
GrIDS{A GRAPH BASED INTRUSION DETECTION SYSTEM

FOR LARGE NETWORKS
�

S. Staniford-Chen, S. Cheung, R. Crawford, M. Dilger,

J. Frank, J. Hoagland, K. Levitt, C. Wee, R. Yip, D. Zerkle

Department of Computer Science,

University of California, Davis,

Davis, CA 95616

email: <lastname>@cs.ucdavis.edu

Abstract

There is widespread concern that large-scale mali-

cious attacks on computer networks could cause se-

rious disruption to network services. We present the

design of GrIDS (Graph-Based Intrusion Detection

System). GrIDS collects data about activity on com-

puters and network tra�c between them. It aggre-

gates this information into activity graphs which re-

veal the causal structure of network activity. This

allows large-scale automated or co-ordinated attacks

to be detected in near real-time. In addition, GrIDS

allows network administrators to state policies spec-

ifying which users may use particular services of in-

dividual hosts or groups of hosts. By analyzing the

characteristics of the activity graphs, GrIDS detects

and reports violations of the stated policy. GrIDS

uses a hierarchical reduction scheme for the graph

construction, which allows it to scale to large net-

works. An early prototype of GrIDS has successfully

detected a worm attack.

Keywords: Intrusion detection, networks, informa-

tion warfare, computer security, graphs.

1 Introduction

The Internet is increasingly important as the vehi-

cle for global electronic commerce. Many organiza-

tions also use Internet TCP/IP protocols to build

�The work reported here is supported by DARPA under

contract DOD/DABT 63-93-C-0045.

intra-networks (intranets) to share and disseminate

internal information. A large scale attack on these

networks can cripple important world-wide Internet

operations. The Internet Worm of 1988 caused the

Internet to be unavailable for about �ve days [1].

Seven years later, there is no system to detect or an-

alyze such a problem on an Internet-wide scale. The

development of a secure infrastructure to defend the

Internet and other networks is a major challenge.

In this paper, we present the design of the

Graph-based Intrusion Detection System (GrIDS).

GrIDS' design goal is to analyze network activity

on TCP/IP networks with up to several thousand

hosts. Its primary function is to detect and ana-

lyze large-scale attacks, although it also has the ca-

pability of detecting intrusions on individual hosts.

GrIDS aggregates network activity of interest into

activity graphs, which are evaluated and possibly re-

ported to a system security o�cer (SSO). The hier-

archical architecture of GrIDS allows it to scale to

large networks.

GrIDS is being designed and built by the authors

using formal consensus decision-making and a well-

documented software process. We have completed

the GrIDS design and have almost �nished building

a prototype.

This paper is organized as follows. Section 1.1

brie
y describes related work on intrusion detection

systems and motivates the need for GrIDS. Section

1.2 discusses classes of attacks that we expect to

detect. In Section 2.1, the simple GrIDS detection

algorithm is described, followed by a more detailed

1

discussion in Section 2.3. Section 2.4 has a treat-

ment of the hierarchical approach to scalability and

Section 2.5 discusses how the hierarchy is managed.

Section 2.6 outlines the policy language. Section 2.7

covers some limitations of GrIDS. Finally, Section 3

presents conclusions and discusses future work.

1.1 Previous Work

The �eld of intrusion detection began with a report

by Anderson [2] followed by Denning's well-known

paper that became the foundation for IDES [3]. A

recent review of the �eld is available [4] that gives

more detail than we can provide here.

Early systems were designed to detect attacks

upon a single host (e.g., IDES (later NIDES) [5, 6]

and MIDAS [7]). Although they could collect re-

ports on a single local area network (LAN), these

systems did not aggregate information on a wider

scale.

Later systems considered the role of networks.

The Network Security Monitor (now called Network

Intrusion Detector or NID) looked for evidence of

intrusions by passively monitoring a single LAN

[8]. NADIR [9] and DIDS [10] collect and aggre-

gate audit data from a number of hosts to detect

co-ordinated attacks against a set of hosts. How-

ever, in all cases, there is no real analysis of pat-

terns of network activity; aggregation is used only

to track users that employ several account names as

they move around in the network.

NADIR and DIDS use distributed audit trail col-

lection and centralized analysis. Centralized anal-

ysis severely limits the scalability of the detection

algorithms. In internetworks of multiple adminis-

trative domains, di�erent domains may be unwilling

to share all activity information with others. Also,

su�cient processing and communications resources

to analyze activity in very large internetworks is un-

likely to be available.

GrIDS moves beyond these limitations by using a

hierarchical aggregation scheme in order to scale to

larger networks.

1.2 Network Attacks

This section brie
y discusses some large-scale at-

tacks that GrIDS aims to detect; it indicates how

GrIDS distinguishes malicious activities from nor-

mal behavior.

A sweep occurs when a single host systematically

contacts many others in succession. Doorknob rat-

tling is a sweep that checks for vulnerable hosts, (e.g.

hosts that employ weak or default passwords on user

accounts). There are legitimate reasons for sweep

activity (e.g. polling of network resources such as

SNMP, centralized backups, audit sweeps by secu-

rity administrators). However, legitimate sweeps

tend to be highly circumscribed and regular|the

source host, services used, hosts contacted, and time

of day are known. Thus, they can be di�erentiated

from malicious sweeps.

Coordinated attacks are multi-step exploitations

using parallel sessions where the distribution of steps

between sessions is designed to obscure the uni�ed

nature of the attack or to allow the attack to pro-

ceed more quickly (e.g. several simultaneous sweep

attacks from multiple sources). The combined na-

ture of the distributed attack is only apparent if the

attack is traced back to the same source, or if fea-

tures of the attacks are similar. To detect such co-

ordinated activity, an IDS must correlate sessions

across several hosts and possibly across several dis-

tributed detectors.

Seely [11] de�nes a worm as \a program that prop-

agates itself across a network using resources on

one machine to attack other machines." The best

known worm attack is the Internet worm of 1988

which infected thousands of hosts throughout the

Internet, rendering many of them unusable. Worms

are evidenced by a large amount of tra�c form-

ing a tree-like pattern and by similar activity oc-

curring amongst a�ected hosts. Intrusion detection

systems may detect a worm by analyzing the pattern

of spread.

2 GrIDS{Graph-Based Intru-

sion Detection System

We now explain the nature and operation of the

GrIDS system. Firstly, we present a simple example

to illustrate the main concept. Next, we discuss the

architecture and components that make up the dis-

tributed system. Then we give a more detailed de-

scription of how these components operate to detect

intrusions. For a complete account, refer to [12].

A

B

C

D

E

Figure 1: The beginning of a worm graph, and the graph after the worm has spread.

2.1 Detecting a Worm

GrIDS constructs activity graphs which represent

hosts and activity in a network. Let us take the

tracking of a worm as a simple example of building

such an activity graph. In Figure 1, the worm be-

gins on host A, then initiates connections to hosts B

and C which causes them to be infected. The two

connections are reported to GrIDS, which creates

a new graph representing this activity and records

when it occurred. The two connections are placed

in the same graph because they are assumed to be

related. In this case, this is because they overlap in

the network topology and occur closely together in

time.

If enough time passes without further activity

from hosts A, B, or C, then the graph will be dis-

carded. However, if the worm spreads quickly to

hosts D and E, as in the �gure, then this new ac-

tivity is added to the graph and the graph's time

stamp is updated. Eventually, the worm's spread is

represented as a larger graph, as shown on the right

of Figure 1.

Thus when a worm infects a network protected

by GrIDS, the network activity associated with its

propagation causes GrIDS to build a tree-like graph.

A detection heuristic can recognize this tree-like

graph as a potential worm. This evaluation might

count the number of nodes and branches in the

graph. Recognition (detection) occurs when the

counts exceed a user-speci�ed threshold, thus caus-

ing GrIDS to report a worm.

In the previous example, all connections were in-

corporated into the graph regardless of connection

type. GrIDS can use other information to relate

network activities, such as destination port num-

bers, or the type of operating systems. In fact, ar-

Parent Department

Right Department

S E

Left Department

ES

S E

Engine

Software
Manager

Module
Controller

Data
Source

Hosts

Figure 2: Overall architecture of the system.

bitrary information can be utilized since GrIDS can

import user-supplied correlation functions into its

graph building algorithm.

Similarly, sweeps and other patterns of misuse

produce graphs of a characteristic shape, and GrIDS

may be programmed to detect and report them.

To verify our design concept, a basic implemen-

tation of this algorithm (which we christened Early

Bird) was built. While it would be premature to

quantitatively evaluate this version, the code was

tested for several weeks on our LAN with tcp-

wrapper [13] data as input. It was not di�cult to

tune the software to detect a worm or sweep attack

within seconds but produce only one or two false

alarms per day from normal user tra�c.

2.2 Architecture

Figure 2 depicts a simple hierarchy with three de-

partments: Left has three hosts, Right has one host,

and Parent contains Left and Right.

All GrIDS software is in the form of modules with

a standardized interface. The modules are started,

stopped, and controlled by a module controller pro-

cess located on each host.

Each department has two special modules: the

software manager and the graph engine. The soft-

ware manager is responsible for managing the state

of the hierarchy and the distributed modules. The

hierarchy is re-arranged dynamically by drag-and-

drop in a user interface, and starting and stopping

particular modules is similarly automated.

GrIDS data sources are modules that monitor ac-

tivity on hosts and networks and send reports of

detected activity to the engine. The activity is re-

ported in the form of a node or an edge for possible

inclusion in an activity graph.

Data sources that are part of GrIDS include net-

work sni�ers and point IDSs (intrusion detection

systems that work on a single host or LAN). How-

ever, GrIDS provides an extensible mechanism such

that other security tools can be incorporated as data

sources without signi�cant change to the tool or

GrIDS.

The graph engine takes input from data source

modules. The engine builds graphs, and then passes

summaries of those graphs up to the engine for its

parent department. The parent engine, in turn,

builds graphs which have a coarser resolution.

In addition to the components shown, there are

user interface modules for allowing human interac-

tion with the system, management functions, and

display of alerts. There is also a central organiza-

tional hierarchy server which has a global view of

the topology of the hierarchy, and is responsible for

ensuring that changes to the hierarchy happen in a

consistent manner.

2.3 Graph Building

This section discusses the GrIDS engine, which col-

lects reports from the data sources and builds them

into graphs.

Graphs consist of nodes and directed edges. A

single graph represents a causally connected set of

events on the network. Nodes represent hosts or de-

partments, and edges represent network tra�c be-

tween them. Nodes and edges are annotated with

attributes that hold supplementary information. In

addition, a graph has global attributes which main-

tain state information about the graph as a whole.

Because GrIDS searches for numerous types of

network abuse, di�erent kinds of graph are needed.

Graphs are constructed in a
exible way; users write

rule sets which specify how graphs are built from re-

ports. A single graph containing all network activity

is too awkward to analyze e�ectively, so GrIDS al-

lows multiple rule sets. For each rule set it maintains

a graph space which contains a number of connected

graphs. A rule set is an executable speci�cation of

one kind of graph; it determines whether an incom-

ing report will be incorporated into existing graphs,

and what the results will be. It also speci�es when

the engine will consider a graph as suspicious and

what actions to take if it is. Rule sets operate inde-

pendently from one another.

Each new report is presented to each rule set in the

formof a partial graph. If the report satis�es the rule

set's preconditions, the engine considers adding the

report to the graphs in that rule set's graph space.

A rule set speci�es combining rules (for nodes

and for edges), to determine if an incoming graph

should be combined with an existing overlapping

graph, and how that should occur. Disjoint graphs

cannot be combined. If a combining condition is

satis�ed on at least one node or edge, then the in-

coming graph is combined with that existing graph,

and the graph's attributes are recomputed. Finally,

if no graph combining occurs, but the incoming re-

port did pass the preconditions, then it forms a new

graph in the graph space.

2.3.1 An Example Rule Set

Rule sets serve several purposes: to decide if two

graphs should combine, to compute the attributes

of the combined graph, and to decide what actions

to take, if any. Computing the edges and nodes

in the combined graph is a straightforward matter

which the engine does automatically. However, since

it does not know the semantics of user-de�ned at-

tributes, the rule set must specify how to combine

them

A rule set consists of several sections:

� A name

� Initializations

� Preconditions

� Graph combining rules

� Assessment and actions

The following example rule set detects worms

by aggregating adjacent connections into the same

graph if they occur close together in time. It also

includes any node reports which have an alert at-

tribute, if they fall in the appropriate time frame.

Some portions of the rule set which give low level

detail have been omitted for clarity.

Throughout the following rules, new refers to

attributes appearing on the incoming report, cur

refers to attributes appearing on an existing graph

for this rule set, and res refers to attributes being

computed for the resulting graph. The f ... g

syntax denotes a set constructor.

ruleset worm_detector;

timeout 30;

report global rules {

res.global.alerts = {};

res.global.time = 0;

}

node precondition defined(new.node.time)

&& defined(new.node.alert);

edge precondition defined(new.edge.time);

The report global rules initialize the graph

space.

Node and edge preconditions �lter the reports

that are not pertinent to the kind of abuse that this

rule set is trying to detect. For each node and edge

in the incoming graph, the appropriate kind of pre-

condition is evaluated.

This node precondition requires an incoming node

to have a time attribute and an alert attribute. Simi-

larly, incoming edges (in reports) are accepted if they

possess a time attribute.

Node rules may access both sets of global at-

tributes and the attributes on the local node being

considered. The sample adds any alert attributes

on the current node to the global alerts attribute,

initializes the local alerts attribute and the time at-

tribute. Similarly, the edge rules combine alerts.

report node rules {

res.global.alerts =

{res.global.alerts, new.node.alert};

res.node.alerts = {new.node.alert};

res.global.time =

max({res.global.time, new.node.time});

res.node.time = new.node.time;

}

report edge rules {

res.global.alerts =

{res.global.alerts, new.edge.alert};

res.edge.alerts =

{res.edge.alerts, new.edge.alert};

res.global.time =

max({res.global.time, new.edge.time,

new.source.time, new.dest.time});

res.edge.time = max({new.edge.time,

new.source.time, new.dest.time});

}

The next three sections of the rule set specify

whether to coalesce two graphs, and compute at-

tributes on the coalesced graph. (Disjoint sub-graph

global attributes are re-computed on those nodes

and edges within the intersection of two graphs.)

First we specify how the global attributes of two

disjoint sub-graphs are combined by the engine.

This initial combination can be modi�ed by sub-

sequent local rules. The combine global section

updates the global alerts attribute for a graph to be

the union of the existing alerts attributes of for the

graphs under combination:

combine global rules {

res.global.alerts =

{new.global.alerts,

cur.global.alerts};

}

The attribute combine determines whether the

graphs should be combined. If the combine attribute

evaluates to true on any overlapping node or edge in

the sub-graphs, then the graphs are coalesced. In

the example below, the sub-graphs are combined if

at least one of the shared nodes has a non-empty

alerts attributes, and if the nodes' time attributes

are within thirty seconds.

If the sub-graphs are combined, the remaining

node rules specify how attributes at nodes combine.

In this case, the alerts attribute at a node in the �-

nal graph is the union of the alerts attributes for the

constituent nodes, and the time attribute is the lat-

est of the time attributes on the constituent nodes.

The edge rules are similar.

combine node rules {

res.node.combine =

!empty({new.node.alerts,

cur.node.alerts})

&& abs(cur.node.time -

new.node.time) < 30;

res.node.alerts = {cur.node.alerts,

new.node.alerts};

res.node.time =

max({cur.node.time, new.node.time});

}

combine edge rules {

res.edge.combine =

abs (cur.edge.time - new.edge.time)

< 30;

res.edge.alerts =

{cur.edge.alerts, new.edge.alerts};

res.edge.time =

max({cur.edge.time, new.edge.time});

}

Finally, the assessment rules evaluate the result-

ing graph and take appropriate actions. The actions

on the right hand side are built-in functions, user

de�ned functions, or updates to global attributes.

assessments {

(!empty(res.global.alerts)) ||

(res.global.nnodes >= 8) ||

(res.global.nedges >= 13) ==>

alert(), report-graph();

(3 < res.global.nnodes < 8) ||

(5 < res.global.nedges < 13) ==>

report-graph();

}

Note that several attributes referred to above were

neither declared nor computed by the earlier rules.

These are automatically computed attributes; their

values can be read by the rules, but not written:

� global.ruleset { the name of the rule set.

� global.nnodes { the number of nodes in a

graph.

� global.nedges { the number of edges in a

graph.

� node.name { the name of this particular node.

� edge.source { a list of the domains associated

with the source of this edge that are within this

engine's domain, starting with the domain for

the source within this engine's domain and end-

ing with the host.

� edge.dest { same as source except pertaining

to the destination side of the edge.

2.4 Aggregation

GrIDS models an organization as a hierarchy of

departments and hosts. Each department in the

hierarchy has an engine of its own, which builds

and evaluates graphs of activity within that depart-

ment. However, activity which crosses departmental

boundaries is passed up to higher levels in the hier-

archy for further analysis.

As graphs propagate upward, entire departments

may be represented as a single vertex, rather than a

vertex per host, in a reduced graph. For example, the

graph in Figure 3 represents an activity that involves

hosts of three departments. Each department sees

only the activity within its boundaries; these do not

appear suspicious. The whole graph is not visible

from any of the lower departments.

The higher level department does not have access

to the full graph on the left either. At this level

in the departmental hierarchy, the reduced graph

(shown on the right) is seen. Because some infor-

mation has been lost in the reducing of the sub-

graphs, this graph's topology is not suspicious either.

However, attributes of the individual subgraphs are

passed up forming attributes on the nodes in the ag-

gregated graph. This allows the higher level module

to draw stronger conclusions about the graph.

For example, each sub-department can pass up the

size of the subgraph it sees, the branching factor of

the graph, and the entrance and exit points of the

graph into and out of this department. Thus, GrIDS

can deduce that the total graph seen at the higher

level has ten hosts in it. Similarly, an approximation

of the branching factor and the depth of the graph

can be computed.

Intractably large graphs never appear at any level.

At lower levels, only sections of the graph are seen.

At higher levels, only summary information about

lower graphs is seen. Using this approach of aggre-

gating graphs, GrIDS infers and reduces the data

that must be analyzed at the higher levels of the

hierarchy. It is this that makes GrIDS a scalable

design.

The hierarchy which handles aggregation of

graphs is also used to manage rule sets. A rule set

is inherited by all the descendants of that node.

A

B

C D

E

F

G

H
I

J

A - B
N = 2

C - G
N = 5

H - J
N = 3

Figure 3: A graph amongst several departments (left), and the corresponding reduced graph. The dashed

lines are departmental boundaries.

2.5 Managing the Hierarchy

Since organizations change, the hierarchical struc-

ture of departments and hosts must permit changes,

but only by authorized users. This section describes

how the hierarchy can be changed in a consistent

manner.

An access control system controls who is able to

view and manage the hierarchy. Each node (host or

dept) in the hierarchy maintains an access control

list (ACL) that speci�es who may manage that node

or any node in the subtree rooted there.

Users manage the hierarchy through views of sub-

sets of the hierarchy which show the topology of the

departments and hosts involved, and making trans-

actions which change the hierarchy. Transactions

include moving a department, adding a new host,

changing the location of the graph engine for a de-

partment, etc. The challenge is to ensure that these

transactions occur atomically and that the hierarchy

is always left in a consistent state afterwards.

Several modules are involved in implementing the

hierarchy. Each department has a software manager

which is responsible for monitoring the hosts and

modules in its department, tracking which hosts are

currently functioning, and maintaining department-

wide states such as the access control list. In addi-

tion, each host has a module controller responsible

for the GrIDS software running on that particular

host. There are multiple user interfaces which have

various views of parts of the hierarchy. All of these

must be kept consistent.

Software managers and module controllers only

know the local topology, i.e. their immediate par-

ents and children.

A centralized organizational hierarchy server

(OHS) maintains a complete global picture of the

entire hierarchy. User interfaces maintain copies of

as much of the hierarchy topology as their users

presently wish (and are authorized) to manage.

Local knowledge simpli�es e�cient implementa-

tion of atomicity and consistency; locking, etc. can

be centralized at the OHS. The use of a central-

ized system has some potential to limit scalability.

Clearly, a single OHS will not work for the entire

Internet. However, the OHS is only involved in

changes to the topology of GrIDS, not in its routine

operation. Hence, this limitation is not pressing.

We now outline how a transaction on the scenario

depicted in Figure 4 would be carried out. Full de-

tails can be obtained from [12].

In the following, we use the notation SC to refer

to the software manager at C, MC to refer to the

module controller on the machine on which SC is

running, and similarly for the other departments.

The organizational hierarchy server is O, and the

interface is I.

A

B C

ED

G

H

F

OHS

Interface

Figure 4: An example hierarchy. Department G is

about to be moved from under department E to un-

der department D. An interface and the organiza-

tional hierarchy server are also shown.

When a user starts up an instance of the user in-

terface, she is prompted for a user identi�er, a pass-

word, and a department in the hierarchy which she

wishes to administer (in this case C).

I requests a copy of the hierarchy below C from

O. O contacts SC to verify that the user is autho-

rized to access C. Then O replies to I with a copy of

the hierarchy rooted at C. O maintains a list of in-

terfaces that have copies of the hierarchy. I displays

the subtree on the user's screen. The copy is marked

with a version number which is used in subsequent

transactions to detect stale copies.

Suppose that, having inspected the hierarchy, the

user decides to move department G (and by impli-

cation, its descendants) under D instead of E (illus-

trated by the dashed line in �gure 4. The �rst step is

to send a message to O. This message describes the

planned action and supplies the hierarchy version

number on which the planned action was based. O

�rst determines if I's planned action is consistent

with existing locks in the hierarchy and based on an

up-to-date view. If so, it locks the appropriate part

of the hierarchy and contacts SD and SE to verify

that the user has the necessary permissions. If she

does not, the lock is released. Assuming that the

action appears feasible, O gives permission for I to

go ahead.

Now I contacts SE (the software manager for the

parent of department G) and informs it that G is

to be moved. SE sends messages to SG warning of

the impending change. Then SE sends messages to

MG to alter the destination of SG and AG's mes-

sages and the location of MG's parent. Since mod-

ules only have local knowledge, only SG, AG and

MG need to be updated. If these transactions have

succeeded, SE updates its own data structures and

acknowledges completion to I.

Next I informs SD of the move. SD then informs

SG of the new information it needs to be a child of

D (e.g., the access control list inherited from SD).

Upon completion, I reports back to O. O may then

remove the locks on the hierarchy. Finally,O advises

the interfaces that have invalid copies of the hierar-

chy. The OHS makes a best e�ort to inform the

interfaces but does not block if interfaces are busy

or no longer exist as this could prevent subsequent

OHS transactions from proceeding. If any interface

is not updated, the use of version numbers ensures

that any transactions using stale hierarchy data are

detected.

2.6 Policy

GrIDS includes a policy language to express accept-

able and unacceptable behavior on the network. A

network is a collection of users, hosts and depart-

ments. These entities communicate via pair-wise

network connections which are labelled with the ap-

plication protocol employed (e.g., TELNET, NFS,

HTTP). Thus, a connection originates from a user,

host or department and terminates in another user,

host and/or department.

Policies are compiled into rule sets which build

graphs and evaluate them for policy violations. This

saves the user from having to write rule sets man-

ually. In general, rule sets are more complicated to

specify correctly than are policies. The present ver-

sion of GrIDS only allows for policies stated with

respect to a single graph edge (network connection).

The authorization model employed is similar to an

access control model. The user speci�es whether a

connection is permitted or prohibited. Thus a rule

regarding a certain type of connection consists of

a tuple (action, time, source, destination, protocol,

stage, status, ...) where action is allow or deny, time

quali�es the rule with respect to a clock or time in-

terval, source, and destination describe the connec-

tion endpoints and protocol describes the connection

type. A connection progresses through several stages

(e.g. start, login, authentication, stop, etc.), and the

stage and status attribute further characterizes the

connection.

As an example, consider the policy

No student in the Computer Science De-

partment is to read or write to the grade

server hosted in Administration; faculty

are permitted to submit grades and to read

grades; teaching assistants are permitted to

read grades; the department chair is per-

mitted to change grades.

To check this policy with GrIDS, the policy com-

piler generates rule sets for three domains: Com-

puter Science, Administration, and the department

that constitutes the least upper bound of these two

domains. The policy writer merely speci�es the tu-

ple that identi�es which connections between these

domains are allowed or disallowed.

Even though this policy mechanism is very simple,

it allows considerably more
exibility than is possi-

ble with the main tool currently used for expressing

network access policies: �rewalls.

2.7 Limitations

GrIDS tackles some of the hard issues which need to

be faced for an intrusion detection system to operate

on a large network. A lot of our e�ort has gone into

making the aggregation mechanism scalable, and al-

lowing the system to be dynamically con�gurable so

that it is still manageable when deployed on a large

scale.

The current version of GrIDS is intended as a

proof of concept for our approach to scalability and

aggregation; as such, it has limitations. Before

GrIDS can be considered for deployment in produc-

tion environments, additional safeguards must be

taken to ensure the integrity of communications be-

tween GrIDS modules, and to prevent an attacker

from replacing parts of GrIDS with malicious soft-

ware of her own. The prototype will not be resis-

tant to denial of service attacks, disruptions of the

network time protocol, or faults in the networks or

computers on which it runs.

GrIDS is designed to detect large-scale attacks or

violations of an explicit policy. A widespread at-

tack that progresses slowly might not be diagnosed

by our aggregation mechanism. However, suspicious

activity associated with the attack could be detected

since point IDSs can be installed on GrIDS to detect

intrusions that involve only one or a few sites.

3 Conclusions

We have presented the design of GrIDS. We have ar-

gued that GrIDS is helpful in detecting automated

and spreading attacks on networks. GrIDS presents

network activities to humans as highly comprehen-

sible graphs. In addition, the GrIDS policy mecha-

nisms allows organizations much greater control over

the use of their networks than is possible, for exam-

ple, with �rewalls alone. GrIDS does this in a man-

ner that is scalable and requires modest resources.

GrIDS itself is manageable.

There is a great deal of further work to be done

on GrIDS. The initial design is complete, and a pro-

totype implementation is almost �nished. We will

proceed to evaluate the prototype and publish those

results. Beyond that, robustness against random

faults and attacks on GrIDS itself is the next pri-

ority. We also plan to further re�ne the policy lan-

guage implemented by GrIDS.

Many important networks are vulnerable to

widespread attack. We hope that GrIDS is a helpful

step toward defending against such attacks.

Acknowledgements

We are grateful to DARPA for funding this re-

search and to our technical monitor there, Teresa

Lunt, for helpful discussion of this design.

References

[1] M. Eichin and J. Rochis. With microscope and

tweezers: An analysis of the Internet worm of

November 1988. IEEE Symposium on Research

in Security and Privacy, 1989.

[2] James P. Anderson. Computer security threat

monitoring and surveillance. Technical report,

James P. Anderson Co., Fort Washington, PA,

1980.

[3] Dorothy E. Denning. An intrusion detection

model. In Proceedings of the IEEE Symposium

on Security and Privacy, pages 118{131, 1986.

[4] B. Mukherjee, L.T. Heberlein, and K.N. Levitt.

Network intrusion detection. IEEE Network,

8:26{41, May-June 1994.

[5] T. Lunt et al. IDES: The enhanced prototype.

Technical report, SRI International, Computer

Science Lab, October 1988.

[6] D. Anderson, T. Frivold, and A. Valdes. Next-

generation intrusion detection expert system

(NIDES). Technical Report SRI-CSL-95-07,

SRI International, Computer Science Lab, May

1995.

[7] M. Sebring et al. Expert systems in intrusion

detection: A case study. Proceedings of the 11th

National Computer Security Conference, 1988.

[8] L. T. Heberlein et al. A network security mon-

itor. Proceedings of the IEEE Symposium on

Research in Security and Privacy, 1990.

[9] K. Jackson, D. DuBois, and C. Stallings. An

expert system application for network intrusion

detection. Proceedings of the 14th Department

of Energy Computer Security Group Confer-

ence, 1991.

[10] S. Snapp et al. DIDS { motivation, architecture

and an early prototype. Proceedings of COMP-

CON, 1991.

[11] D. Seely. A tour of the worm. IEEE Trans. on

Soft. Eng., November 1991.

[12] Computer Security Research Group. The De-

sign of GrIDS: A Graph-Based Intrusion De-

tection System. Technical report, UC Davis De-

partment of Computer Science, Davis, Califor-

nia, in preparation.

[13] Steven McCanne, B. Jacobsen, and Craig Leres.

Tcpdump. ftp://ftp.ee.lbl.gov.

