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Stochastic effects in biomolecular systems have now been recognized
as a major physiologically and evolutionarily important factor in the
development and function of many living organisms. Nevertheless,
they are often thought of as providing only moderate refinements to
the behaviors otherwise predicted by the classical deterministic sys-
tem description. In this work we show by using both analytical and
numerical investigation that at least in one ubiquitous class of
(bio)chemical-reaction mechanisms, enzymatic futile cycles, the ex-
ternal noise may induce a bistable oscillatory (dynamic switching)
behavior that is both quantitatively and qualitatively different from
what is predicted or possible deterministically. We further demon-
strate that the noise required to produce these distinct properties can
itself be caused by a set of auxiliary chemical reactions, making it
feasible for biological systems of sufficient complexity to generate
such behavior internally. This new stochastic dynamics then serves to
confer additional functional modalities on the enzymatic futile cycle
mechanism that include stochastic amplification and signaling, the
characteristics of which could be controlled by both the type and
parameters of the driving noise. Hence, such noise-induced phenom-
ena may, among other roles, potentially offer a novel type of control
mechanism in pathways that contain these cycles and the like units.
In particular, observations of endogenous or externally driven noise-
induced dynamics in regulatory networks may thus provide addi-
tional insight into their topology, structure, and kinetics.

network motif � signal transduction � chemical reaction �
synthetic biology � systems biology

Enzymatic futile cycles and cycle cascades†† represent a recurring
control motif in biological molecular networks, appearing in a

wide variety of processes from energy metabolism to signal trans-
duction (1). In particular, it has been experimentally observed that
bimodalities in chemical activity that naturally occur in a number of
biochemical systems often include those containing various types of
enzymatic cycles (refs. 2–4; see Supporting Text, which is published
as supporting information on the PNAS web site). However,
because classical Michaelis–Menten (MM)-type kinetics that are
often used to model these systems typically do not directly result in
bifurcations, oscillations, and other complex behavioral patterns,
authors with few exceptions have tended, often with experimental
support, to introduce additional mechanisms such as positive�
negative feedback among the species to explain their onset whether
in deterministic or nondeterministic systems (refs. 5–7, 31 and
Supporting Text). These added structures are indeed necessary in
the deterministic case (8, 9, 32) to describe such complex network
dynamics. In this work, however, we demonstrate that, at least in
systems containing enzymatic futile cycles, an alternative explana-
tion is possible, whereby the observed bifurcation and the induced
bistability are caused solely by the influence of the external uni-
modal noise on the underlying reaction system rather than any
explicit feedback or such other additional mechanism in the system.

As has been demonstrated earlier (both numerically and
experimentally), stochastic noise plays an important role in
determining the characteristic behavior of biological processes

(10), including metabolism, signal transduction, and gene ex-
pression (11, 33). Here we examine the effect of noise on the
behavior of a simple enzymatic futile cycle (Fig. 1). This
mechanism is indeed ubiquitous throughout biological systems
and is encountered as a recurrent control motif in such diverse
regulatory processes as metabolism, GTPase cycles, mitogen-
activated protein kinase (MAPK) cascades, glucose mobiliza-
tion, cell division�apoptosis, checkpoint control, actin treadmill-
ing, and membrane transport as well as two-component systems
and phosphorelays in microbial stress-response signaling path-
ways (12) (to name a few; see Supporting Text) and recognized
for its ability to display a (possibly) sharp sigmoidal change in
substrate�product concentration in response to variation in
enzyme activity (13).

The main evolutionary design objectives thought to select for
these cycles and cycle cascades are considered to be the need for
switch-like elements that convert graded increases in an input to a
more binary output and the demand for signal amplification, which
may be necessary because the primary messengers are often present
in extremely low concentrations (12). However, these objectives
lead to an important dichotomy intrinsic to the problem: as the
signal gets substantially amplified by one or more of these nonlinear
mechanisms, so do the small external noise-driven fluctuations in its
level. As will be shown below, such noise in primary messenger
concentrations can qualitatively change the dynamics of even the
simple futile cycle motifs, thus profoundly influencing how these
objectives are met by the biological systems at large.

In this article we demonstrate that signals of sufficient com-
plexity, the ones that can be modeled as input of noise into the
enzymatic futile cycle, can have significant impact on the types
of signal processing and response that networks containing these
cycle mechanisms can perform. Specifically, such noise input can
result in qualitatively novel behavior modalities within the
system as compared to strictly deterministic analysis predictions
(under any set of parameters), including a bifurcation and the
appearance of a bistability that exhibits dynamic switching
between low- and high-activity states. These features, among
other things, act to substantially enhance the amplification
properties of the cycle mechanism and potentially allow it to
function as a more versatile signal transducer, including being
able to filter and checkpoint noisy or transient upstream signals
better than could be done by the corresponding deterministic
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system or other such mechanisms previously considered and
offer new modalities for transmitting the onset and turn-off of
these signals to the downstream targets (14).

We further find that the behavior of the stochastically driven
enzymatic cycle can be very sensitive not only to the strength of the
external driving noise but also to its exact distribution. This pow-
erful control mechanism may account for a potential plethora of
response profiles, because ‘‘noise’’ origins in biological systems
could themselves be very diverse. For instance, they may include
some fundamentally stochastic mechanisms such as thermal fluc-
tuations in chemical reaction rates and their subsequent effects
propagated through the downstream pathways or result from other
intrinsically random processes such as the opening�closing of
membrane channels and radiation-induced DNA damage. Alter-
natively, the apparent noise could be a temporally complex up-
stream signal such as the quasirandom chaotic processes reported
in cardiac or neural tissue (15) or the multifarious variability in
calcium spiking dynamics in response to the multiplexing of one or
more external agonist signals together such as that observed in
immune cells (16, 34). Finally, they could simply be the result of
signals traversing long pathways and accumulating static or tem-
poral heterogeneities en route (such as those an endocrine messen-
ger might encounter because of perturbations in blood or lymphatic
flows, temperature and pH gradients, and other variations in the
local environmental conditions on the way from a gland to its final
target; see Supporting Text). As shown here, driven mechanisms can
then filter and shape these noise inputs in a variety of unconven-
tional ways, which opens up the possibility that such ‘‘filtering’’
regulation might be exploited for control in and of assorted
biological systems (14, 24, 35). Furthermore, because the external
driving noise is itself the output of yet another stochastic chemical
or physical process, the form of its distribution is then determined
by the exact identity of that mechanism. Thus, given that each
specific external perturbation type can be generated only by a
certain range of processes, it may prove possible to use this
noise-filtering information to deduce the structure and study the
function of the larger reaction networks in which such systems are
embedded (17, 36, 37).

To study the enzymatic futile cycle mechanism subject to noise
we apply a two-pronged approach. On one hand, the stochastic
dynamics of (bio)chemical-reaction networks is accurately de-
scribed by the chemical master equation formalism (18, 19);
however, this technique is, in general, not tractable analytically.
On the other hand, it is possible to solve a Langevin (20, 21)
stochastic differential equation model of the system governed by
MM kinetics and driven by the noise on the enzyme concentra-
tion in the stationary limit, which we do first. Using this approach
we show that introduction of external noise into such mecha-
nisms’ description may lead to quantifiable qualitative changes
in their characteristic behaviors as well as identify the key
parameters and relationships that control these effects. We then
test and confirm the validity of our results from this (approxi-
mate) stochastic differential equation model by demonstrating
the predicted effects in the direct simulations of the system’s

master equation representation at the elementary reaction level
by means of the Gillespie algorithm (22) and showing that the
relevant noise profile could be generated in a biochemically
meaningful way by a simple set of auxiliary reactions using
parameters inferred with the help of our analytical model.

Enzymatic Futile Cycle
For the purposes of our analysis we consider a model of the
enzymatic futile cycle, diagrammed in Fig. 1, subject to external
noise in the forward enzyme concentration. Here {E�, E�} denote
the forward and reverse (e.g., activating and deactivating) enzymes,
and {X, X*} stand for the concentrations of the forward substrate
and product, respectively. Our goal is to determine the stationary
response curve (nullcline) relationship, RN[X(*)

ss, E�; E�] � 0,
between the strength of the input (control) signal (in this case, E�)
and the response (signal) produced by the system (X or X*) with
(stochastic) and without (deterministic) external noise, Nt, on the
input concentration at the stationary steady state while the total
amount of E� is held constant. The classical deterministic model of
this system predicts a (possibly strong) sigmoidal behavior for the
stationary response curve (Fig. 6, which is published as supporting
information on the PNAS web site), X(*)

ss(E�), which is the reason it
is often referred to as a ‘‘switch’’: in a certain parameter range the
steady state of the system flips from the ‘‘high Xss, low X*ss’’ state to
its opposite in an almost binary way as E� is increased. In its
extreme, this effect is commonly known as zero-order ultrasensi-
tivity, whereby small percentage changes in the concentration of the
enzyme can give much larger percentage changes in the amount of
modified protein (13). When, however, there is noise on E�, we
show that this sigmoidal stationary response curve can evolve
further to become multivalued in X(*)

ss(E�), which indicates the
emergence of an underlying bistability in the system that is not
accounted for by the deterministic treatment (including zero-order
ultrasensitivity).

Analytical Approach
The classical description of the system in Fig. 1 has zero noise
input and is typically analyzed in the MM limit (13), E�/� ��
X0 � K�/� (where X0 is the total amount of X and X*), from
which the steady-state response equation may be derived:

R0�Xss, E�; E�� � E��
k�

k�

�K� � Xss��X0 � Xss�

�K� � X0 � Xss�Xss
E� � 0. [1]

This equation has a unique positive root, Xss(E�), satisfying
Xss � X0. Thus, deterministically, given a set of initial conditions,
the system approaches a unique predetermined stable steady
state, which lies on the response curve at E� and, having reached
it, stays there ‘‘indefinitely.’’ (Notice that this expression is of the
second order in Xss, i.e., the deterministic description of this
system is intrinsically monostable and incapable of supporting
bistable solutions for any set of parameters.)

We now consider what happens if the system is subjected to
external noise on E�, looking to determine the new stationary
response curve and study its properties. For a broad range of
noise sources (such as those driven by the basic protein synthesis
and degradation mechanisms) the stochastic version of cycle
dynamics yields a compact Langevin equation for the level of the
signal molecule X*,

dX* � � dX � �k�E�X
K� � X

�
k�E��X0 � X�

K� � X0 � X � dt �
�k�X

K� � X
dBt,

[2]

(that could be similarly extended to include the potential con-
tribution of internal noise as well as noise in E� and�or other
system parameters; see Supporting Text). Here �D(X) �
�(E�)k�X�(K� � X) is the external driver-induced noise inten-

Fig. 1. The enzymatic futile cycle reaction mechanism.
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sity that depends on the substrate concentration, � is the forward
enzyme noise strength (which may depend on E�), E� is its
‘‘basal’’ level, and Bt is the standard Brownian process. In our
model this expression can be considered a stochastic analogue to
the deterministic MM chemical kinetic ordinary differential
equation.

From Eq. 2 one can immediately obtain a Fokker–Planck
equation for the probability density of Xt, which in turn yields the
stationary-state response curve:

RN����Xss, E�; E�� � E��
k�E��X0 � Xss��K� � Xss�

k�Xss�K� � X0 � Xss�

�
�2k�K�

�K� � Xss�
2 � 0. [3]

[The Fokker–Planck equation can be further solved for the
explicit form of the stationary distribution useful for some
applications (see Supporting Text).] Comparing the stochastic
Eq. 3 and deterministic Eq. 1, we immediately see that the effect
of noise is compactly summarized by the addition of a correction
(diffusion) term to the classical result. Note that the effect of the
additional term is, among other things, to raise this expression
to fourth order in Xss, thus allowing for the appearance of a
bistable solution (which is oscillatory; see Figs. 2 and 3). Eqs. 2
and 3 [which incorporate the effects of the multiplicative noise
on the position and number of the stationary states of the system
and are different from, but in the zero noise case reduce to the
classical deterministic limits (e.g., Eq. 1)] also form the basis for
our subsequent analysis of stochastic cycle function.

Signal Amplification. It was noted earlier that because the noise
term is explicitly present in the stationary-state condition, Eq. 3,
we should expect it to not only affect the dynamic behavior of the
system but to also alter its concentration levels relative to the
deterministic case. In fact, it turns out that in our treatment
the stochastic stationary-state levels, X*ss, are always greater than
the corresponding deterministic one, thus resulting in signal
amplification. From the signal-transduction point of view, this
property of the mechanism is typically quantified as signal gain
(23), which in our case may be written as

G��� � 20 log10� �X*ss��� � X*ss�0� �
�Var�E�� t 3 	 ; ��
� . [4]

The ratio in Eq. 4 represents the strength of the output signal
over the input, which in our case corresponds to the driving noise
level itself.

Note that for sufficiently strong noise G(�) becomes a de-
creasing function regardless of the explicit form of Eq. 4. (As

noise intensity increases, signal amplification stays upper-
bounded by the limit on the number of substrate�product
molecules:  Xss

N � Xss
d  � X0.) Then if G(�) is anywhere

increasing (as is the case here for small noise intensities), it will
have at least one maxima and, as such, a nonzero resonant noise
intensity level. That is, an enzymatic futile cycle can act not only
as a signal transducer but also as a stochastic amplifier, quite
apart from its otherwise deterministic amplification properties.
In fact, as will be seen shortly, there are circumstances in which
the system is not expected to have any significant amplification
deterministically (an enzyme level below the sigmoidal thresh-
old) but nevertheless shows substantial signal gain stochastically.

Stochastic Signaling. In this system, the presence of noise not only
can introduce multistability (as described above) but also noise-
driven dynamic switching between the stationary states. How-
ever, although amplitude modulation could be handled relatively
easily within the framework of the previous sections, analytically
quantifying the frequency response profile of such processes is
substantially more difficult. Whereas oscillation amplitude ba-

Fig. 2. The analytical stationary-state response curves, RN(p), for the enzy-
matic futile cycle (Fig. 1 with parameters of Fig. 3), obtained by using Eqs. 1,
3, and 6 with �� � 0.2 and various values of p (includes the deterministic curve,
which largely overlaps).

Fig. 3. Temporal and frequency characteristics of the cycle dynamics. (A)
Sample time-evolution courses for the enzymatic cycle signal and response
molecular counts, Xt and Xt

�, obtained by using exact numerical simulation of
the reaction mechanism given in Expressions 7 and 8. (Inset) Forward enzyme,
E�(t). (B) Spectral density, S(�), of the process Xt

� vs. frequency � and �E��
(arbitrary scale). Cycle reaction parameters (Expression 7) are: E�(t � 0) � 20;
X(t � 0) � 0; X* (t � 0) � 2,000; C�(t � 0) � 0; C�(t � 0) � 0; E�(t � 0) � 50;
k�1 � 40; k�2 � 104; k�3 � 104; k�1 � 200; k�2 � 100; and k�3 � 5�103 given in
terms of the number of molecules. Driver reaction (Expression 8) parameters:
N(t � 0) � 10 with k21 � 10, k�21 � 5, k22 � 10, and k�22 � 0.2.

2312 � www.pnas.org�cgi�doi�10.1073�pnas.0406841102 Samoilov et al.



sically depends on the relative position of the stable states, its
frequency is generally dictated by the overall shape of the
probability distribution of the process, which significantly com-
plicates the analysis. For example, a general expression for the
mean oscillation period of a dynamically bistable process can be
extracted from the formula for mean transition time (22) and
made more explicit through asymptotic expansion,

�T�Xss
1 ^ Xss

2 �� � 2�
Xss

1

Xss
2

dX

D�X�Ps�X�

�
�8�

D�Xsp�Ps�Xsp��� ���Xsp�
, [5]

where Xsp is the saddle point, �(X) is the potential, D(X) is the
diffusion function, and Ps(X) is the stationary probability dis-
tribution of the process as discussed and more explicitly given in
the Supporting Text.

Signal Processing. Eq. 5 shows that the transition rate between the
two stable states is a (complex) function of other system param-
eters. This fact, combined with our earlier results regarding the
stable state location and oscillation amplitude control, evinces
how modulation of these properties can allow enzymatic futile
cycles to serve as flexible stochastic signaling mechanisms within
larger biomolecular networks. That is, this motif can transform
the signal from an enzymatic input (for example, a kinase) by
amplification, bistable switching, and induction or changing
frequencies of oscillations. The resultant dynamic variation in
substrate�product concentration serves as a rich signal carrier
among the various biochemical modules that can filter and be
differentially responsive to such modes of transmission (14, 24).

Noise Regulation and Inference. In our Langevin model, the depen-
dence of stochastic properties of the driving process on system
parameters is determined by means of �(�). This relationship is
essentially defined by the nature of the external noise sources and
offers a mode of control over the behavior of the system as
discussed earlier. A general power-law model (Fig. 2),

��E�� � ��E�
p , [6]

provides sufficient basis for our subsequent analysis.

Summary of Analysis. We can now make more concrete the
notions of noise-based system regulation and structure infer-
ence. On the one hand, the ability to control the external
stochastic driver and vary some of its parameters, e.g., ��, allows
one to practically regulate such noise-induced properties of the
mechanism as onset or demise of the bistability by using Eq. 3,
the degree of signal amplification following Eq. 4, and the
characteristic signal oscillation frequency as evinced through Eq.
5. Alternatively, if the source of external perturbations is not well
understood but we can observe, vary, and measure the under-
lying parameters of the cycle mechanism, then the above for-
mulas allow one to deduce the intensity profile of the stochastic
driver such as that given in Eq. 6 by, for example, measuring the
response curve RN and fitting it to Eq. 3. Because different
external mechanisms generate distinctive noise distributions, this
information might allow us to infer much about the structure of
the larger external system in which this mechanism is included.

Numerical Analysis
The above analytical model of the noise-driven enzymatic futile
cycle mechanism is based on a set of simplifying assumptions (MM
dynamics, the form of external driver, lack of internal noise, etc.),
which has allowed us to make several interesting predictions about
the underlying system behavior that arises only in the stochastic

case. However, in natural biomolecular systems, the situation is
substantially more complicated. For instance, the specific type of
external noise is dictated, in general, by the characteristics of the
larger biomolecular network in which the system is embedded,
resulting in potentially far more complex noise patterns than
considered above. The mechanism is further subject to other
effects, which include discrete molecular dynamics, internal noise
generated within the mechanism itself, etc. These factors impose
very strong constraints on the types of stochastic drivers one may
consider ‘‘biochemically meaningful.’’ They cannot be arbitrary but
have to belong to a class of processes that do not violate the in situ
(bio)molecular system properties such as being comprised of proper
(bio)chemical reactions, not sampling the negative state space, etc.
As noted, these conditions greatly complicate the task of mean-
ingfully specifying a particular biomolecular stochastic driver by
(among other things) requiring that a proper ‘‘external’’ set of
reactions with the desired noise profile characteristics be identified,
which is made particularly challenging by the difficulties in a priori
predicting the exact type of distribution that these reactions would
impart on the target system.

In this section we numerically validate the general conclusions of
the analytical results discussed above by using a direct chemical
master equation approach in which both the external and internal
noise are explicitly generated by proper (bio)chemical processes
and exactly simulated by using the Gillespie algorithm.

Cycle Mechanism. We look at a model of the futile cycle that uses
only elementary chemical reactions as appropriate for direct
master equation molecular dynamics simulations that do not rely
on MM approximations. Specifically, we consider a detailed
version of the enzymatic futile cycle mechanism (Fig. 1) at the
individual reactions level given by

X � E�
f O¡

k�1

E�
b E�

b O¡
k�2

X � E�
f E�

b O¡
k�3

X* � E�
f

X* � E�
f O¡

k�1

E�
b E�

b O¡
k�2

X* � E�
f E�

b O¡
k�3

X � E�
f .

[7]

External Noise. As noted before, to introduce a particular type of
external noise into the system in a manner consistent with the
master equation and Gillespie-algorithm formulation, we cannot
simply add an arbitrary stochastic process of choice to the quantity
of interest but instead are restricted to augmenting the set of
reactions shown in Expression 7 with an external driver of E� that
itself must consist of proper chemical reactions. An external
reaction set closely satisfying the constraints of the analytical model
could be specified by using a relatively simple form,

N � N ¢O¡

k21

k�21

E�
f � N N ¢O¡

k22

k�22

E�
f , [8]

which is an example of auto(de)activating enzyme dynamics.
Here, species N provides an example of external interactions that
add noise to [E�] in a chemically permissible manner consistent
with Fig. 1. Although the reactions’ properties do not exactly
match those of the driving processes considered in the analytical
model above, the correspondence is strong enough to allow for
a broadly accurate description of the induced behavior.

A specific instantiation of the systems in Expressions 7 and 8
is given in Fig. 3. This simple system deterministically behaves as
a stable node (see Supporting Text), although stochastically it is
overtly bistable. The substrates are not at low concentrations, yet
stochastic effects on their dynamics are quite evident and driven
with something close to p � 1 noise (Eq. 6) on the concentration
of E�(t) (see below).
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Analytical Predictions. Based on Eqs. 3 and 6, we expect the given
Expressions 7 and 8 to exhibit the onset of bistability [the point at
which X*ss(E�) becomes multivalued] at E�

c between 20 and 30 for
an external noise driver of power p � 0.75 and intensity parameter
�� � 20%. [Drivers of lower powers were not expected to be in the
bistable range for these conditions (see Fig. 2).]

Numerical Simulation. The results of the numerical simulations
shown in Fig. 3A confirm that the concentrations of X and X* are
transiting between two states. This dynamical bistable behavior
and stochastic oscillatory response are not possible based on a
classical deterministic description or without the prescribed
external noise added to the forward enzyme, as was discussed
earlier (Fig. 2). The effect disappears with the removal of the
external driver (Expression 8), thus confirming that it is indeed
external noise-induced (Fig. 7, which is published as supporting
information on the PNAS web site). The switching effect also
disappears if a weaker p is used (data not shown). The oscilla-
tions seen in Fig. 3A have a well defined characteristic switching
frequency distribution in the bistable regime, as is evidenced by
the spectral density plot (Fig. 3B) and product histogram (Fig.
4A), and exhibit the expected signal amplification (Fig. 8, which
is published as supporting information on the PNAS web site).

Fig. 4A demonstrates the split in the stationary distribution of
X* within a limited range of �E�(t)� given that it is subject to the
noisy dynamics driven by Expression 8. In contrast, Fig. 4B is
obtained when the process (Expression 8) is not present. For the
noise-driven case in the bistable region of �E�(t)�, a single
measurement of a population of cells by, for example, f low
cytometry would reveal that each cell is expressing a different
level of X* according to the distribution shown in Fig. 4A.

However, as described above, this is not the whole story. A single
cell, if measured over time, will dynamically express X* in an
oscillatory manner, as shown in Fig. 3A, so that the histogram of
the measured concentration in an individual cell is the same as
that shown in Fig. 4A, i.e., the same as for the whole population.
[This situation could be contrasted with the one in which each
cell expresses a different but fixed amount of X*. In this case, a
single measurement of a population of cells would also reveal
that each cell is expressing a different level of X* according to
the distribution shown in Fig. 4A; however, measuring X* over
time in an individual cell would yield a constant baseline that
looks similar to what is shown in Fig. 7 and result in a single-
peaked individual-cell histogram similar to that shown in Fig. 4B
and not Fig. 4A (i.e., different from the whole population, with
the bimodal distribution across the population thus arising solely
from cell–cell heterogeneity and not individual cell dynamics).]

Stochastic Signaling. As Fig. 4A shows, the oscillations seen in Fig.
3A subside some distance before the deterministic (sigmoidal)
switch point, with the amplitude and frequency distribution of
the oscillations changing in between. This transient switching is
also a type of information that can be used in cellular signal
processing. For instance, information about cycle state, such as
distance away from the deterministic threshold, the nature of
external perturbations, etc., is encoded (along with other system
attributes) in its stochastic oscillatory dynamics. This frequency-
domain content of the signal could then be used differentially by
the downstream systems through some of the frequency-filtering
mechanisms reported in ref. 14.

Signal Amplification. By altering the coupling to the external
driving reaction or changing the external species concentration,
we can effectively vary the strength of the input signal and thus
measure the signal-to-noise ratio for this mechanism (Fig. 9,
which is published as supporting information on the PNAS web
site). The results match our analytical predictions of signal
amplification reasonably well. They also further and more
explicitly confirm our earlier predictions of the ability of the
enzymatic futile cycle to work not only as a signal transducer but
as a stochastic amplifier as well.

Noise Regulation and Inference. As is evident from Fig. 2, of all noise
types modeled only those with p 	 0.75 are predicted to induce
some form of bifurcation in this system for the given set of
parameters. This prediction is indeed born out in the analysis of the
direct numerical simulations, whereby a power law is fit to the
scatter plot of std(E�) vs. E� per Eq. 6. Application of the full
mechanism given in Expression 8 results in an exponent close to one
(shown in Fig. 5A) and generates the bistable behavior for the
system as a whole (Fig. 4A); however, applying only the linear
component of that driver, which has p � 0.7 (Fig. 5B), does not

Fig. 4. Signal response histograms for the simulated futile cycle (Expressions
7 and 8) (F represents positions of the average, whereas ▫ represents positions
of the stationary states where different). (A) Molecular count histogram of X*
vs. different values of the average enzyme input, �E�(t)�, generated by the
noise driver given in Expression 8. The evolution of the probability distribu-
tions of X* with increase in �E�(t)� demonstrates the noise-induced bistability
effect. (B) If no external driver is applied, bistable behavior is not observed
(uncertainty is due purely to the internal noise).

Fig. 5. Scatter plot of standard deviation vs. average generated during the
numerical simulations with varied cycle-driver coupling. (A) Full system given
in Expressions 7 and 8, which results in the noise fit slope (power) p � 0.96 and
bistability. (B) Only the linear driver in Expression 8, which results in the fit
slope of p � 0.71 and no bistability.

2314 � www.pnas.org�cgi�doi�10.1073�pnas.0406841102 Samoilov et al.



(data not shown), which is consistent with our analytical
predictions.

Discussion
In this article we demonstrate that stochastic effects could lead
to substantial qualitative differences from the deterministic
predictions in the characteristic behaviors of biological and
chemical systems. As an example, we specifically addressed this
issue in the context of a common biomolecular network motif:
the enzymatic futile cycle. We have shown that driving just one
enzyme with a member of a wide class of external noise
distributions is sufficient to create a stochastically switching
(dynamic) bistability in the system in which none existed before.
In particular, this result suggests that in some instances the
switching behavior and other functions in biomolecular circuits
can be a byproduct of external noise induction rather than
feedback or other deterministic mechanisms as is frequently
assumed. This, in turn, may explain why (among other things)
futile cycles seem to be an evolutionarily favorable choice as a
flexible signal-transduction motif and extend the utility of such
mechanism for de novo bioengineering and similar applications.

Additionally and of potentially greater interest might be the
global systemic effects that such noise-induced phenomena could
have on our understanding of the overall structure and function of
extra- or intracellular biochemical networks. Because noise is
pervasive in our environment, it is possible that organisms have had
to evolve not only to adapt but also to use the additional uniquely
stochastic functional choices afforded to them, because (among
other things) they come at low or no additional cost (entropic or
otherwise) as compared to the deterministic ones. Two such simple
examples of noise-induced functional options were considered in
this article: stochastic amplification and stochastic signaling.

In the first case, additional amplification in the stationary level
of system response is generated solely through an external noise
driver. The implication of this is that futile cycles are intrinsically
more sophisticated as signal transducers and amplifiers than
would otherwise be expected solely on the basis of the deter-
ministic analysis.

In the second case, as the external signal increases and begins to
approach the sigmoidal region, the response level becomes bistable
and begins to transiently switch between two states with a charac-
teristic amplitude�frequency distribution. This dynamic switching
may be viewed as an extra information channel through which more
(accurate) signals can be passed to the downstream processes. The
extra channel is obtained simply through the stochastic nature of the
chemistry and without adding extra network features such as
feedback�forward loops [or, conversely, the potential reason for the
presence of such feedback might be to suppress this type of
unwanted switching ingrained in the system (25)]. This result might
be of further interest because, although it has been previously
understood that various biochemical and biophysical processes can
filter and shape oscillatory signals in a variety of unconventional

ways (14, 26), the example considered herein opens up a possibility
that such noise-filtering regulation and network inference tech-
niques might be exploited in stochastic biological control systems as
well.

The implications of the existence of such mechanisms for the
robust design and functional control of biomolecular systems are
complex: on the one hand, the need for chemistry and species
otherwise involved in forming functional features (such as feedback
loops) of classical deterministic designs can sometimes be obviated,
thus removing some points of failure and possible energetic costs
for the production of proteins or other constitutive molecules; on
the other hand, new fragilities are introduced, such as dependence
on the stochastic switching dynamics. It thus is possible that there
are some evolutionary conditions that favor the stochastic design
over the deterministic one or vice versa.

Because the theory and simulation we develop in this article
demonstrate that a simple mechanism such as an enzymatic futile
cycle can generate complex behavioral patterns under the influence
of noise-driven stochastic effects, the question naturally arises of
how one would experimentally identify and study these phenomena.
While there are observations of noise-induced bistabilities in other
physical and engineering systems (27, 28), there is little such
conclusive experimental evidence in biomolecular structures to
date, although it might be difficult to deconvolve the herein-
predicted effects from the measurement noise. Furthermore, sin-
gle-cell measurements of protein activity and gene expression are
(although increasing) few, and of those, fewer still follow single-cell
expression temporally at sufficient resolution. To complicate mat-
ters, additional mechanisms such as feedback loops often appear in
biochemical pathways alongside the futile cycles and can also
obscure or purposefully suppress the elucidated effects. Finally,
the creation and control of noise-induced bistable switches in the
laboratory is experimentally more challenging than that of the
standard deterministic feedback-based architecture with a contin-
uous switching parameter (29, 30). Nevertheless, given the perva-
siveness of this signal-transduction motif and the simplicity of the
mechanism that generates the effects described in this article, it is
reasonable to assume that such a behavior is exploited in at least
some cellular systems. Conversely, if it is never observed, that is
interesting as well, because it would imply a certain evolutionary
selection against this effect, and it is unclear why such a selection
should exist. At least, all other things being equal, now that it is
shown and characterized how noise can induce qualitatively novel
dynamical behaviors and behavioral changes in biomolecular sys-
tems as simple as enzymatic futile cycles, perhaps it will make such
effects easier to recognize when and if they are indeed observed.
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