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Reactions on cell membranes: Comparison of continuum theory
and Brownian dynamics simulations

Michael I. Monine and Jason M. Haugha�

Department of Chemical and Biomolecular Engineering, North Carolina State University, Box 7905,
911 Partners Way, Raleigh, North Carolina 27695-7905

�Received 26 May 2005; accepted 21 June 2005; published online 24 August 2005�

Biochemical transduction of signals received by living cells typically involves molecular
interactions and enzyme-mediated reactions at the cell membrane, a problem that is analogous to
reacting species on a catalyst surface or interface. We have developed an efficient Brownian
dynamics algorithm that is especially suited for such systems and have compared the simulation
results with various continuum theories through prediction of effective enzymatic rate constant
values. We specifically consider reaction versus diffusion limitation, the effect of increasing enzyme
density, and the spontaneous membrane association/dissociation of enzyme molecules. In all cases,
we find the theory and simulations to be in quantitative agreement. This algorithm may be readily
adapted for the stochastic simulation of more complex cell signaling systems. © 2005 American
Institute of Physics. �DOI: 10.1063/1.2000236�
I. INTRODUCTION

Reaction-diffusion problems on surfaces are encountered
in a host of systems, most notably heterogeneous catalysis.
Adam and Delbrück1 first surmised that certain biological
processes were aided by the reduction in dimensionality as-
sociated with adsorption to a surface, and the theory of
diffusion-controlled reactions on planar surfaces has since
been considered extensively in the chemical physics and bio-
physics literature.2–15 A key aspect of diffusion-controlled
reactions is the formation of a reactant depletion zone in the
vicinity of an absorber, which limits the reaction rate.

In living cells, most biochemical pathways that trans-
duce extracellular signals contain at least one critical reaction
involving molecules residing in the inner leaflet of the
plasma membrane, and such reactions are generally cata-
lyzed by an enzyme that is activated at or recruited to the
membrane. A distinguishing characteristic of such systems
not encountered in traditional catalysis is the transient nature,
or gating, of the enzyme activity at the membrane. A well-
studied example is that of hormone receptors, which are ac-
tivated by ligand binding and in turn catalyze the activation
of membrane-anchored G-proteins. Linderman and co-
workers have analyzed the dynamics of this system16–18 and
reversible, diffusion-controlled reactions in membranes more
generally13,19,20 using lattice Monte Carlo �LMC� simula-
tions. These studies demonstrated that receptors that remain
ligated for only a short time activate G-proteins more effi-
ciently, because the reactant depletion zone will initially ex-
hibit a sharp concentration gradient, whereas stable receptor-
ligand complexes see the steady-state reactant profile for
most of the time.

Although these models were applied to G-protein-
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coupled receptor signaling, the concept of enzyme activation
and modification of membrane-associated substrates is en-
countered in signaling through many other classes of recep-
tors. In systems where the relevant enzymes are recruited
from the cell cytoplasm, as with growth factor and cytokine
receptors, the concentrating effect of enzyme confinement at
the membrane is sufficient for the enhancement of the reac-
tion rate, which may �or may not� push the reaction into the
diffusion-controlled regime.21–23

A continuum theory appropriate for a variety of signal
transduction reactions in cell membranes was recently of-
fered by one of us,24 and in this theory the enzyme lifetime
was modeled explicitly. The collision-coupling mechanism
�Fig. 1�a��, first considered in the context of G-protein
activation,25 was used as a test case because it had been
analyzed using LMC simulations.13 The agreement with
those simulations was found to be poor, however, as the con-
tinuum theory predicted significantly higher average reaction
rates. The lack of agreement was attributed to the limited
spatial resolution of LMC simulations of interacting point
particles �as was the case with the data used for comparison�,
which would tend to underestimate the sharpness of the con-
centration gradients.

In this work, we have developed a Brownian dynamics
�BD� algorithm useful for the simulations of interactions and
reactions on cell membranes or other planar surfaces, under
partial or complete diffusion control. As with all stochastic
simulation approaches, enzyme gating is readily incorpo-
rated, and so we have revisited the collision-coupling mecha-
nism with finite enzyme lifetimes. After reviewing the con-
tinuum theory in Sec. II, we outline our BD algorithm in
detail in Sec. III. In Sec. IV, simulation results are compared
with the theory, and we show that they are in excellent quan-

titative agreement.

© 2005 American Institute of Physics08-1
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II. THEORY

A. Effective enzymatic rate constant

The system of interest is illustrated in Fig. 1�a�. An en-
zyme molecule, approximated as a uniformly reactive disk of
radius s, associates with the membrane and catalyzes the
conversion of a membrane-associated substrate from its in-
active state to its active form with second-order rate constant
kact. Alternatively, s may be considered the sum of the two
associating molecules’ radii. The substrate reverts to its inac-
tive state spontaneously, with first-order rate constant ki. The
constant area density of total substrate, inactive and active, is
defined as ntot, and both species diffuse laterally with diffu-
sion coefficient D relative to the enzyme. It is noteworthy
that this problem is physically distinct yet mathematically
identical to that of reaction by surface diffusion on a catalyst
with adsorption and desorption of reactant from the gas
phase.5

Defining r as the radial distance from the center of the
enzyme and ni as the density of substrate in the inactive
state, the catalytic action of the enzyme is modeled by im-
posing a Collins-Kimball radiation boundary condition at r
=s; the reaction rate is also posed in terms of an effective
rate constant, defined as kact

eff,

2�sD� �ni�r,t�
�r

�
r=s

= kactni�s,t� = kact
eff�ni� , �1�

where �ni� is the average inactive substrate density in the
membrane. The value of kact

eff is used to implicitly assess the
influence of spatial effects on the reaction rate in the entire

FIG. 1. Model and theory schematics. �a� Activation of the membrane-
anchored substrate is enhanced by membrane-associated enzyme molecules
�E�, which act upon inactive substrate with second-order rate constant kact.
Substrate inactivation occurs with first-order rate constant ki. The finite life-
time of the enzyme at the membrane is considered. �b� Dilute enzyme limit.
The model considers only one enzyme on the membrane, and the density of
activated substrate falls to approximately zero far away from the enzyme.
The influence of substrate depletion in the vicinity of the enzyme is inferred
from the value of kact

eff, the effective enzymatic rate constant �Eq. �1��. �c�
High-density approximation. The model implicitly takes into account the
influence of neighboring enzyme molecules, whose activities are homog-
enized using a mean-field theory.
membrane. Equation �1� is nondimensionalized as follows:
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2�� ����,��
��

�
�=1

= ���1,�� = ���� , �2�

where �=ni /ntot, �=Dt /s2, �=r /s, �=kact /D, and �
=kact

eff /D. The quantity we wish to derive is �, the dimension-
less effective enzymatic rate constant.

When an enzyme molecule spends a long time at the
membrane, a constant substrate profile �ss��� is established
around it, and the enzymatic rate is characterized by a
steady-state value of �,

�� = �
�ss�1�

���
, �3�

where �� denotes the effective rate constant in the limit of
infinite enzyme lifetime at the membrane. In general, the
enzyme may dissociate or otherwise “switch off” before the
substrate concentration can achieve the steady-state profile.
In relation to catalysis, this problem is analogous to that of
two reacting molecules that adsorb transiently to the catalyst,
where they react through surface diffusion. To account for
enzymatic activity within a finite time interval �on, Eq. �3�
may be rewritten as suggested previously,24

� = �

�
0

�on

��1,��d�

����on
. �4�

Equation �4� describes only the transient behavior, however,
when considering the effective rate constant averaged over
all enzyme recruitment events. If we consider the dissocia-
tion or deactivation of the enzyme as a random, first-order
process and define �on as the mean lifetime of the enzyme-on
state, the probability of an enzyme remaining active after
time � is Pon���=exp�−� /�on�. Thus, averaging over many
enzyme recruitment events, we obtain

� = �

�
0

�

��1,��Pon���d�

����
0

�

Pon���d�

= �

�
0

�

��1,��e−�/�ond�

����on
. �5�

B. Dilute enzyme limit

The dilute enzyme limit requires that enzymes at the
membrane are sparse �Fig. 1�b��. The density of substrate in
the inactive state is conserved by

��

��
= ��

2� + Da�1 − �� . �6�

The dimensionless parameter Da �Da=kis
2 /D� is a

Damköhler number comparing the rates of inactivation and
diffusion of the substrate. Far away from each enzyme mol-
ecule, all of the substrate is inactive,

� ��

��
�

�→�

= 0, 	�	�→� = 1. �7�

Moreover, the gradient of the substrate density is sharp

and localized around the enzyme boundary and, therefore,
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���= 	�	�→�=1. Together with Eq. �2�, the steady-state so-
lution of Eq. �6� is obtained,

�ss��� = 1 −
�K0�Da1/2��

2�Da1/2K1�Da1/2� + �K0�Da1/2�
, �8�

�� =
2��Da1/2K1�Da1/2�

2�Da1/2K1�Da1/2� + �K0�Da1/2�
, �9�

where Km are modified Bessel functions of order m. The
result in Eq. �9� is well known from the models of analogous
systems.5,9,14

In this limit, we may also assume that ��� ,0�=1 ini-
tially, and the transient solution follows from Eq. �6�,

���,�� = �ss��� + �
0

� ���1�����e−�	2+Da��	d	

2��	2 + Da��1 + g2�	��
,

���� = J0�	�� − g�	�Y0�	�� , �10�

g�	� =
�J0�	� + 2�	J1�	�
�Y0�	� + 2�	Y1�	�

,

where �ss��� is the steady-state substrate profile in the infi-
nite lifetime limit from Eq. �8�, and Jm and Ym are Bessel
functions of order m. Incorporating Eqs. �5� and �8�–�10� and
simplifying, we derive

� = �� +
8

�
�

0

� h�	�d	

�	2 + Da��1 + �on�	2 + Da��
,

�11�
h�	�

=
	

�J0�	� + �2�	/��J1�	��2 + �Y0�	� + �2�	/��Y1�	��2 .

C. High-density approximation

When enzymes are not necessarily dilute and dispersed
randomly in the membrane, one can approximate the influ-
ence of neighboring enzymes by smearing out their action in
the bulk �Fig. 1�c��.24 Taking nE as the enzyme density at the
membrane, Eq. �6� is altered to give

��

��
= ��

2� + Da�1 − �� − �
E� ,

�12�

E = nEs2.

The average substrate density some distance away from the
enzyme molecule of interest approaches ���=Da/ �Da
+�
E�, and hence with a rescaling of variables, Eq. �12�
takes the form of Eq. �6� written for �*=� / ��� and
Da*=Da+�
E. The effective rate constant � is solved im-
plicitly following the simple substitution of Da* for Da in
Eqs. �9� and �11�.

III. BROWNIAN DYNAMICS MODEL

Our BD model is based on the following assumptions:

�i� all membrane-associated processes are modeled in planar
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geometry, �ii� enzyme molecules are approximated by disks
of radius s, while substrate molecules are modeled as point
particles that do not interact with each other �this is equiva-
lent to considering s to be the sum of the enzyme and sub-
strate radii�, and �iii� the active and inactive substrate par-
ticles diffuse laterally with the same isotropic diffusion
coefficient D relative to the �immobile� enzymes. The BD
algorithm, illustrated in Fig. 2, uses an adaptive time step
��t� and distinguishes between two regions of the cellular
membrane: bulk membrane, where long-distance steps are
considered, and a so-called activation layer surrounding
each enzyme, where the substrate particles make short-
distance steps and the activation reaction is considered.
The size of the thin activation layer is characterized by thick-
ness �s. Particle inactivation occurs with probability
Pi=1−exp�−ki�t� within both the bulk and activation layer
regions. The model assumes periodic boundary conditions at
the edges of the simulation box.

In the bulk membrane, a particle is advanced according
to the first-passage-time method.26–28 The next position of

FIG. 2. Brownian dynamics algorithm. �a� In the bulk membrane, the next
position of the particle is taken to be random on the concentric circle bound-
ary touching the closest enzyme �shown by a gray disk�. An inactive particle
�shown by a small open circle� can be activated in a thin activation layer
next to the enzyme boundary. The activated particle �shown by a small filled
circle� is converted back to the inactive state while making diffusion steps.
�b� In the activation layer, a new rectangular coordinate system � ,� is de-
fined, neglecting curvature of the boundary �the size of the activation layer
and thus the curvature is exaggerated here for the purpose of illustration�.
The next particle position ��n ,�n� is defined by displacements �� ,��
sampled from the Gaussian distribution and assuming that the enzyme
boundary is reflective. Particle activation is modeled as a one-dimensional
problem in �. �c� Distribution density function gact describing the number of
activation events �with �=106� as a function of the initial distance to the
reactive boundary, with s=3.5 nm and �tAL=10−9 s. The varied parameter is
D �in nm2/s�.
the particle is chosen to be uniformly distributed on the
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boundary of a circle centered on the current position of the
particle. The radius of this circle is usually chosen to be
equal to the distance to the closest reactive boundary, dmin,
and the time required for this step is determined as
�t=dmin

2 /4D �Fig. 2�a��. In certain cases, however, this
algorithm tends to underpredict the frequency of collisions
between the particle and reactive boundary, as a particle will
often travel a path that is farther than dmin during the time
step. This was found to be the case when enzymes dissociate
rapidly �ton� �d�2 /4D, �on1/
E, with �d� denoting an
average half-distance between enzymes�, and so in these
situations a finer time discretization was introduced in our
algorithm by choosing

�t = min
dmin
2

4D
,�ton,

1

ki
� , �13�

where ��10−3−10−2.
For any particle reaching the activation layer, a new rect-

angular coordinate system � ,� is defined with the � direction
perpendicular to the enzyme boundary �Fig. 2�b��, and all
particles in the system are subsequently sampled with a suf-
ficiently short constant time step �tAL; particle displace-
ments �� and �� are sampled as Gaussian variables with
standard deviations equal to �2D�tAL�1/2�. The reactive
boundary is reflective, and so a new coordinate �n along the
normal to the boundary is defined as �n= 	�0+��	, whereas
�n=�0+��. The particle coordinates ��n ,�n� are then mapped
to �xn ,yn�. Transition from the inactive state to the active one
is modeled as described previously,28 with activation taking
place if

pA��n,�0,�tAL�
pR��n,�0,�tAL�

� z , �14�

where z is a random number drawn uniformly in the range
�0,1�, and pA and pR are the well-known one-dimensional
reaction �activation� and reflection propagators.29,30 The
one-dimensional approximation is justified here because, by
design, �s.

The considerations above constrain the choice of the
simulation parameters � and �tAL. Further, while the ratio
D�tAL/�2 must be sufficiently small to ensure accuracy, the
computation time increases as this ratio shrinks. Given this
trade-off, we analyzed the distribution density function, gact

�Fig. 2�c��; discrete values of the number of activation
events, Nact��0�, in a given time step from starting positions
�0 are normalized such that integration of gact over �0 gives
1,

gact��0� = Nact��0��
0

�

Nact����d��. �15�

A high value of � was used here ��=106�, such that an acti-
vation event implies that a collision with the reactive bound-
ary occurred. For a given time step, the probability of acti-
vation from �0=� should be low, and thus we found an
appropriate time step �tAL �10−9 s� and activation layer
thickness � �0.05 or 0.1 nm; Fig. 2�c��.

The efficiency of the BD algorithm is significantly

enhanced by assuming that the substrate particles do not

Downloaded 24 Aug 2005 to 152.14.14.135. Redistribution subject to
interact with each other, because we need not perform simu-
lations for an array of particles. The time step is determined
by the particle with the smallest �t, and so it is more effi-
cient to simulate one particle at a time and perform a finite
number of independent simulations equal to the total number
of particles, Npart �104 was found to be suitable�. The effec-
tive rate constant in the BD model is evaluated as

� =
NactA

�Ni��NE�tsimD
, �16�

where Nact is the total number of substrate activation events,
A is the area of membrane simulated, and �Ni� and �NE� are
average numbers of inactive substrate particles and active,
membrane-localized enzyme molecules, respectively �ob-
tained by averaging over the total simulation time tsim�.
Equation �16� is a discrete analog of the integral expression
used in the continuum theory �Eq. �5��.

In simulations with dissociating enzyme complexes, the
finite lifetime of the ith on-state for the jth enzyme is
sampled as ton,ij =−ton ln�1−zij�, where zij is a random num-
ber drawn uniformly in the range �0,1�. The duration of each
enzyme-off state, where applicable, is determined in the
same fashion.

IV. RESULTS AND DISCUSSION

A. Simulations of enzymes with infinite lifetime
at the membrane

In our first set of simulations, we assessed the simple
case of a single, fixed enzyme in the membrane with infinite
lifetime �Fig. 3�. The size of the simulation box was such
that the low-density approximation was valid, and BD simu-
lations were run until a steady-state value of the effective
enzymatic rate constant � was reached �Eq. �16��. The exact
analytical solution in this case �Eq. �9�� predicts a depen-
dence on two dimensionless parameters: Da �Da=kis

2 /D�
and � ��=kact /D�. The simulation results are in agreement
with the theory, which predicts that the diffusion-limited
value of � is reached for large �; this plateau value is a
positive function of Da, as the inactivation process sharpens
the gradient while reducing the size of the depletion zone

FIG. 3. Comparison of theory and BD simulation results: long-lived en-
zymes at low densities. The effective enzymatic rate constant ��=kact

eff /D� is
shown as a function of the true reaction rate constant ��=kact /D�. Da is the
scaled inactivation rate constant �Da=kis

2 /D�. The dilute enzyme limit �Eq.
�9�� is shown by the solid curves; simulation results are represented by the
symbols. Simulations were performed for a periodic domain with one en-
zyme at sufficiently low densities �
E=nEs2=10−5Da�.
surrounding the enzyme �Fig. 3�. It was confirmed that these
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simulation results do not depend on the choices of D and s,
as long as the activation layer thickness and time step are set
accordingly �Fig. 2�c��.

The effect of increasing the enzyme density, in the limit
of fast reaction ��=106� and again with long-lived enzymes
at the membrane, was evaluated next �Fig. 4�. The simulation
box was populated with a total of 200 randomly placed en-
zyme disks; the area of the simulation box A was determined
from the prescribed enzyme density. The simulation results
show good agreement with the implicit high-density approxi-
mation �Eq. �9�, with Da*=Da+�
E substituted for Da� for
enzyme densities of 
E�10−2 and below. At higher densities
�
E�0.1, or an area fraction �0.3�, outside the physiologi-
cal range, the approximation breaks down as presumed
previously24 �Fig. 4�. We also compared the BD model for
the case of enzymes arranged in a regular array. These test
simulations were performed with a single enzyme at the cen-
ter of a rhombic unit cell with periodic boundary conditions,
representing a triangular lattice, and the results were com-
pared with the previously derived exact analytical solution
for a circular cell �with reflection boundary condition at ra-
dius r= ��nE�−1/2�.5,7 As expected, the agreement was good
for the entire range of enzyme densities tested �Fig. 4�. Both
the mean-field theory and BD model predict that the dilute
enzyme limit result is achieved at sufficiently low values of

E, regardless of lattice configuration, and that the effective
enzymatic reaction rate becomes insensitive to Da at high
enzyme densities.

B. Simulations of enzymes with finite lifetime
at the membrane

The theory and BD model were extended to account for
the kinetics of enzyme activation/deactivation �or its
membrane association/dissociation�. Before considering
the problem involving an array of unstable enzymes, the
transient action of a single enzyme molecule upon the sur-
rounding substrate particles was examined in the low-

−5 6

FIG. 4. Evaluation of the mean-field approximation for higher enzyme den-
sities. The effective enzymatic rate constant is shown as a function of en-
zyme density �
E=nEs2� in the diffusion limit ��=106�. The solid curves are
the theoretical predictions �Eq. �9�, with Da*=Da+�
E substituted for Da�;
simulation results, with a random array of 200 enzymes, are represented by
the filled symbols. Theory and simulation results for regular enzyme arrays,
arranged on a triangular lattice, are represented by the dashed curves and
open symbols, respectively.
density, fast reaction limit �
E=10 , �=10 ; Fig. 5�. The

Downloaded 24 Aug 2005 to 152.14.14.135. Redistribution subject to
effective enzymatic rate constant was determined as a
function of the dimensionless enzyme lifetime, �on ��on

=Dton/s2�, with specified values of Da. Theoretical predic-
tions in the dilute enzyme limit considered both deterministic
�the enzyme is on for a specified time ton; Eq. �4� �Ref. 24��
and probabilistic �Eqs. �5� and �11�� lifetimes of the enzyme
activity, and corresponding BD simulations were performed.
In the case of probabilistic lifetimes, the BD algorithm was
repeated for many sampled values of ton, and values of �
were calculated using aggregate values of Nact, tsim, and �Ni�
in Eq. �16�. In all cases, we found good agreement between
theory and BD results and only a subtle difference between
deterministic and probabilistic enzyme lifetimes �Fig. 5�. The
transient behavior is more prolonged when the enzymatic
reaction is limited by relatively slow inactivation of the sub-
strate �low Da�.

Finally we show that the continuum theory can approxi-
mate the effective enzymatic rate constant in the realistic
system consisting of an array of enzymes that associate and
dissociate spontaneously �Fig. 6�. Such a system was consid-
ered previously by Shea et al.,13 who used LMC simulations
to obtain effective rate constants for receptor-associated
enzyme activity activated by external ligand binding. The
average lifetime of the enzyme was thus determined by the
dissociation rate constant of the ligand, kr �ton=kr

−1�, and the
average duration between ligand-binding events for each
receptor, toff, was determined by the external ligand concen-
tration; in those simulations, kr �and thus ton� was varied
while keeping the ratio toff / ton �and thus the average active
enzyme density, 
E� constant, and it was reasoned that toff

would be large enough such that the surrounding substrate
would be inactivated prior to the next ligand-binding event.24

The BD algorithm was run for a random array of 200 recep-
tors, with the enzyme activation state of each tested at speci-
fied time intervals �10−2ton�, and a running average of � was
computed �Fig. 6�a��. The steady-state value of � �deter-

3

FIG. 5. Comparison of theory and simulation results: single enzyme with
finite lifetime. The effective enzymatic rate constant was computed as a
function of the mean lifetime of the enzyme on the membrane,
�on=Dton/s2, in the diffusion-limited regime ��=106� and at low enzyme
densities �
E=10−5�. The transient solution given by Eq. �4� �Ref. 24� and
BD simulation results with deterministic enzyme lifetimes are shown by the
solid curves and closed symbols, respectively. The probabilistic lifetime
solution given by Eq. �11� and corresponding BD results are shown by the
dashed curves and open symbols, respectively.
mined at tsim=10 ton� was compared with the continuum
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theory and LMC results; as observed previously, the theory
and LMC predictions do not agree, yet our BD results are in
good agreement with theory for the same parameter values
used by Shea et al. �Fig. 6�b��.

The discrepancies in the LMC simulations apparently
stem from an inability to resolve off-lattice events.24 Accord-
ingly, the deviations are largest when substrate gradients in
the vicinity of the enzyme are steep �low D and high kr�, and
Shea et al. acknowledged that there is a maximum value of �
that could be obtained in their simulations of point particles,
set by the frequency of bimolecular collisions on a lattice
��=4�.6 It is expected that this resolution issue is relaxed
when either of the interacting particles fills several nodes,
with a defined reaction boundary, as implemented in more
recent LMC simulations of membrane interactions.20

V. CONCLUSIONS

We have developed a Brownian dynamics algorithm that
is suitable for stochastic simulation of reactions and interac-

FIG. 6. Random receptor array with spontaneous enzyme association/
dissociation. Constant parameter values are taken from Shea et al. �Ref. 13�:
ki=0.1 s−1, s=3.5 nm, and 
E=2.333�10−5; kr=1/ ton is the dissociation
rate constant of the enzyme, and conditions are such that the duration of the
enzyme-off state is toff=20ton. BD computations were performed for a ran-
dom array of 200 receptors with spontaneous association and dissociation of
enzymes. �a� Relaxation of � toward steady-state behavior in long-run BD
simulations. The relative diffusion coefficient D is varied as �1� 2�10−11,
�2� 2�10−10, or �3� 2�10−9 cm2/s. �b� Effective rate constant as a function
of kr. The closed symbols denote BD results �averaged over the fluctuations
in the steady-state regime�, and the open symbols denote values reported by
Shea et al. �Ref. 13 and 31�: circles, D=2�10−11; squares, D=2�10−10;
and triangles, D=2�10−9. The solid curves show the mean-field theory
predictions �accounting for the enzyme density�, and the dashed curves
show the dilute enzyme limit given by Eq. �11�.
Downloaded 24 Aug 2005 to 152.14.14.135. Redistribution subject to
tions on surfaces, which we aim to apply to systems that
involve the assembly of signaling complexes and resulting
enzymatic reactions at cell membranes. To validate the BD
algorithm, we have simulated the collision-coupling mecha-
nism of enzyme action and compared the results with both
exact �dilute enzyme limit� and approximate �mean-field
treatment of neighboring enzymes� theoretical predictions,
with full accounting of finite enzyme lifetimes. Close quan-
titative agreement was seen in all cases, and we found that
the mean-field approximation is valid unless the enzyme
density exceeds previously prescribed limits. Finally, we
conclude that lattice Monte Carlo simulations of point par-
ticles systematically underestimate the reaction rate because
of an inability to resolve sharp gradients, a problem that is
likely to be alleviated when each particle has a defined area
comprised of many nodes.
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