### MULTI-STAGE SPEAKER DIARIZATION FOR CONFERENCE AND LECTURE MEETINGS

presented by Xuan Zhu

RT-07S workshop Baltimore, Maryland May 11, 2007

LIMSI-CNRS

TLP Group

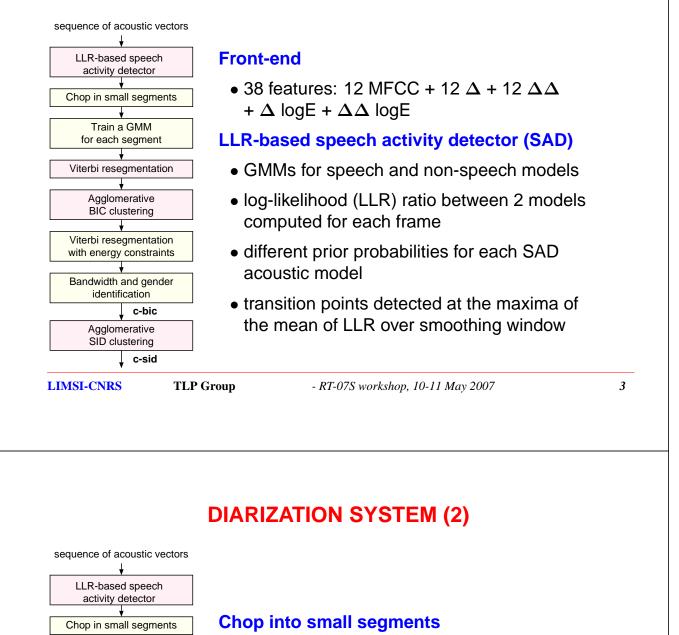
- RT-07S workshop, 10-11 May 2007

1

## **INTRODUCTION**

### Task

• speaker diarization (SPKR): who spoke when


### Sub-types of meeting data

- conference room meetings
- lecture room meetings
- coffee break (no LIMSI participation this year)

### **Challenges of meeting data**

- spontaneous speech with overlaps
- variability in audio SNR configurations derived from the use of different types of microphones in recording room
- different styles of participant interaction across sub-domains

## **DIARIZATION SYSTEM (1)**



• 2 sliding windows of 5 sec, local divergence measure

$$G(w_1,w_2)=(\mu_2\!-\!\mu_1)^T \Sigma_1^{-1/2} \Sigma_2^{-1/2} (\mu_2\!-\!\mu_1)$$

#### **GMM** estimation for each segment

 8-component GMM with diagonal covariance matrix per segment

Train a GMM for each segment

Viterbi resegmentation

Agglomerative BIC clustering

Viterbi resegmentation with energy constraints

Bandwidth and gender

identification

Agglomerative SID clustering

c-bic

c-sid

## **DIARIZATION SYSTEM (3)**

### **BIC Agglomerative clustering**



• merge criterion

$$\Delta BIC = (n_i{+}n_j)log|\Sigma|{-}n_ilog|\Sigma_i|{-}n_jlog|\Sigma_j|{-}\lambda P$$

with penalty

$$P=\frac{1}{2}(d+\frac{1}{2}d(d+1))\log N$$

• stop criterion

$$\Delta BIC >= 0$$

#### **BIC penalty**

• local:  $N = n_i + n_j$ 

• global: 
$$N = \Sigma_k n_k$$

LIMSI-CNRS

sequence of acoustic vectors

LLR-based speech

activity detector

Chop in small segments

Train a GMM for each segment

Viterbi resegmentation

Agglomerative BIC clustering

Viterbi resegmentation with energy constraints Bandwidth and gender identification **c-bic** 

> Agglomerative SID clustering

> > c-sid

sequence of acoustic vectors

LLR-based speech

activity detector Chop in small segments Train a GMM for each segment

Viterbi resegmentation Agglomerative BIC clustering Viterbi resegmentation

with energy constraints Bandwidth and gender identification

> Agglomerative SID clustering

> > c-sid

```
TLP Group
```

- RT-07S workshop, 10-11 May 2007

5

## **DIARIZATION SYSTEM (4)**

#### **SID clustering**

- 15 MFCC +  $\Delta$  +  $\Delta$  logE, feature warping (Gaussian normalization)
- Universal Background Models (UBM) with 128 Gaussians
- MAP adaptation of matching UBM
- $\bullet$  cross log-likelihood ratio between clusters  $c_i$  and  $c_j$

$$clr(c_i,c_j) = rac{1}{n_i} log rac{f(x_i|M_j)}{f(x_i|UBM)} + rac{1}{n_j} log rac{f(x_j|M_i)}{f(x_j|UBM)}$$

with  $x_i$  the data from cluster  $c_i$ ,  $M_i$  the model for cluster  $c_i$ ,  $n_i$  the size of segment  $x_i$ 

ullet threshold  $\delta$ 

```
LIMSI-CNRS
```

## **ADAPTATION TO MEETINGS**

#### System structure

• removing bandwidth detection module from the RT06 system (assumption of no telephone speech in meetings)

#### Audio input condition

 using beamformed signals generated from ICSI delay&sum signal enhancement system for the Multiple Distant Microphone (MDM) condition

LIMSI-CNRS

TLP Group

- RT-07S workshop, 10-11 May 2007

7

## **ACOUSTIC MODEL TRAINING**

#### **RT06 SAD models and UBMs**

- speech and non-speech models trained on far-field data: 7 ISL lectures recorded in 2003
- 4 UBMs (male/female, studio/telephone) trained on a subset of 1996/1997 English Broadcast News data (same as BN system)

#### New SAD models and UBM

- using forced alignment segmentations to train speech and non-speech models and UBM independent of the gender and bandwidth
- new training data used to estimate SAD models and UBM:
  8 RT-04S development conferences + 8 RT-04S evaluation conferences
  + 10 RT-05S evaluation conferences
- different types of acoustic features along with various feature normalization techniques investigated for model training
- same SAD models and UBM for conference and lecture test data

# **DEVELOPMENT CORPUS DESCRIPTION**

### **Conference development dataset (conf dev07s)**

- 9 conference meetings from RT-06S evaluation data
- collected by 5 laboratories: CMU, EDI, NIST, TNO and VT
- a duration of about 15 minutes per excerpt
- forced alignment references available for scoring

### Lecture development dataset (lect dev07s)

- 28 lecture meetings from RT-06S evaluation dataset
- recoded by 5 CHIL partner sites: AIT, IBM, ITC, UKA and UPC
- audio lengths ranging from 23 to 44 minutes
- forced alignment references available for scoring

| I IMC | I-CNRS |  |
|-------|--------|--|
| LIND  |        |  |

TLP Group

- RT-07S workshop, 10-11 May 2007

9

# LLR-BASED SAD USING VARIOUS TYPES OF FEATURES

### **Configuration for LLR-based SAD**

- 256 Gaussians in each SAD acoustic model
- prior probability for speech and non-speech models being 0.8:0.2
- smoothing window with a duration of 50 frames

#### Proposed energy normalization based on voicing factor

- voicing factor v computed as maximum peak of the autocorrelation function (excluding lag zero)
- ullet harmonic energy defined as  $E_h = v.E_0$
- energy normalized relative to 10% highest harmonic energy

# SAD RESULTS ON CONFERENCE MDM DEV DATA

| SAD acoustic   | missed speech | false alarm      | overlap       |
|----------------|---------------|------------------|---------------|
| features       | error (%)     | speech error (%) | SAD error (%) |
| baseline       | 1.3           | 4.3              | 5.6           |
| baseline+e     | 1.1           | 4.0              | 5.1           |
| baseline+env   | 1.1           | 3.3              | 4.3           |
| baseline+e+mvn | 0.8           | 3.0              | 3.9           |

### Different kinds of acoustic features used in LLR-based SAD

- baseline: 12 MFCC + 12  $\Delta$  + 12  $\Delta\Delta$  +  $\Delta$  logE +  $\Delta\Delta$  logE
- baseline+e: adding raw energy to baseline features
- baseline+env: baseline features plus normalized energy relying on voicing factor
- baseline+e+mvn: performing standard variance normalization on both the baseline features and raw energy

| LIMSI-CNRS | 7 |
|------------|---|
| LINDI-CIND | 1 |

TLP Group

- RT-07S workshop, 10-11 May 2007

11

# SAD RESULTS ON LECTURE MDM DEV DATA

| SAD acoustic   | missed speech | false alarm      | overlap       |
|----------------|---------------|------------------|---------------|
| features       | error (%)     | speech error (%) | SAD error (%) |
| baseline       | 2.4           | 5.3              | 7.8           |
| baseline+e     | 0.5           | 11.2             | 11.8          |
| baseline+env   | 0.9           | 4.7              | 5.7           |
| baseline+e+mvn | 1.0           | 5.6              | 6.6           |

- use of raw energy degrades largely SAD performance on lectures
- mismatch between conference training and lecture test leads to a higher SAD error

# SPKR RESULTS ON CONFERENCE MDM DEV DATA

| UBM acoustic                                                  | speaker match | overlap |
|---------------------------------------------------------------|---------------|---------|
| features                                                      | error (%)     | DER (%) |
| 15plp+ $\Delta$ + $\Delta$ logE+w                             | 28.4          | 36.2    |
| $15plp+\Delta+\Delta\Delta+\Delta logE+\Delta\Delta logE+w$   | 23.3          | 31.1    |
| $12plp+\Delta+\Delta logE+w$                                  | 22.9          | 30.6    |
| $12plp+\Delta+\Delta\Delta+\Delta logE+\Delta\Delta logE+w$   | 27.9          | 35.7    |
| 12plp+ $\Delta$ + $\Delta$ logE+mvn                           | 33.8          | 41.6    |
| $12plp+\Delta+\Delta\Delta+\Delta logE+\Delta\Delta logE+mvn$ | 32.0          | 39.8    |

### SID clustering with UBMs trained on different types of features

- "w" being feature warping, "mvn" being variance normalization
- each UBM with 128 Gaussian component
- with SAD acoustic models trained on "baseline+e+mvn"
- BIC penalty weight  $\lambda=3.5$  and SID threshold  $\delta=0.5$

```
LIMSI-CNRS
```

```
TLP Group
```

- RT-07S workshop, 10-11 May 2007

```
13
```

# SPKR RESULTS ON LECTURE MDM DEV DATA

| UBM acoustic                                                  | speaker match | overlap |
|---------------------------------------------------------------|---------------|---------|
| features                                                      | error (%)     | DER (%) |
| $15plp+\Delta+\Delta logE+w$                                  | 10.0          | 17.5    |
| $15plp+\Delta+\Delta\Delta+\Delta logE+\Delta\Delta logE+w$   | 10.2          | 17.7    |
| $12plp+\Delta+\Delta logE+w$                                  | 10.3          | 17.8    |
| $12plp+\Delta+\Delta\Delta+\Delta logE+\Delta\Delta logE+w$   | 10.2          | 17.7    |
| 12plp+ $\Delta$ + $\Delta$ logE+mvn                           | 10.5          | 18.0    |
| $12plp+\Delta+\Delta\Delta+\Delta logE+\Delta\Delta logE+mvn$ | 10.2          | 17.7    |

### SID clustering with UBMs trained on different kinds of features

- no significant changes in diarization performances for lectures
- 128 Gaussian per UBM
- with SAD acoustic models trained on "baseline+e+mvn"
- ullet BIC penalty weight  $\lambda=3.5$  and SID threshold  $\delta=0.5$

# **EVALUATION RESULTS**

| data type      | SPKR as SAD | non-overlap | overlap |
|----------------|-------------|-------------|---------|
| & condition    | error (%)   | DER (%)     | DER (%) |
| conference MDM | 3.2         | 23.0        | 26.1    |
| conference SDM | 3.5         | 26.6        | 29.5    |
| lecture MDM    | 10.1        | 24.5        | 25.8    |
| lecture SDM    | 10.0        | 24.3        | 25.6    |

### Same SAD models and UBM for conference and lecture data

- SAD acoustic models trained on "baseline+e+mvn" feature set
- UBM trained on "12plp+ $\Delta$ + $\Delta$ logE+w" feature set

### **Configurations of diarization**

- BIC penalty weight  $\lambda = 3.5$  for both conference and lecture
- $\bullet$  SID threshold  $\delta$  set to 0.6 for conference and 0.5 for lecture

LIMSI-CNRS

TLP Group

- RT-07S workshop, 10-11 May 2007

15

# CONCLUSIONS

### Speaker diarization system for meeting data

- diarization results obtained on the conference evaluation data similar to ones on the development data
- higher DER rate on the lecture evaluation data than the development data can be attributed to the higher participant interaction in this year's lecture data
- beamformed MDM signals effective for conference but not for lecture