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1. Benchmarking of the Chisel system and comparisons to other 
functional clusters 
 

Benchmarking 

Several methods can be used to evaluate the effectiveness of Chisel’s predictions for 

unannotated sequences (e.g., ROC analysis (Egan, 1975), jackknife and bootstrap (Zhang 

and Chou, 1995)). The ROC method requires the availability of large amounts of 

experimentally verified data. In our case, the experimentally verified data constitutes only 

10% of the total data. Furthermore, the experimentally verified data is highly biased 

toward a few eukaryotic organisms (i.e., H. sapiens, A. thaliana, M. musculus, R. 

norvegicus) and model prokaryotic organisms (i.e., E. coli and B. subtilis).  

Chisel clusters were validated by using the jackknife approach (Zhang and Chou, 

1995). The iProClass PIR superfamilies (Wu et al., 2004) containing at least two 

sequences with an experimentally established function were selected. The jackknife 

experiments were performed on all sequences from these superfamilies used for the 

development of Chisel models. Both the learning and test subsets were assured to have at 

least one sequence with experimentally verified protein function.  This strategy gives a 

higher confidence value to the evaluation process.  

The function and taxonomy-specific clusters of enzymatic sequences obtained in the 

described process were used as a training set for the development of the Chisel models. 

Protein sequences that have their functions experimentally verified constitute the best and 

most reliable training set. Testing was performed with a total of 19,905 experimentally 

verified protein sequences (annotated with experimental GO evidence codes (Midori et 

al., 2000) and extracted from references in the BRENDA database (Schomburg et al., 



2000)). These sequences were resampled during the jackknife analysis a number of times, 

depending on the size of the PIR superfamily, to achieve accuracy in testing experiments 

and to generate a larger sample of sequences. 

 

True Positives 190,397 

True Negatives 375,869 

False Positives 3,124 

False Negatives 8,429 

 

The experiment was repeated 201,950 times.  Each sequence was tested against each 

cluster generated per experiment to test if the correct function was assigned to the 

sequence. In the context of these experiments a correct function assignment constitutes a 

match in enzyme nomenclature number with the experimentally verified annotation (i.e., 

true positive); a true negative constitutes each time an experimentally verified enzyme 

was not classified as a non-matching enzyme function.  Functions were predicted 

correctly for 94.28% of the samples. The experiment resulted in 190,397 true positives; 

375,869 true negatives; 8,429 false negatives; and 3,124 false positives. This gave a 

sensitivity measure of 95.8% and a specificity measure of 99.1%. The false negatives 

were due in large part to the insufficient number of sequences for the development of 

Chisel models for a particular enzymatic function or its taxonomic variation in the 

learning period. The false positives were sequences predicted with an incorrect function 

or taxonomic group. Such false positive results may be explained by the lack of a model 

for a “correct” function as a result of an insufficient training set for its development, 

causing false positive prediction of “next to correct” function in cases of evolutionarily 

related enzymes. We plan to explore a number of approaches to overcome such 

overpredictions. One approach is to augment the resolution of Chisel by increasing the 

number of sequence features to be considered by Chisel’s algorithm (e.g., existence of 

transmembrane domains, additional feature location). 

 

 

 



4.1 Comparison of Chisel to Similar Resources  

To our knowledge no other resource is being developed specifically for identifying 

taxonomic and phenotypic variations of enzymes. We have performed comparisons of 

Chisel clusters with a number of protein family resources, such as PIR iProClass (Wu et 

al., 2004), TIGRFAM (Haft et al., 2003), along with commonly used domain libraries 

(e.g., InterPro, BLOCKS (Henikoff and Henikoff, 1996)), which have proved to be 

extremely useful for automation of genetic sequence and evolutionary analysis of 

proteins. The quantity of enzymatic functions associated with individual protein families 

from InterPro (release 12.1), PFAM (release 21.0), TIGRFAM (release 6.0), PRIAM 

(release July 2006) (Claudel-Renard et al., 2003), and Chisel is presented in table 1. The 

PIR subfamilies (release 2.82) containing protein clusters within a homeomorphic family 

(Wu et al., 2004) having  

 

Table 1. Functional specificity of enzymatic protein families and domain libraries. 

EC / Family 1 EC 2 EC 3 EC >= 4 EC 

InterPro 

(5436 families) 

< 0.01% 

(20) 

38% 

(2065) 

19% 

(1051) 

43% 

(2300) 

Pfam 

(2828 families) 

< 0.01% 

(6) 

40% 

(1134) 

19% 

(532) 

41% 

(1156) 

TigrFam 

(1511 families) 

1% 

(12) 

44% 

(663) 

26% 

(394) 

29% 

(442) 

PIRSF500000 

(151 families) 

1% 

(2) 

52% 

(77) 

21% 

(32) 

26% 

(40) 
PRIAM 

(3019 families) 
100.0% 

(3019) 

0% 

(0) 

0% 

(0) 

0% 

(0) 

Chisel 
(8575 families) 

98.4% 

(8438) 

1.4% 

(120) 

0.2% 

(17) 

0% 

(0) 

 

specialized functions and/or variable domain architectures (PIRSF ≤500000) were also 

included in the comparison. Only families of enzymatic sequences were used in the 

comparisons. Table 1 shows in parentheses the number of annotated enzymatic functions 

(ECs) in the protein families developed by each group. Chisel clusters have a 

significantly higher degree of functional specificity (i.e., a single enzymatic function 

associated with the cluster) in comparison to the other systems investigated, with 98.4% 



of clusters being function specific. The Chisel clusters associated with more than one 

enzymatic function contain multifunctional enzymes. Our analysis has demonstrated that 

a significant percentage of the protein families from the investigated resources contain 

sequences associated with two enzymatic functions. The PIRSF homeomorphic families 

were found to be the most specific among the compared resources. 

In addition, we compared the taxonomic specificity of protein families developed by 

the above-mentioned groups. The lowest common node for the member sequences in the 

protein families was reported. For consistency, we have taken into consideration only 

three taxonomic levels: the root or cellular organism, kingdom, and subkingdom levels. 

The results of these comparisons are presented in Table 2.  The table shows that Chisel 

has a significantly higher resolution in identification of taxonomic variations of enzymes. 

Most of the Chisel clusters correspond to lower than kingdom taxonomic levels.  For 

example, the superfamily PIRSF500093 (ATP synthase beta chain) contains sequences 

with a lowest common taxonomic level “cellular organism.” The Chisel algorithm 

recognized substantial differences within this superfamily and split it into clusters 

belonging to Proteobacteria, Alphaproteobacteria, Gammaproteobacteria, 

Burkholderiales, Firmicutes, Bacillaceae, Cyanobacteria, Spermatophyta, Viridplantae 

Magnoliophyta, Bangiophyceae, and Bilateria. 

 

Table 2. Taxonomic specificity of enzymatic protein families from InterPro, PFAM, 

TIGRFAM, PIRSF subfamilies, and Chisel. 

Common Tax 

Level 

Root or 

Cellular Organism 

 

Kingdom 

Sub- 

kingdom 

InterPro 

(5436 families) 

77.5% 

(4217) 

12.9% 

(703) 

9.6% 

(516) 

Pfam 

(2828 families) 

75.6% 

(2140) 

14.4% 

(408) 

10% 

(280) 

TigrFam 

(1511 families) 

75.5% 

(1145) 

16.8% 

(255) 

7.7% 

(111) 

PIRSF 

(151 families) 

37% 

(56) 

27.9% 

(42) 

35.1% 

(53) 

Chisel 

(8575 families) 

0.07% 

(6) 

16.6% 

(1421) 

83.4% 

(7148) 

 



The Chisel system has the following important features distinguishing it from other 

systems:  

(a) Representation and analysis of Chisel models in the framework of metabolic 

pathways give a systems-level perspective on the evolution of enzymes and their 

protein families.  

(b) The developed libraries allow for the construction of degenerative PCR primers. The 

primers support in vitro bacteriological diagnostics and characterization of 

microorganisms. 

(c) Chisel supports community curation of the models using interactive tools (e.g., 

PhyloBlocks). 

2. Supplementary Discussion 

 

The abundance of genomic and enzymatic data has led to the development of several 

algorithms that performs grouping or clustering of related sequences for a variety of 

applications including homology identification, study evolutionary conservation, 

homology modeling, and domain detection etc. for function prediction (Narai et al., 

2007). The Chisel rules-based pipeline performs high-resolution clustering of initial seed 

sets of homologous sequences into similarity-based clusters. Clustering algorithms are 

generally applied to group functionally related sequences and providing sensitive profiles 

for further utilization.  Several general purpose tools, such as BLAST, PSI-BLAST 

(Altschul et al., 1997) and HMM-based profile are routinely used to group/identify 

similar sequences with sequence libraries like TIGR and PFAM. They are traditionally 

used for sequence similarity based domain detection. Additional tools have been 

developed to tackle the issue of sequence function annotation. However, methods that 

quantify similarity by using some attribute of
 
the best BLAST hit and use single-linkage 

clustering. Systers and GeneNest provide clusters reflecting overall sequence similarity 

and not necessarily the function. Depending on the method and thresholds used the 

clustering results may vary. Such straightforward approaches can also group
 
together 

different multi-domain proteins which share a common
 
domain, and can be fooled by 

promiscuous
 
domains (Doolittle, 1995; Marcotte et al., 1999). To this end, Chisel uses 

domains detected by the Interpro tool in its first step to avoid this pit-fall.  



 

Existing tools such as PRIAM take the clustering a bit further and provide a PSSM based 

library to annotate the sequence by function. PRIAM forms sub-clusters of enzymes 

based on the domain composition of the enzymes coming from the ENZYME database 

(Bairoch et al., 2000). Thus, all of their clusters should be function-specific. Similar to 

Chisel, one main clustering feature of PRIAM is the domain composition. However, 

unlike PRIAM, Chisel aims to answer additional questions including more nuanced 

functional classification, biological niche and environmental factors affecting the enzyme 

that allow it to behave similar to other taxonomically related organisms. Even though 

PRIAM contains many function-specific clusters (Table 1), Chisel provides far greater 

number of clusters and function specificity because more sequences are used for the 

analysis and taxonomic specificity is also sought.  

Chisel is a very specific and sensitive tool to provide function and taxonomic 

classification of a given enzyme sequence. However, in the present version it doesn’t 

identify functionally discriminative residues. Such tool like EFICAz (Tian et al., 2004) 

that use clustering and subsequent HMM based iterative procedures to recognize 

functionally discriminating residues are currently available. However, their main focus is 

accurate inference of function annotations. Other applications of Chisel are discussed in 

the main manuscript.  
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