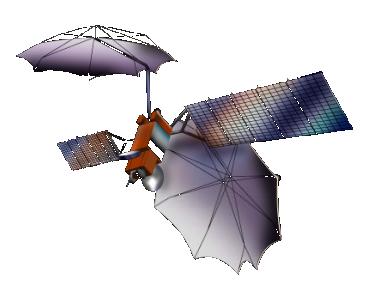



**BAE SYSTEMS** 

# Advanced Microprocessor Technologies

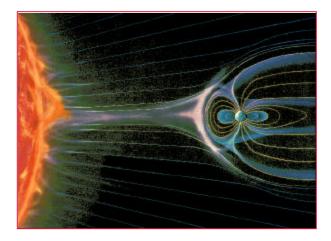
## and Challenges for Space Applications

Nadim F. Haddad


(nadim.haddad@baesystems.com)

2001 IEEE Microelectronics Reliability and Qualification Workshop

December 11-12


Pasadena, CA

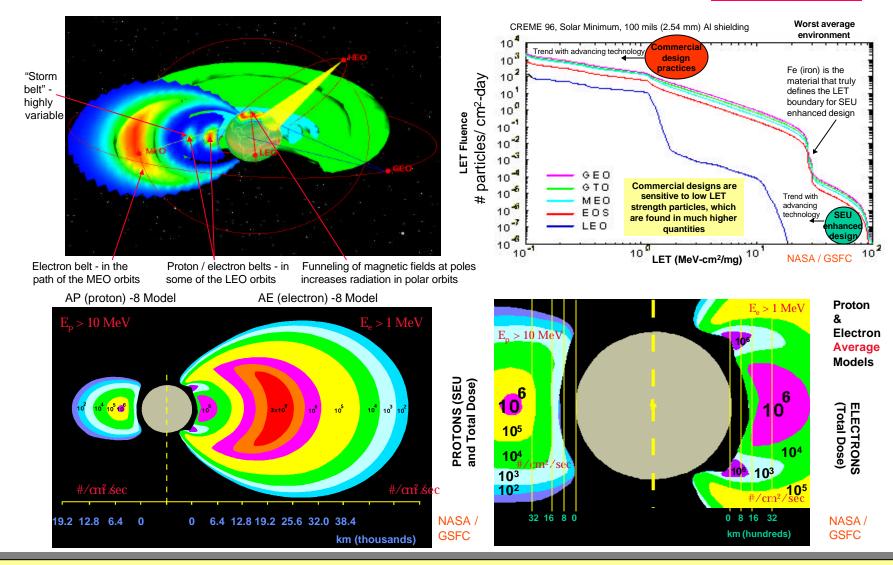




- The Environment
- Effect of Technology Migration
- Mitigation Schemes and Penalties
- Radiation Hardened Processors for Space
- Space Processor Roadmap
- Conclusion





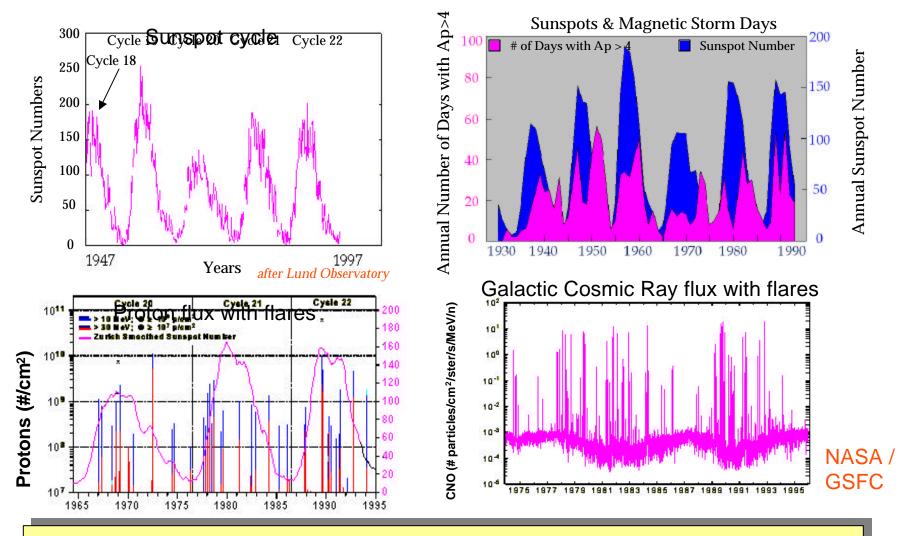

**BAE SYSTEMS** 

Nikkei Science, Inc. of Japan, by K. Endo

- The Environment
- Effect of Technology Migration
- Mitigation Schemes and Penalties
- Radiation Hardened Processors for Space
- Space Processor Roadmap
- Conclusion

## **Variations in Radiation Flux Density**

BAE SYSTEMS




### Variability of radiation environments affects the applicability of COTS in space

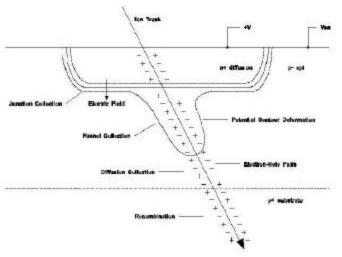
Cleared for Public Domain Release © 2001 BAE SYSTEMS DoD/ 01-S-1376, 2/01 All Rights Reserved

## **Extreme Conditions - Solar Flares**

#### BAE SYSTEMS



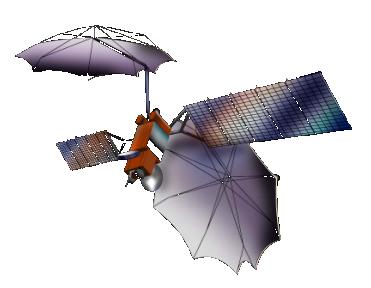
## Space environment is very variable - solar flares are unpredictable and create a severe environment


Cleared for Public Domain Release © 2001 BAE SYSTEMS DoD/ 01-S-1376, 2/01 All Rights Reserved

## **Issues Associated with Space**

### BAE SYSTEMS

- Radiation environment
  - <u>Total lonizing Dose</u> (TID) accumulation of radiation over time
  - Prompt Dose ability to function during a massive burst of radiation
  - <u>Survivability</u> ability to function after a massive burst of radiation
  - <u>Single Event Effects</u> (SEE) soft or hard errors as the result of the penetration of a single charged particle
    - <u>Single Event Upset</u> (SEU) state change of a storage node
    - <u>Single Event Transient</u> (SET) pulse injection into combinational logic
    - <u>Single Event Gate Rupture</u> (SEGR) destruction of the gate of a transistor
    - <u>Single Event Latchup</u> (SEL) "lock-up" of a device; must remove power to reset
    - <u>Single Event Burnout</u> (SEB) Burnout, especially in power devices


- Wide temperature range and stresses
- High reliability
- Mechanical stresses
- Severe mass and power constraints



Charge from single event impact

## Spacecraft electronics are expected to overcome severe environmental conditions





- The Environment
- Effect of Technology Migration
- Mitigation Schemes and Penalties
- Radiation Hardened Processors for Space
- Space Processor Roadmap
- Conclusion

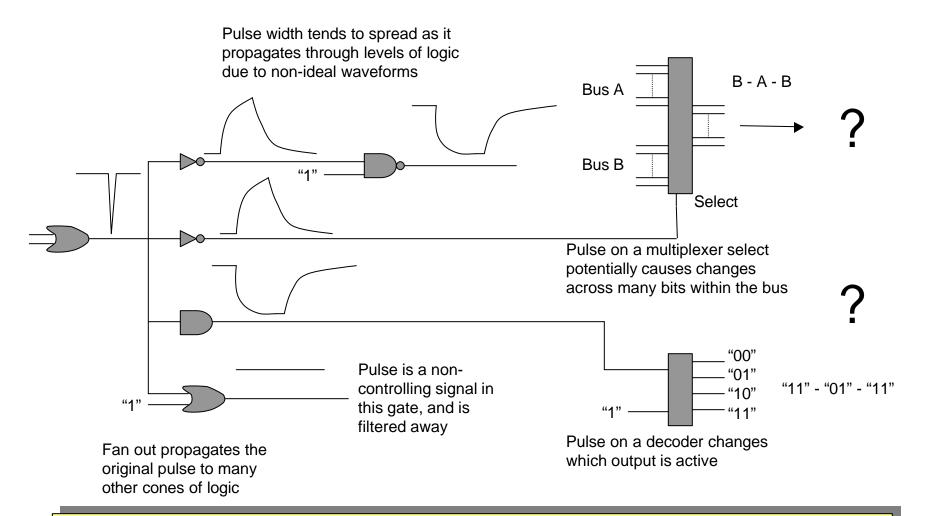
## **Trends in Commercial Technology**



|                                  | Commercial CMOS Technology  |                             |                 |                     | <u>ogy</u>          | У        |                     |                |
|----------------------------------|-----------------------------|-----------------------------|-----------------|---------------------|---------------------|----------|---------------------|----------------|
| Environment                      | 0.8 <b>m</b> m              | 0.5 mm                      | 0.35 <b>m</b> m | 0.25 <b>m</b> n     | 0.18 <b>m</b> m     | 0.13 mm  | 0.18 mm<br>SOI      | <u>Hard</u>    |
| Total Dose<br>(Krad(Si))         | 10 - 20                     | 20 - 40                     | 20 – 50         | 40 - 100            | 40 - 150            | 40 – 150 | 30 – 50             | 200 –<br>1,000 |
| SEU (u/b-d)<br>(90% W.C.<br>Geo) | 1E-7                        | 1E-6                        | 2E-6            | 5E-6                | 1E-5                | >1E-5    | 1E-6 to<br>1E-7     | < 1E-10        |
| Prompt<br>Dose Upset<br>(rad/s)  | 1E7                         | 1E7-1E8                     | 1E7-1E8         | 1E7-1E8             | 1E7                 | <1E7     | 1E8                 | > 1E9          |
| Latch up                         | Generally<br>prone          | Some<br>prone               | Some<br>prone   | Generally<br>immune | Generally<br>immune | ?        | Possibly self-latch | Immune         |
| Neutron<br>(u/cm <sup>2</sup> )  | 1E14<br>(limited<br>by TID) | 1E14<br>(limited<br>by TID) | 1E14            | 1E13-<br>1E14       | ?                   | ?        | ?                   | 1E14           |

Trends in commercial technologies have not always been favorable for spaceborne application, given the various failure mechanisms

#### Effect of Scaling on Single Event Upset **BAE SYSTEMS** SIZE DURATION STRENGTH Diffusion 1.0um node $\wedge V = \wedge Q/C$ @ 5 MHz, pulse = 100 ns.0.18um Nodal cap < 1/10xתוקהאקרוקוקוקוקות הקה הקורקהוקוקה הקורקוקה הקה הקה הקורקוקוקוקוקו Current drive < 1/3x@ 500 MHz, Charge pulse = 1 ns.Therefore, susceptibility of collection 1.0µm CMOS to an area LET=10-20 translates to SEU Pulse = 0.3 ns. susceptibility of 0.18 µm


## Technology scaling is driving a multi-exponential increase in sensitivity to SEU / SET

CMOS to an LET = 0.3-0.7

Cleared for Public Domain Release DoD/ 01-S-1376, 2/01 © 2001 BAE SYSTEMS All Rights Reserved

## **Single Event Transient (SET)**

#### BAE SYSTEMS



An injected pulse can propagate far beyond it's point of inception, based on logic design paths

## **SEU Susceptibility in Dynamic Circuitry**

**BAE SYSTEMS** 

- Global block select decoder
- Classic pre-charged dynamic circuit used in: decode, buffers, datapaths, logic, and clocks
- Operation:
  - CLOCK = "0" results in output pre-charge to "1"
  - CLOCK = "1" results in valid signal output, based on input conditions
- Very soft, due to:
  - Small bleeder device holding "1" state
  - Switching due to SET pulse on clock line
- Upset will select wrong block of data (1 block = 32K bits)

| VDD<br>IB4<br>S<br>G<br>G<br>Q<br>CLOCK ■<br>CLOCK ■  | Tiny "bleeder" device<br>holds output to "1"<br>S [183<br>AØ X O BLOCK                                                                                                                                                                                                                                                                             | <_SEL |
|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|                                                       | Clock line and devices<br>dynamically control<br>output state                                                                                                                                                                                                                                                                                      |       |
| B ■ G   A<br>B ■ G   A<br>IB8 D<br>IB8 D<br>C ■ G   A | Input devices<br>configured as<br>3-input NAND                                                                                                                                                                                                                                                                                                     |       |
| GNC                                                   | ranene enen enen enen enen enen enen eren eren eren eren bieten beide bezen bei bezen eren bieten beid bezen b<br>Kalen beid bezen beid beid beide beid beide beid beide beide beid bezen beid bezen beid beide beid beide beid<br>Tenens beid beides beid beid beide beid beide |       |

## Exotic circuit design techniques (common in recent COTS products) increase density and performance, but are more susceptible to SEU/SET

# Estimated SEU Rates by Commercial Processor Generation

#### BAE SYSTEMS

|   | RSC - "G0(?)"                                                                                                                   | 601 - "G1"                                 | 603 / 603e - "G2"                                                                | 750 - "G3"                                   | 7400 - "G4"                                   |
|---|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------|
|   | <b>Fechnology:</b> 0.8 μm<br><b>Fransistors:</b> 1.0 M<br><b>Supply:</b> 3.6 V<br><b>Speed:</b> 33 MHz<br><b>Released:</b> 1992 | 0.6 µm<br>2.8 M<br>3.6 V<br>50 MHz<br>1993 | 0.5 / 0.35 µm<br>1.6 / 2.6 M<br>3.3 V / 2.5 V<br>80 MHz / 200 MHz<br>1994 / 1995 | 0.25 µm<br>6.4 M<br>2.5 V<br>266 MHz<br>1997 | 0.18 µm<br>10.5 M<br>1.8 V<br>450 MHz<br>1999 |
| ç | Estimated SEU Rate<br>90% GEO:<br>1 / 60 days<br>During Flares:<br>0.02 - 2 / min                                               | 1 / 8 days<br>0.1 - 9 / min                | 1 / 5 days / 1 / day<br>0.2 - 14 /min / 1 - 100 / min                            | 1 / hour<br>0.3 - 27 / sec                   | 3 / hour<br>1 - 100 / sec                     |

\* SET upsets begin to increase at 0.35 micron and then accelerate, due to small devices, low supply, and high clock rates

Across Generations, the Increase in SEU/SET Susceptibility is Dramatic

Cleared for Public Domain Release © 2000 Lockheed Martin Corporation



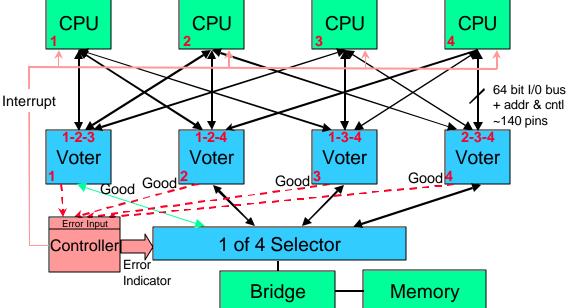


- The Environment
- Effect of Technology Migration
- Mitigation Schemes and Penalties
- Radiation Hardened Processors for Space
- Space Processor Roadmap
- Conclusion

## **Total Dose Mitigation**



| Total Dose Environment for Various Orbits (10 Year Mission Assumed) |            |                       |                   |  |  |  |
|---------------------------------------------------------------------|------------|-----------------------|-------------------|--|--|--|
| Or                                                                  | <u>bit</u> | Total Dose (krad(Si)) |                   |  |  |  |
| Altitude(Km) Inclination(Degree)                                    |            | <u>100 mil Al</u>     | <u>250 mil Al</u> |  |  |  |
| 850                                                                 | 28         | 22                    | 12                |  |  |  |
| 1,350                                                               | 90         | 56                    | 38                |  |  |  |
| 1,400                                                               | 53         | 130                   | 50                |  |  |  |
| 1,500                                                               | 30         | 240                   | 100               |  |  |  |
| Geo                                                                 | 00         | 400                   | 20                |  |  |  |
| 1/2Geo                                                              | 60         | 3,000                 | 100               |  |  |  |
|                                                                     |            |                       |                   |  |  |  |


Shielding is an effective way to reduce total dose, but it comes at a cost... It is also ineffective in mitigating single event effects

## **SEU Mitigation - Redundant System Example**

### BAE SYSTEMS

### Hardware redundancy functions

- Multiple voting functions check the CPU outputs, confirming correct results or identifying the "bad" CPU
- If a fail is detected:
  - The controller uses that information to shut down (hard reset) the failing CPU
  - Begins recovery routine
- The selector sends good output to the I/O and/or memory
- Approximately two cycles of latency are added to I/O and memory operations



### • Software redundancy functions

- Regular "sweep" issued to cause output for checking
- Either clears key embedded memories (caches, branching) during each regular sweep, or during a recovery operation
- Match up the processors at a "work task" boundary, and start simultaneous processing again

## Redundant systems operate by detecting errors in processing functions after they occur and removing them through voting

# Applicability of Redundant COTS Electronics in Space

## **Orbital variations**

- Low LEO is the most benign (below 800 km)
- Polar more severe than near equatorial
- Upper LEO is more severe for both Total Dose and SEU
- The South Atlantic Anomaly is the worst case in LEO orbits
- MEO is worst for Total Dose
- GEO is worst for Cosmic Rays
- Long term missions encounter extreme conditions at some point (solar flares and coronal mass ejections); these conditions REQUIRE SEU immune design redundancy is not applicable

## Application variations

**BAE SYSTEMS** 

- Short term applications (example: shuttle) may be timed around extremes
  - Some unpredictability exists
  - Some years are better than others
- Applications that can accept outages (1-4 days in length) can simply shut down during solar flares (example: geology, telescope)
- New ASIC designs can address some of the problem in design
  - TMR at each latch
  - Error correct embedded memories
  - Addressing SET errors is more difficult
- Real time / critical applications have a problem; they CAN'T shut down (example: cell phone, internet, video, weather, global positioning, military)

The Ability to Consider TMR is a Function of Both Orbit and Application

Cleared for Public Domain Release © 2000 Lockheed Martin Corporation

# Redundant Modern Commercial Processors in Space

### BAE SYSTEMS

## Size, weight, and power (SWAP)

### • Size

- TMR requires significant board space
  - 3-4 CPUs
  - Voting Chip
- Will not fit on a 3U format

### • Weight

 About 2X weight of Single Processor Solution

### • Power

- Increased Component Count
- Increased processing for upset checking / recovery
- About 3X Power

### Software effort and overhead

- Effort
  - "Upset checking" routine
  - Split application code for regular checking
  - Recovery routine

### Overhead

- Interrupted processing
- Increased check pointing
- 50% Performance loss Typical
  - (through HW & SW)

## <u>SEU / SET</u> susceptibility

- Upset mechanisms
  - Dynamic logic
  - Storage nodes
  - Transient (SET) propagation

### • Flux rate

- GCR Cause 1-2 upsets / hr
- Protons at LEO cause
  0.3-0.7 upsets / hr
- Solar flares cause 0.1 20 upsets / sec

### Recovery

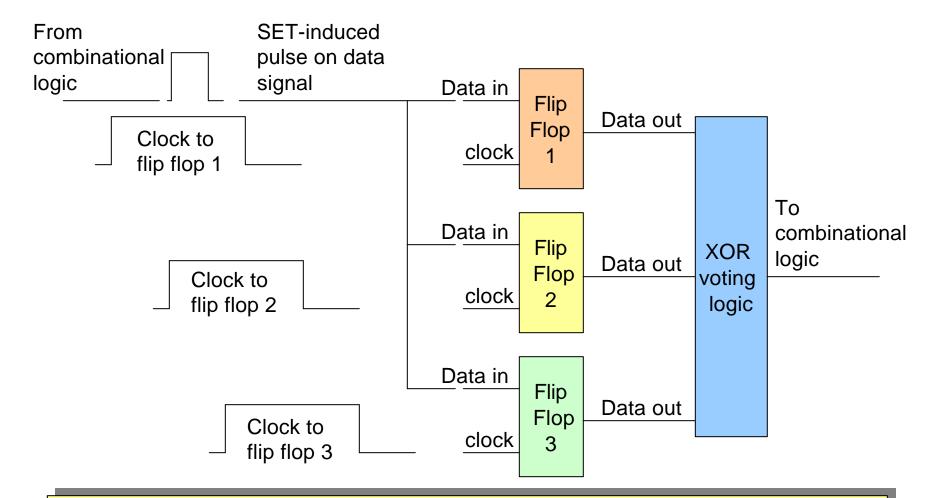
- TMR recovery will typically require several minutes
- Upsets may not be detected in time to respond
   Expect trouble during
- flares

### Product cost

### Component costs

- Rad-hard voting chip has high recurring cost in addition to NRE
- Commercial CPUs have cost advantage

### Software costs


- NRE for development of checking and recovery routines
- Board costs

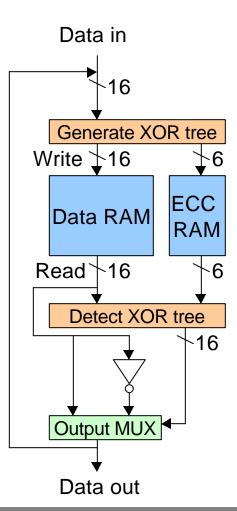
More complex board design with lead time vs. a standard radhard product

### **Commercial Processors, Even with Redundancy, Have Issues and Exposures** that Far Outweigh their Benefits Compared to Enhanced Processor Solutions

Cleared for Public Domain Release © 2000 Lockheed Martin Corporation

## **SEU Mitigation - Redundant Circuitry Example BAE SYSTEMS**

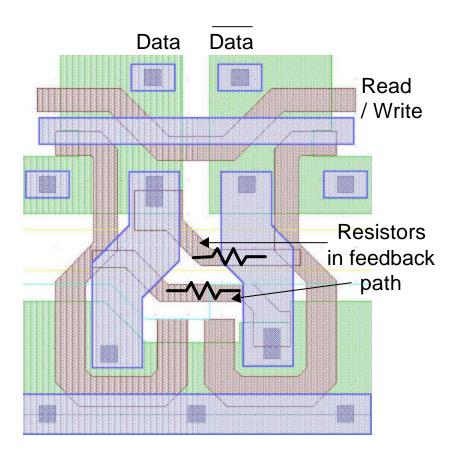


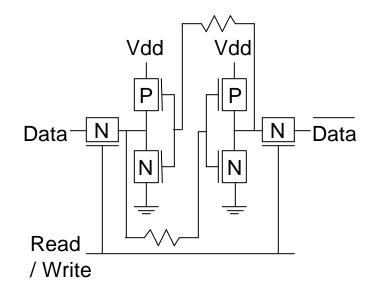

Redundant storage cells with time shifted clocks fight SET upsets by attempting to filter out the pulse prior to capturing it

Cleared for Public Domain Release DoD/ 01-S-2540, 4/01 © 2001 BAE SYSTEMS All Rights Reserved

## **SEU Mitigation - In-line Error Correction**

BAE SYSTEMS


- Typical uses
  - Memory subsystems
  - Communication links
- Sequence for Single Error Correct Double Error Detect (SECDED):
  - Generate error bits via XOR based on masking
  - Detect error via XOR with masking
    - No mismatch indicates good data
    - Valid value identifies bit in error
    - Invalid value defines uncorrectable errors
  - Multiplex data or inversion bit-by-bit to correct
- Radiation mitigation:
  - Employ variable rate "scrubbing" (read, test, correct and write back if needed) sequence at varying rates, based on rate of errors induced
  - Useful until error rate exceeds ability to fix or ability to perform both function and correction
  - Combination with hardened Cache reduces functional access demand



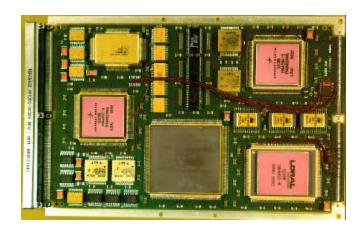

## Error correction removes errors that occur within stored memory by generating codes that uniquely identify the validity of each bit of data

## **SEU Mitigation - Hardened Circuitry Example**

BAE SYSTEMS





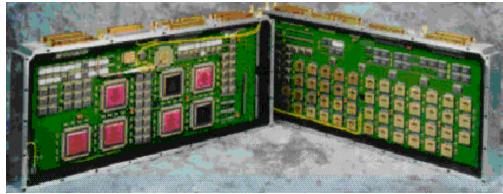

- Large resistance in the feedback path fights state change in the cell via RC time constant
- Typically employs unique manufacturing process steps
- Adverse effects on Write time and circuit density

## Radiation hardened circuits prevent upsets through design techniques that fight against the charge deposit from the impact

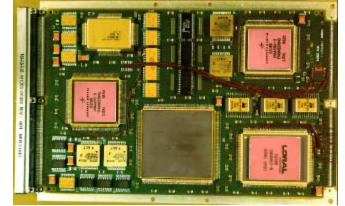
Cleared for Public Domain Release © 2001 BAE SYSTEMS AI

DoD/ 01-S-2540, 4/01 All Rights Reserved

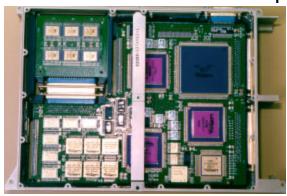





#### BAE SYSTEMS


- The Environment
- Effect of Technology Migration
- Mitigation Schemes and Penalties
- Radiation Hardened Processors for Space
- Space Processor Roadmap
- Conclusion

# 90 satellites currently on orbit with 286 single board computers\*


\* As of November 30, 2001



Cassini GVSC processor



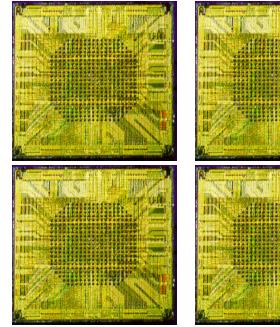
### SBIRS Low/Orbview RAD6000™

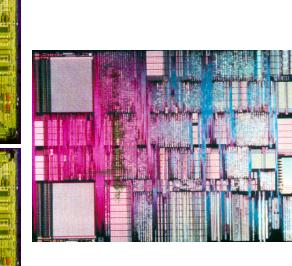


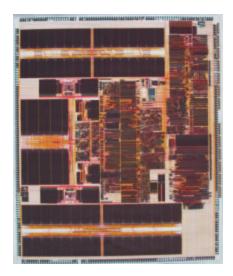
CCP drop in tray (GVSC) Over 500 flight boards delivered or ordered for new launches through 2006



VME 6U RAD6000<sup>TM</sup> board \* \* as used on FHLP


Our processors have been the standard in space for many years, with millions of hours of flawless operation in a variety of applications


Cleared for Public Domain Release © 2000 Lockheed Martin Corporation DoD/ 99-S-2438, 7/99 All Rights Reserved


### BAE SYSTEMS

# Three generations of radiation hardened microprocessors

#### BAE SYSTEMS







- 1991 GVSC 1750 1.0 μm Radiation Hardened CMOS – MIL-STD-1750A architecture – 4 by 88 sq mm – 0.3 M transistors
- 20 MHz
- 3 MIPS

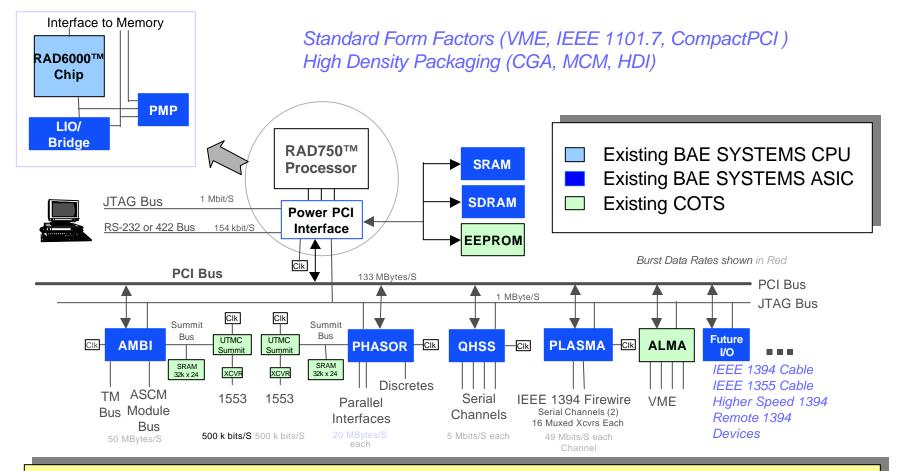
### 1996 RAD6000™

- $0.5\ \mu m$  Radiation Hardened CMOS
- RS/6000 "Power" architecture
- 145 sq mm
- 1.1 M transistors
- 33 MHz
- 35 MIPS

### 2001 RAD750™

 $0.25\,\mu m$  Radiation Hardened CMOS

- PowerPC architecture family


– 130 sq mm

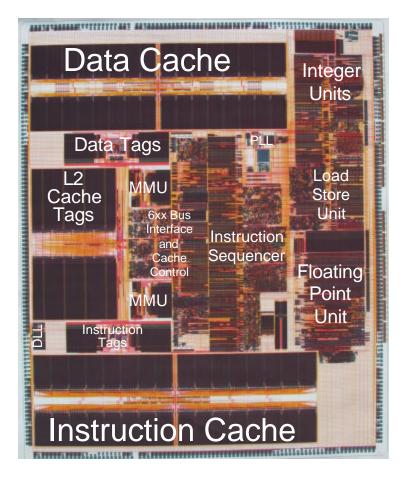
- 10.4 M transistors
- 133 166 MHz (up to 200 as available)
- -240 300 MIPS (up to 366 as available)

## The RAD750 represents our third generation product, with architectural and technological enhancements that improve power/performance

## RAD750<sup>™</sup> - Power PCI RAD6000<sup>™</sup> architecture compatibility






## The RAD750<sup>™</sup> and Power PCI easily replace the current RAD6000<sup>™</sup> and LIO in our processor board architecture

Cleared for Public Domain Release © 2000 Lockheed Martin Corporation

## **RAD750<sup>™</sup> specifications**

#### BAE SYSTEMS

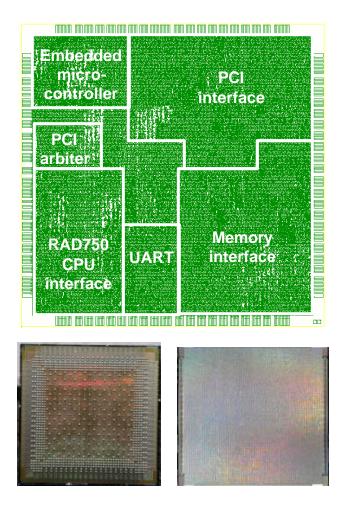
| Specifications                                              |                                                                                                     |
|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Processor Speed                                             | 110 to 133 MHz                                                                                      |
| Process Technology                                          | 0.25 um (0.18 um Leff) CMOS, 6 levels of metal                                                      |
| Die Size                                                    | 10.4 mm. by 12.5 mm.                                                                                |
| RAD750™ Performand<br>without L2 (est)<br>with 1MB L2 (est) | e<br>6.5 SPECint95 3.9 SPECfp95 @ 150 MHz.<br>7.0 SPECint95 4.7 SPECfp95 @ 150 MHz.                 |
| Signal I/O                                                  | 256 (including L2 port)                                                                             |
| Power Supply                                                | 2.5 V + / - 5% core<br>2.5 or 3.3 V + / - 10% I/O                                                   |
| Power Dissipation                                           | 5.0 watts at 133 MHz, 2.5V                                                                          |
| Temperature Range                                           | -55°C to +125°C                                                                                     |
| Packaging                                                   | 25.0 mm. by 25.0 mm. by 6.22 mm.<br>360 pin Column Grid Array (CGA)                                 |
| Mass                                                        | 9.0 grams                                                                                           |
| Radiation Hardness                                          | Total Ionizing Dose: 200 Krad (Si)<br>SEU: 1E-10 upsets / bit-day (W.C. 90% GEO)<br>Latchup: Immune |
| Mean Time Between<br>Failures (MTBF)                        | > 4.3M hours                                                                                        |



### The final design has completed characterization and qualification

Cleared for Public Domain Release © 2000 Lockheed Martin Corporation

## **RAD750<sup>™</sup> Testing Status**


#### BAE SYSTEMS

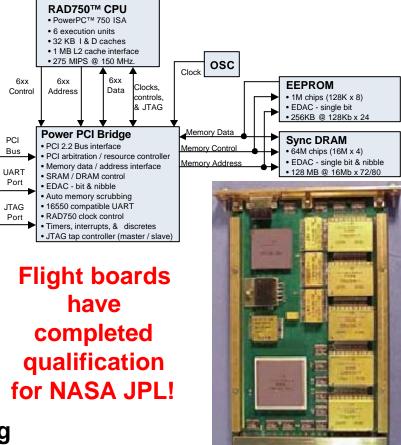
- RAD750<sup>™</sup> Testing was completed October 31 (functional equivalency to PowerPC<sup>™</sup> 750 verified)
- Environmental testing proved successful across the full military temperature and voltage ranges
- Performance specification will be 110 MHz 133 MHz based upon screening levels
- Radiation testing results support flight requirements
  - No latchup nor gate rupture
  - -TID >200Krad(Si)
  - SEU <1E-10 error/bit.day
    - Threshold LET(@10% of Saturation) = 45 MeV/mg/cm<sup>2</sup>
- RAD750<sup>™</sup> Specification Updated to reflect testing

## **Power PCI ASIC specifications**

### **BAE SYSTEMS**

| Specification           | IS                                                                                                     |
|-------------------------|--------------------------------------------------------------------------------------------------------|
| Clock Speed             | 33 MHz                                                                                                 |
| Process Technology      | 0.50 um Leff CMOS, 5 levels of metal                                                                   |
| Die Size                | 12.7 mm. by 12.7 mm.                                                                                   |
| Cells / Gates / Latches | 926K / 700K / 26K                                                                                      |
| PCI Peak Bandwidth      | 130 MB/s write 90 MB/s read                                                                            |
| Signal I/O              | 456 (+ <i>test</i> )                                                                                   |
| Power Supply            | 3.3 V + / - 10% core and I/O                                                                           |
| Power Dissipation       | 1.5 W                                                                                                  |
| Temperature Range       | -55°C to +125°C                                                                                        |
| Packaging               | 32.5 mm. By 32.5 mm. By 6.22 mm.<br>624 pin Column Grid Array (CGA)<br>with flip-chip C4 mount         |
| Radiation Hardness      | Total Ionizing Dose: >1Mrad (Si)<br>SEU: < 1E-10 upsets / bit-day (W.C.<br>90% GEO)<br>Latchup: Immune |
| Mass                    | 14.5 grams                                                                                             |




## The Power PCI has been integrated on a 3U CompactPCI single board computer

Cleared for Public Domain Release © 2001 BAE SYSTEMS

## Conduction Cooled CompactPCI® 3U Format RAD750<sup>™</sup> Processor Board

BAE SYSTEMS

| Specifications                       |                                                                                                                          |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Form Factor                          | CompactPCI 3U (100 mm x 160 mm.)<br>Weight: 549 grams                                                                    |
| Processor                            | RAD750 <sup>™</sup> 240 Dhrystone 2.1 MIPS @ 133 MHz.                                                                    |
| Radiation Hardness                   | Total Ionizing Dose: > 100 Krad (Si)<br>SEU: < 1E-5 upsets/day (W.C. 90% GEO)<br>Latchup: Immune                         |
| Performance (estimated)              | 5.8 SPECint95 3.5 SPECfp95 @ 133 MHz.                                                                                    |
| PCI Backplane Bus                    | 32 bit, 33 MHz., PCI version 2.2<br>Peak Bandwidth: 130 MB/s write 90 MB/s read<br>Can be keyed for System or Agent Slot |
| Power Supply                         | 3.3 V + / - 10%<br>(2.5 V generated via on-board regulator)                                                              |
| Power Dissipation (typ)              | 10 W                                                                                                                     |
| Temperature Range                    | -55°C to +125°C                                                                                                          |
| Mean Time Between<br>Failures (MTBF) | Greater than 390K hours                                                                                                  |



### Currently available in flight, engineering and low cost commercial versions

## The RAD750<sup>™</sup> product line introduces a completely new era of both onboard processing capability and space standard products

Cleared for Public Domain Release © 2001 BAE SYSTEMS

## **RAD750<sup>™</sup> Software Development Environment BAE SYSTEMS**



### Software Development System

- Pentium personal computer
- Windows NT Operating System
- Ethernet connection to RAD750
- Corellis JTAG interface
- RAD750 or COTS PowerPC Board

### **Green Hill Multi and GNU Tools**

- Optimized C, C++, Ada compilers
- Source level debugger
- Mixed language integration
- Version control system
- Program builder
- Editor

## WindRiver VxWorks OS

- High performance multi-tasking kernal
- Networking capability
- Device independent I/O
- Dynamic load of user programs
- Highly configurable execution environment
- "Tornado" Software development and debug tools

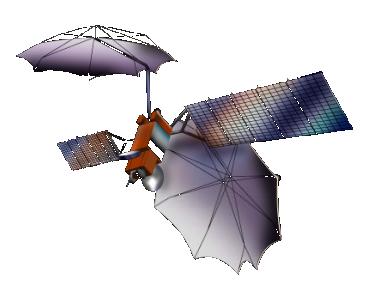
### **BAE SYSTEMS Supplied Software**

### **Board Support Package (BSP)**

• VxWorks compatible

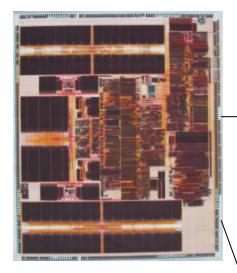
### I/O device drivers Start-Up ROM (SUROM)

- System "Reset handler"
- On-board diagnostics
  - CPU and Power PCI self-test
  - Memory test
- Bootstrap image load into RAM
- Test and initialize board hardware
- Fault recovery during restart


### A complete environment, based on our RAD6000<sup>™</sup> experience, eases RAD750<sup>™</sup> software development

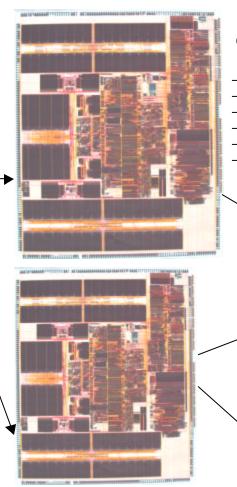
Cleared for Public Domain Release © 2000 Lockheed Martin Corporation

## Hardened Processor Flight Heritage


| <u> 1995 - Novemi</u> | oer, 2      | 001         | <u> 2001 - 20</u>       | 03          |             | <u> 2004 - 2</u>   | 006         |             |
|-----------------------|-------------|-------------|-------------------------|-------------|-------------|--------------------|-------------|-------------|
| (Launched)            |             |             | (Under Contract)        |             |             | (Under Contract /  | Plan)       |             |
| <u>SATELLITE</u>      | <u>SATs</u> | <u>SBCs</u> | <u>SATELLITE</u>        | <u>SATs</u> | <u>SBCs</u> | SATELLITE          | <u>SATs</u> | <u>SBCs</u> |
| Agila / APSTAR-2R     | 2           | 4           | ChinaSat 8              | 1           | 2           | Intelsat 903-905   | 3           | 12          |
| Cassini               | 1           | 7           | Globalstar (16 bit)     | 4           | 8           | KaStar 1,2         | 2           | 4           |
| EchoStar 5            | 1           | 2           | Intelsat 902            | 1           | 4           | Messenger          | 2           | 10          |
| Garuda 1 (ACeS)       | 1           | 2           | SS/L DBS-3              | 2           | 4           | Storage Unit       | 2           | 4           |
| Globalstar (16 bit)   | 52          | 104         | Sky 2A (MCI)            | 1           | 2           | Astrolink 1-4      | 4           | 8           |
| GOES L, M             | 2           | 4           | Telstar 8-9 (Skynet)    | <u>3</u>    | <u>6</u>    | Coriolis           | 1           | 1           |
| Intelsat 901          | 1           | 4           |                         |             |             | AEHF (Bus)         | 5           | 10          |
| NSTAR A,B             | 2           | 4           |                         |             |             | GENESIS            | 1           | 2           |
| SS/L DBS-2            | 1           | 2           |                         |             |             | MIRO               | 1           | 2           |
| PAS 6 - 8             | 3           | 6           |                         |             |             | MSL                | 1           | 2           |
| Sirius 3 - CD Radio   | 3           | 6           |                         |             |             | Muses-C            | 1           | 2           |
| Sky 1A (MCI)          | 1           | 2           |                         |             |             | SIRTF              | 1           | 4           |
| Telstar 5-7 (Skynet)  | 3           | 6           |                         |             |             | Solstice/VCL       | 2           | 3           |
| TEMPO 2               | 1           | <u>2</u>    |                         |             |             | SWIFT              | 1           | 4           |
| 16 Bit Computers      | 74          | 155         | <u>16 Bit Computers</u> | 12          | 26          | Solar X-Ray        | 1           | 2           |
| Deep Space 1          | 1           | 1           | ETS-8                   | 1           | 4           | TES                | 1           | 2           |
| FAISat                | 1           | 1           | Globalstar (32 bit)     | 4           | 8           | TRIANA             | 1           | 3           |
| Fuse                  | 1           | 1           | Gravity Probe B         | 1           | 9           | DRP                | 1           | 4           |
| Globalstar (32 bit)   | 52          | 104         | HESSI                   | 1           | 1           | X-2000             | 5           | 20          |
| Mars Odyssey          | 1           | 2           | HIRDLs                  | 1           | 2           | AEHF (Payload)     | 5           | 30          |
| MightySat 1           | 1           | 1           | MightySat 2             | 1           | 1           | Athena             | 1           | 1           |
| Orbiter/Lander -X     | 3           | 7           | C/NOFS                  | 1           | 1           | Classified         | 12          | 16          |
| Mars Pathfinder       | 1           | 1           |                         |             |             | CloudSat           | 1           | 2           |
| LMA (STEX, Stardust)  | 2           | 4           |                         |             |             | Deep Impact        | 1           | 2           |
| TSX-5                 | 1           | 1           |                         |             |             | Discovery          | 4           | 5           |
| RAD6000 Computers     | 64          | 123         | RAD6000 Computers       | 10          | 26          | Mars 03 Micro Miss | 1           | 2           |
|                       |             |             |                         |             |             | Secchi             | 1           | 4           |
|                       |             |             |                         |             |             | SBIRS Low          | 24          | 100         |
| In Space Today:       | 86          | Satellit    | es 278 Computer         | s           |             |                    |             |             |
|                       | 40.0        |             |                         |             |             |                    |             |             |
| Hours on Orbit:       | 16 B        | $\pi - 3.7$ | Million RAD6000 - 2.4   | Million     |             |                    |             |             |
|                       |             |             |                         |             |             | 16 Bit RA          | D6000       | RA          |

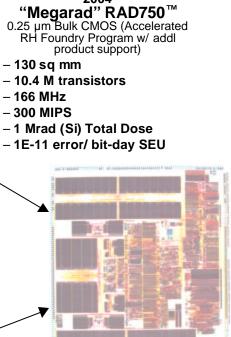




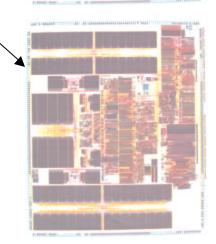

- The Environment
- Effect of Technology Migration
- Mitigation Schemes and Penalties
- Radiation Hardened Processors for Space
- Space Processor Roadmap
- Conclusion

## RAD750 Forward Plan Options (2002-2006)




2002 RAD750<sup>™</sup> (pass 2) 0.25 μm Bulk CMOS (Comm'l Foundry) (Budgeted in '02)

- 130 sq mm
- 10.4 M transistors
- 166 MHz
- 300 MIPS
- 200 Krad (Si) Total Dose
- 1E-11 error/ bit-day SEU




2003 RAD750<sup>™</sup> 0.18 μm Bulk CMOS (Comm'l Foundry-w/ add'l product support)

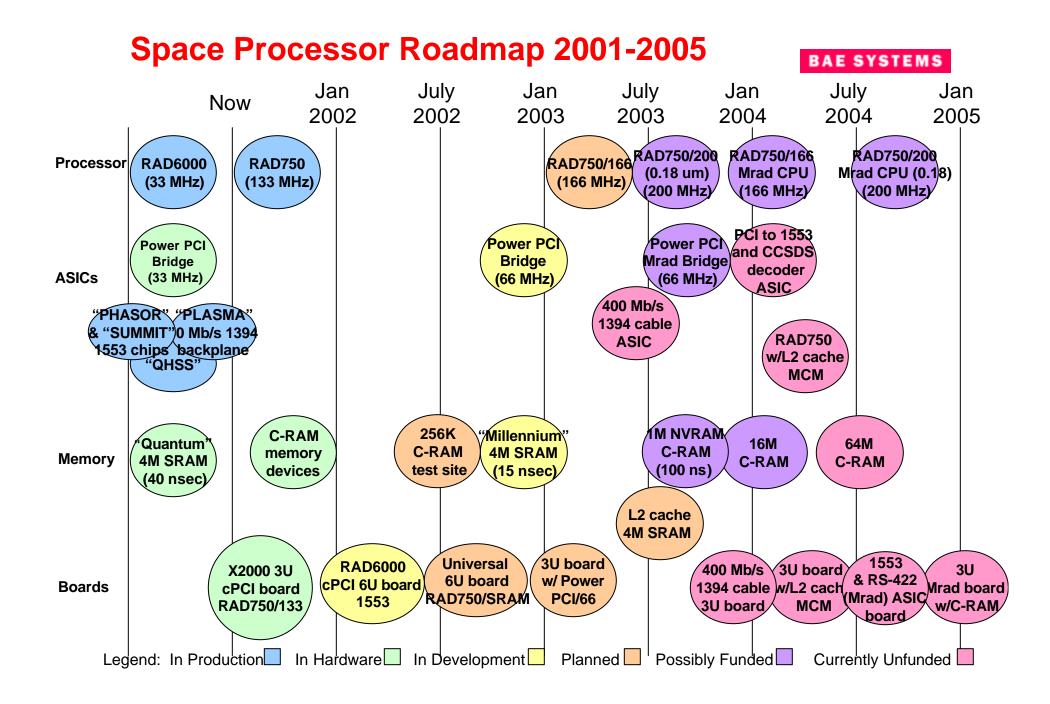
- est. 90 sq mm
- 10.4 M transistors
- est .200 MHz
- 366 MIPS
- 200 Krad (Si) Total Dose
- 1E-11 error/ bit-day SEU



2004



#### BAE SYSTEMS


#### 2005 "Megarad" RAD750™

0.18 µm Bulk CMOS (Accelerated RH Foundry Program w/ prod spt)

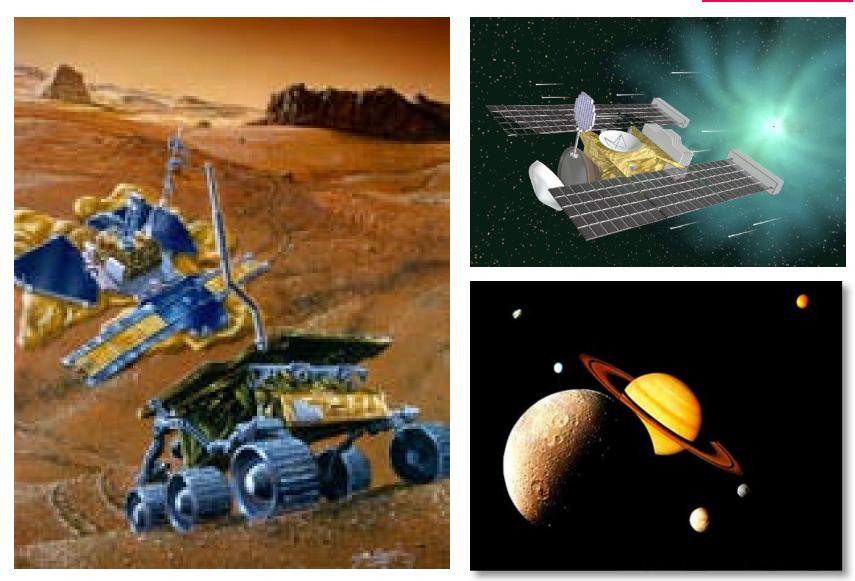
- est. 90 sq mm
- 10.4 M transistors
- est. 200 MHz
- 366 MIPS
- 1 Mrad (Si) Total Dose
- 1E-11 error/ bit-day SEU

2006 "Megarad" RAD750<sup>™</sup> 0.18 μm Fully Depleted SOI/ SOS CMOS (Accelerated RH Foundry Program w/ process & product support)

- est. 90 sq mm
- 10.4 M transistors
- est. 250 MHz
- 457 MIPS
- 1 Mrad (Si) Total Dose
- 1E-11 error/ bit-day SEU








- The Environment
- Effect of Technology Migration
- Mitigation Schemes and Penalties
- Radiation Hardened Processors for Space
- Space Processor Roadmap
- Conclusion

## What it all Means

- Space microelectronics have to operate in a severe environment
- Users are driven to high performance electronics to address new and expanded applications:
  - Available COTS are very sensitive to space radiation
  - Variation in the radiation environment with orbit and over time is a major consideration in processor selection
  - Mitigation techniques have significant impact on weight, power and performance.
  - Technology scaling results in dramatically increased exposure to Single Event Effects in more modern semiconductor components
- Radiation Hardened Processors offer the best solution
  - Capitalize on massive commercial investment in hardware and software
  - Enhanced for the various environmental issues
  - Offer the best power/performance/mass/volume alternative

### BAE SYSTEMS

