaged device.

Autonomous repair provides an alternative to device redundancy as a means
of restoring lost capability. While redundant spares exist only in limited quan-
tities, evolutionary recovery methods attempt to facilitate repair through reuse
of damaged parts. Hence the potential benefits are two-fold. First, one or more
failures might be accommodated by reconfiguring the failed part without incur-
ring the increased weight, size, or power traditionally associated with providing
redundant spares. Second, the characteristics of the failure need not be precisely
diagnosed in order to be repaired. Here the repair is performed in-situ via in-
trinsic evaluation of the device’s remaining functionality. This implies that any
residual functionality, including the electrical characteristics of both the dam-
aged device and its interaction with any supporting devices, is taken into account
when realizing the repair. After isolating the fault to a size that is manageable
for the evolutionary algorithm, alternate solutions are refined though iterative
selection. This can be carried out without detailed knowledge of the underlying
failure mechanism itself.

The approach developed here attempts to regain lost functionality due to
a fault by evolving a new configuration on the defective FPGA. We assume a
dual-redundant FPGA system whereby the faulty FPGA undergoes evolution
to recover its functionality while the redundant FPGA maintains proper func-
tionality during evolution on the faulty FPGA. Thus after a fault is detected,
redundancy is lost for a short period of time and then restored. Application func-
tionality is maintained throughout this process under the assumption that only
one of the FPGAs fails. Our results that the evolutionary methods are able to
fully recover from a simulated stuck-at-zero fault in the input of a state machine

implementing a quadrature decoder. Several research challenges remain and they
are also discussed.

2 Related Work

Recently, various evolutionary algorithm approaches have been proposed for
fault-recovery of FPGAs. Some previous work applies evolutionary algorithms
prior to the occurrence of the fault while other approaches attempt to repair the
fault after its occurrence. Some techniques involve intrinsic evolution using the
failed part itself. Others rely on extrinsic evolution of an abstracted model of
the devices.
Three examples of recent work that apply evolutionary algorithms to realize

fault-tolerant designs include [11], [4], and [13]. In [11], Miller examined proper-
ties of messy gates whereby evolved logic functions inherently contain redundant
terms as their functional boundaries change and overlap. In [4], Canham and
Tyrrell compare the fault tolerance of oscillators evolved by including a range of
fault conditions within the fitness measure during the evolutionary process. A
population-based approach scores evolved designs using a fitness function corre-
sponding to desired operation based on the absence of faults. When evolution is
complete, an additional pass evaluates the ability of the evolved individuals to
tolerate a range of faults, and the most fault-tolerant individuals are retained.
In [13], the evolution of designs containing redundant capabilities without the
designer having to explicitly specify the redundant parts themselves was inves-
tigated. To achieve this, a range of fault cases was introduced throughout the
evolution process. This allowed individuals to exploit whatever component be-
haviors exist, even behaviors known to be faulty.
An evolutionary fault-recovery approach is described by Vigander [14]. He

develops a genetic algorithm to restore functionality after random faults are in-
jected into a 4-bit by 4-bit multiplier using standard genetic operators. He sim-
ulated the repair of the prior-designed multiplier that consisted of feed-forward
interconnection of hypothetical FPGA cells capable of 8 different logic functions.
He used as his fitness function the number of correct input-output mappings from
the 256 possible input combinations that could be applied to the multiplier. He
demonstrated that while it is not exceedingly difficult to derive a solution that
can produce a nearly correct repair, completely correct repairs present a chal-
lenging problem. To remedy this, he demonstrated that a voting system with as
few as three alternatively evolved repaired circuits was capable of producing a
majority output that was completely correct.

3 Representation and Operators

Several goals were taken into account while designing the representation scheme.
Amenability to recombination is of course a primary concern. After that, our
priorities were to let the GA work in the largest, most flexible design space as

possible: we wanted to allow all possible LUT configurations and allow the maxi-
mum number of CLB interconnections given the constraints of hardware routing
support. We also wanted to disallow illegal configurations and to minimize non-
coding alleles (introns).

Bitstring representations are a natural choice for FPGA applications, and
many times the raw configuration string can be used as the representation. In
our case, we chose a bitstring representation mainly out of convenience in pro-
gramming. Since we knew that only a handful of CLBs would be evolved, our
bitstrings would be at most 1000 bits long. We acknowledge that this approach
would likely suffer as more CLBs were utilized and the corresponding bitstring
enlarged to thousands of bits.

The representation is shown in Figure 1. This scheme is comprised of multiple
128-bit fields, one for each CLB. Within each CLB field are a number of sub-
fields that specify each of the LUT bits and remote connections. There are 16
bits that specify the contents of each LUT. Each LUT has four inputs, and
since each of these inputs can be connected to other LUT outputs, the remote
CLB/LUT requires addressing bits. Since our system will be comprised of four
CLBs, we need only two bits to specify the remote CLB, and another two bits to
specify the particular LUT within the CLB. This pattern of sub-fields continues
for each LUT until all the LUTs in the CLB are accounted for. An illustration
of the CLBs, LUTs and sample routing is shown in Figure 2.

LUT 0 BITS

R-CLB = REMOTECLB

R-LUTR-CLB

R-LUT = REMOTELUT

R-LUTR-CLB...
LUT 0 INPUTS

... R-LUTR-CLB R-LUTR-CLB...
LUT 3 INPUTS

LUT 3 BITS ...
CLB 0 CLB 1

Fig. 1. Genetic representation used showing logic fields and routing fields.

CLB 0

LUT
0

LUT
1

LUT
2

LUT
3

CLB 1 CLB n

· ··
LUT
0

LUT
1

LUT
2

LUT
3

LUT
0

LUT
1

LUT
2

LUT
3

LUT
0

LUT
1

LUT
2

LUT
3

LUT
0

LUT
1

LUT
2

LUT
3

Fig. 2. Example of routing among CLBs.

The operators employed were crossover and mutation. Two-point crossover
was implemented using cut points allowed between bits. Mutation was applied
on individual bits.

4 Fault Recovery Of Quadrature Decoder

The quadrature decoder [2] was selected as an initial case study for testing and
refinement of our evolutionary recovery strategy. It represents a NASA applica-
tion of manageable size that is appropriate for tuning of the GA. Quadrature
decoders provide a means of counting objects passed back and forth through
two beams of light, or alternatively determining the angular displacement and
direction of rotation of an encoder wheel turning about its axis. A quadrature
decoder that determines the direction of rotation of a shaft is shown in Figure 3.

B-Channel
Photo -Transistor

A-Channel
Photo -Transistor

B-Channel LED

A-Channel LED

Motor
Shaft

B-Channel
Photo -Transistor

A-Channel
Photo -Transistor

B-Channel LED

A-Channel LED

Motor
Shaft

B-Channel LED A-Channel LED

0 1

B-Channel LED A-Channel LED

0 1

Fig. 3. Rotating shaft application for a quadrature decoder.

The concept of operation for the quadrature decoder is that the objects, or
opaque arcs on the rotating wheel, to be counted will first obscure and then
move past the two light beams in succession. The order in which the beams are
cleared can be used to ascertain the direction of rotation. The use of two beams
acts to preclude false counts due to jitter or bounce resulting from multiple
phantom reads. For example, to have a valid increment in the rotational count,
both beams must be cleared in succession.
To implement the encoder, it is possible to employ a state machine that keeps

track of the beam activity. The state machine accepts two single-bit inputs which
are asserted only when the corresponding sensor is obscured. When a change of
the inputs occurs, the state machine transitions to its next internal state. The
state machine outputs a single bit to indicate if the wheel is continuing to rotate
in the same direction or if it has changed direction of rotation. The finite state
machine for the quadrature decoder is shown in Figure 4.

5 Experimental Setup and Results

The software system used is depicted in Figure 5. The entire system is imple-
mented in software. The GA software is ECJ, a Java-based evolutionary com-

1

2

3

4

Count Down

Count Up

Ch A Ch B State

1

1

0

0

0

1

1

0

1

2

3

4

Fig. 4. Quadrature decoder finite state machine.

putation and genetic programming system by Sean Luke of George Mason Uni-
versity. ECJ is augmented by our code for tasks like decoding individuals and
calculating fitness. The GA sits on top of Xilinx Corporation’s JBits software [5,
8], a set of Java classes which provide an Application Programming Interface
to access the Xilinx FPGA bitstream. Xilinx’s Virtex DS software, which sim-
ulates the operation of Virtex devices, is used to test candidate solutions. Bor-
land’s JBuilder Java environment is used for development and to run the system,
though Sun Microsystem’s Java virtual machine is used beneath JBuilder.

Virtex DS
evaluate

JBits

ECJ + Our Code

FPGA output

JBuilder simulated fault

Virtex DS
evaluate

JBits

ECJ + Our Code

FPGA output

JBuilder simulated fault

Fig. 5. Software system.

To evaluate the fitness of an individual, an input stream of 500 bit pairs is
used. These inputs attempt to fully exercise the evolving finite state machines.
The output stream consists of 510 bits sampled across all four CLBs. Ten bits
are added to allow for delays in the evolved FSMs. This gives ten output stream
windows of length 500, with each output stream shifted by 1-bit from the next.
Sampling across all the CLBs allows the GA to maximum flexibility in building
the FSM. Thus, fitness is expressed as:

F = max
i=1,4;j=0,9

(CLBji)

where CLBji represents the number of correct output bits from the ith CLB
shifted by j clock ticks. The fitness is simply the highest number of correct
output bits seen across all of the CLBs and across the ten output windows. The
best score is 500, and the worst score is 0.

The genetic algorithm was set up as shown in Table 1. Small population sizes
were necessary since a memory leak was present in one of the modules.

Number of generations 1000

Population size 40

Tournament Size 4

Elitist Individuals 2

Gen 0 Seeding 20 individuals

Crossover rate 0.8

Mutation rate 0.002 per bit

Table 1. GA parameters.

Approximately 10 experimental runs were conducted using smaller input bit-
streams of 100 bit pairs. This was found to evolve finite state machines that were
tuned to the test cases, but not robust when interrogated with out of sample
input test streams. Two runs were conducted using 500 bit pairs and one these
runs was able to evolve a 100% accurate quadrature decoder finite state machine
in the presence of an induced fault. The best evolved configuration was found
in generation 623 and is shown in Figure 6. Two of the 16 LUTs went unused
which is not surprising given that the FSM can be implemented with about 10
LUTs. The GA exploits the induced fault to its advantage because if you remove
the fault in the evolved solution, it no longer functions correctly – it achieves an
accuracy of only 93.8%. Also, note that the input LUTs had mostly zeros in their
tables. This is because we fix most of those bits to zero in the genome since they
do not affect the LUT’s function. However, the “corner” bits of each of those
input LUTs are involved in processing the input, and therefore, are evolved.

The GA performance curve for this run is shown in Figure 7. The run ramps
up quickly showing that useful search is underway, however, the average fitness
is stagnant for about 300 generations, which is not encouraging. The runs are
quite slow to execute on a 2 GHz Pentium 4 PC. Runtimes were about 45 hours
since each evaluation takes approximately 6 seconds.

MSB

out

x

Fault
(stuck-at-0)

MSB

MSB

MSB

LSB

LSB

LSB

LSB

MSB

MSB

MSB

MSB

LSB

LSB

LSB

LSB

Fig. 6. Evolved configuration showing routing, LUT contents, and simulated fault.
Inputs are on the lines labeled MSB and LSB, referring to the least/most significant
bit of the input. Wires that are shown crossing perpendicularly (eg, +) are unconnected
– only wires that have > junctions are connected.

6 Discussion

Evolutionary systems for fault recovery on FPGAs may be an important tool in
the quest for ever-higher levels of fault tolerance in NASA missions and other
applications. We have demonstrated a system that is able to evolve a realistic
spacecraft control function in the presence of a fault. Using a software simulation
of an FPGA, we constructed a genetic representation that included both logic
and routing information, and ran a genetic algorithm to evolve a quadrature
decoder. As is typical in evolutionary algorithm applications, the evolved solution
exploits its resources in unexpected ways. In our case, the algorithm made use
of the fault itself in constructing its solution. If there is economy to be gained
by exploiting damaged resources, that is certainly a benefit largely unique to
evolutionary search.

Potential advantages of this approach are handling a wider range of errors,
and relaxing the requirement of fault location/isolation. An autonomous fault
recovery system would be possible if the evolution could be done at sub-second
speeds. Future work includes investigation of scalability to more complex logic

0 100 200 300 400 500 600 700
300

320

340

360

380

400

420

440

460

480

500

Generations

M
ax

im
um

 a
nd

 a
ve

ra
ge

 fi
tn

es
s

Fig. 7. GA performance curve. The top curve is the best individual’s fitness at each
generation and the bottom curve is the average fitness.

functions and systems that have multiple induced faults. Speeding up the eval-
uation cycle by doing evolution directly in hardware is our next line of research.

7 Acknowledgments

The authors would like to thank David Gwaltney of NASA Marshall Space
Flight Center for suggesting the quad decoder application, and Delon Levi of
Xilinx, Inc. for many helpful discussions. The research described in this paper
was performed at NASA Ames Research Center, and was sponsored by NASA’s
Computing, Information, Communications, and Technology Program.

References

1. Actel Corporation, ”Actel FPGAs Make Significant Contribution To
Global Space Exploration,” Press Release, August 30, 1999. available at:
http://www.actel.com/company/press/1999pr/SpaceContribution.html

2. Agilent Technologies, Inc., Quadrature Decoder/Counter Interface ICs, Data Sheet
HCTL-2020PLC.

3. N. W. Bergmann and P. R. Sutton, ”A High-Performance Computing Module
for a Low Earth Orbit Satellite using Reconfigurable Logic,” in Proceedings of
Military and Aerospace Applications of Programmable Devices and Technologies
Conference, September 15-16, 1998, Greenbelt, MD.

4. R. O. Canham and A. M. Tyrrell, ”Evolved Fault Tolerance in Evolvable Hard-
ware,” in Proceedings of IEEE Congress on Evolutionary Computation, 2002, Hon-
olulu, HI.

5. S. Guccione, D. Levi, P. Sundararajan, “JBits: A Java-based Interface for Recon-
figurable Computing,” 2nd Annual Military and Aerospace Applications of Pro-
grammable Devices and Technologies Conference (MAPLD).

6. P. Haddow and G. Tufte, ”Bridging the Genotype-Phenotype Mapping for Digital
FPGAs,” The Third NASA/Dod Workshop on Evolvable Hardware, pp. 109-115

7. D. Keymeulen, A. Stoica, R. Zebulum, ”Fault-Tolerant Evolvable Hardware using
Field Programmable Transistor Arrays,” IEEE Transactions on Reliability, Special
Issue on Fault-Tolerant VLSI Systems, Vol. 49, No. 3, September 2000, pp. 305-316.

8. D. Levi and S. Guccione, “GeneticFPGA: Evolving Stable Circuits on Mainstream
FPGAs,” In Adrian Stoica, Didier Keymeulen, and Jason Lohn, editors, Proceed-
ings of the First NASA/DOD Workshop on Evolvable Hardware, pp. 12-17, IEEE
Computer Society Press, Los Alamitos, CA, July 1999.

9. J.D. Lohn, G.L. Haith, S.P. Colombano, D. Stassinopoulos, ”A Comparison of
Dynamic Fitness Schedules for Evolutionary Design of Amplifiers,” in Proceedings
of the First NASA/DoD Workshop on Evolvable Hardware, Pasadena, CA, IEEE
Computer Society Press, 1999, pp. 87-92.

10. D.C. Mayer, R. B. Katz, J. V. Osborn, J. M. Soden, ”Report of the Odyssey FPGA
Independent Assessment Team,” NASA/JPL, 2001.

11. J. F. Miller and M. Hartmann, ”Evolving messy gates for fault tolerance: some pre-
liminary findings,” in Proceedings of the Third NASA/DoD Workshop on Evolv-
able Hardware, July 12-14, 2001, Long Beach, CA.

12. M. Tahoori, S. Mitra, S. Toutounchi, E. McCluskey, ”Fault Grading FPGA Inter-
connect Test Configuration,” in Proceedings of Intl Test Conference, 2002.

13. A. Thompson, ”Evolving Fault Tolerant Systems,” in Proceedings of 1st IEE/IEEE
Intl Conference on Genetic Algorithms in Engineering Systems, IEE Conf. Pub.
No 414, pp 524-529, TBD Date, TBD Place.

14. S. Vigander, Evolutionary Fault Repair of Electronics in Space Applications, Dis-
sertation, Norwegian University of Science and Technology, Trondheim, Norway,
February 28, 2001.

15. E. B. Wells and S. M. Loo, ”On the Use of Distributed Reconfigurable Hardware in
Launch Control Avionics,” in Proceedings of Digital Avionics Systems Conference,
TBD day/month, 2001, TBD location.

16. Xilinx Inc., ”Xilinx Radiation Hardened Virtex FPGAs Shipping To JPL Mars
Mission And Other Space Programs,” Press Release, May 15, 2001.

