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Abstract

Two novel computational techniques,harmonic cutand
regularized centroid transform, are developed for segmen-
tation of cells and their corresponding substructures ob-
served with an epi-fluorescence microscope. Harmonic cut
detects small regions that correspond to subcellular struc-
tures. These regions also affect the accuracy of the overall
segmentation. They are detected, removed, and interpolated
to ensure continuity within each region. We show that in-
terpolation within each region (subcellular compartment)
is equivalent to solving the Laplace equation on a multi-
connected domain with irregular boundaries. The second
technique, referred to as the regularized centroid transform,
aims to separate touching compartments. This is achieved
by adopting a quadratic model for the shape of the object
and relaxing it for final segmentation.

Index terms: segmentation, scale-space, regularization,
vector field

1. Introduction

As an important tool in computational biology, cell seg-
mentation provides the basis for population studies, model
validation, protein expression and uptake studies at a par-
ticular subcompartment[7, 1, 2, 5]. In general, reliable seg-
mentation is hard since images are noisy (both random and
speckle noise), cellular stain is heterogeneous, and various
compartments could overlap in the sample. This paper fo-
cuses on automated segmentation of cells and their subcom-
partments, imaged with a confocal microscope and on a
fixed focal plane, e.g., segmentation is limited to 2D im-
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ages. Segmentation from 2D images is slightly more diffi-
cult than 3D images due to inherent lack of 3D content and
ambiguities that originate from lack of information. Fig-
ure 2(a) shows an example of a population of cells that is
imaged with a confocal microscope. Thresholding [8] and
edge detection are not sufficient for delineating them from
each other. In addition, notice that there are a significant
number of internal structures in each nucleus. Our approach
is model based, assumes an ellipsoidal model for the gross
shape of the cell, which is not expressed as a parametric
model, and does not rely on the user to provide an initial
seed point for initial segmentation. Although the proposed
techniques have been applied for localizing cells, we sug-
gest that they are generic tools for early vision and blob
detection.

The proposed computational protocol, as shown in Fig-
ure 1, is layered and involves filtering for noise and internal
structures followed by grouping of iso-intensity pixels into
their local centroid. In this system, noise and internal sub-
structures are detected with elliptic features. These elliptic
features are then removed and interpolated with harmonic
cut. At this step of the computational process, each object
of blob is represented with a smooth surface. Objects that
are touching one another are groupedaccording to their cen-
troid and partitioned from the computed vector field.

Organization of this paper is as follows. Section 2 pro-
vides a summary of the method for detecting elliptic fea-
tures. Section 3 outlines details of the harmonic cut and its
solution with the Laplacian. Sections 4-5 present the regu-
larized centroid transform and its implementation. Section
6 concludes the paper.

2. Elliptic Regions

Let I0(x; y) be the original image. In the linear (Gaus-
sian) scale space, its representation at scale� is given by

I(x; y;�) = G � I
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Figure 1. System diagram.

whereG is the Gaussian kernel. In the rest of the paper,
I(x; y;�) will be simply denoted asI(x; y). Classification
of bright and dark regions (speckled area) in the blob can
then be achieved through analyzing the Hessian

H(x; y) =

�
Ixx Ixy
Ixy Iyy

�

Bright elliptic regions can then be defined as the set of
points satisfying the following conditions:Ixx < 0, Iyy <
0 andIxxIyy � I2xy > 0, which mean that both eigenval-
ues of the Hessian matrix are negative, or in other words,
H(x; y) is negative definite. In scale-space theory [4],
IxxIyy � I2xy is referred to as the elliptic feature.

3. Harmonic Cut

The next step of the computational process is to remove
small elliptic regions from the cell and interpolate their re-
gion. This is essentially a noise removal step, however, our
data set has both random noise (CCD noise) and speckle
noise (internal structures within the cell). The 2D case is
complex because theboundary of the region to be removed
is often noisy and irregular, and it is not clear whether sim-
ple techniques such as propagating intensity based on dis-
tance transform will have desirable properties. One way to
ensure continuity is to regularize the solution by extending
the 1D solution to 2D or by minimizing the following func-
tional:
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2

ZZ
D

I2x + I2ydxdy (1)

whereD is the region to be removed, that is to say,I(x; y) is
supposed to be unknown inD. The Euler-Lagrange solution
to this optimization problem is the Laplace equation:

r2I = Ixx + Iyy = 0 (2)

with the Dirichlet boundary conditionIj@ �D(x; y), the re-
striction of the original image on the boundary ofD’s com-
plement�D = 
�D where
 is the domain of definition of

the entire image. Equation (2) defines a 2-dimensional har-
monic function on the region to be removed, and thus we
call this method “harmonic cut”.

In the actual implementation, a small scale is selected
and elliptic features are detected. These features correspond
to either noise or tiny substructures (approximately 20 pix-
els) on the nuclei. The corresponding regions are subse-
quently interpolated with a harmonic function. Figure 2(b)
shows detected elliptic features at scale� = 2, where these
bright dots, inside nuclei, are known to be chromatin. Fig-
ure 2 shows the result of the harmonic cut step by step.

(a) (b)

(c) (d)

Figure 2. Detection of elliptic features and
their interpolation with harmonic cuts: (a)
The original image; (b) edges of bright elliptic
features at scale � = 2; (c) harmonic cut on
features in (b); (d) displaying edge of (c) on
the original image.

Harmonic functions are those functions that satisfy the
Laplace equation. Since any non-constant harmonic func-
tion has no maximum or minimum value inside the region
in which it is defined, if we remove one region and re-
place it with the harmonic function defined by its boundary,
there is no local minimum/maximum in the removed region.
Hence,the harmonic cut can remove all local singularities.



Therefore the harmonic cut satisfiescausalityintroduced by
Koenderink [3, 4] because of the inherent properties of har-
monic functions.

4. Regularized Centroid Transform

At this stage of the computational process, each cell is
represented with a smooth surface corresponding toeach
of its subcompartments. The next step of the process is to
separate objects that are grouped together into a clump, e.g.,
touching one another. This is achieved usingRegularized
Centroid Transform(RCT).

The basic idea for the RCT technique is to map vectors
originating from the boundary of an ellipse to its centroid.
If these vectors can be computed, then the entire boundary
can be grouped together. This is true for both boundaries
and theirinterior points, e.g., grouping utilizes not only the
edges but also the region information. The main issue is that
centroids are unknown and that there are many centroids in
the image. This is resolved by computing a vector field that
can then be used to partition touching objects.

4.1. Local centroids

Let I(x; y) be the original intensity image. At each point
(x0; y0), its equal-height contour is defined byI(x; y) =

I(x0; y0). Expanding and truncating the above equation us-
ing Taylor’s series, we have the following estimation:

Ixu+ Iyv +
1

2
[Ixxu

2
+ 2Ixyuv + Iyyv

2
] = 0 (3)

whereu = x� x0 andv = y � y0, or in the standard form

1

2
wTHw + bTw = 0 (4)

whereH =

�
Ixx Ixy
Ixy Iyy

�
(x0;y0)

is the Hessian matrix,

b = (Ix; Iy)
T
(x0;y0)

is the gradient of intensity,w = (u; v)T

is the centroid in the local coordinate system. Recall that the
centroid of the quadratic curve defined by Eq. (4) satisfies
the following linear constraint:Hw + b = 0. If H is non-
singular, then the centroid can be determined directly; i.e.,
w = �H�1b. However, this is not always true, and in gen-

eral, the zero set defined by

���� Ixx Ixy
Ixy Iyy

���� = IxxIyy�I
2
xy =

0 is non-trivial, and can be further classified into two cate-
gories:

� Uniform regions that correspond to zero intensity gra-
dient of the image with the result that there is no infor-
mation to estimate the centroid, and

� Elliptic features that occur in non-uniform regions.

4.2. Regularized representation

The limitation of the local centroid technique is due to
the singularities of the Hessian. From the computational
stability point of view, nearby points cannot be computed
reliably either. Therefore formulation of the centroid trans-
form is ill-posed [6], and needs to be regularized. Let the
centroid at(x; y) be denoted by(u(x; y); v(x; y))T , then
the regularized model can be expressed as

minE(u; v) =
1
2

RR
(Ixxu+ Ixyv + Ix)

2

+ (Ixyu+ Iyyv + Iy)
2

+ �(u2x + u2y + v2x + v2y)dxdy

(5)

where the first and second terms are the error of estimation,
the third term is the smoothness constraint, and�(> 0) is
the weight factor. We refer to the solution of Equation (5)
as theregularized centroid transform(RCT). The key ideas
and properties of RCT are that: (1) the transform is a vec-
tor instead of a scalar field, (2) the vector field represents
the displacement to the centroid in thex andy directions,
respectively, (3) the vector field is dense everywhere and is
regularized under the smoothness constraint, and (4) RCT
is an intermediate step toward final segmentation.

The Euler-Lagrange equations of the variational problem
of Eq. 5 are
8>><
>>:

Ixx(Ixxu+ Ixyv + Ix) + Ixy(Ixyu+ Iyyv + Iy)�

�(uxx + uyy) = 0

Ixy(Ixxu+ Ixyv + Ix) + Iyy(Ixyu+ Iyyv + Iy)�

�(vxx + vyy) = 0

(6)
The boundary conditions for solution of the above PDEs

are based on Neumann boundary conditions:

�
@u
@n

= 0
@v
@n

= 0

wheren is the normal vector to the boundary. It is easy to
show that its computational complexity is of the same order
as the linear diffusion.

5. Partitioning Vector Field

The final step of segmentation is to compute the parti-
tion of a vector field corresponding to RCT. Consider an
autonomous system of differential equations

�
dx
dt

= u(x; y)
dy
dt

= v(x; y)
(7)

whereu(x; y) andv(x; y) are the two components of RCT.
We can partition RCT in the following way. Every non-
singular pixel can be repeatedly moved to a new position by
solving Equation (7), and every singular point is in fact a
fixed point. As a result, those points that move to the same
singular point can be grouped together.



We can define anRCT energy functionas the arclength
of the trajectory. Figure 3 compares the RCT energy func-
tion and the classic distance transform, which is often used
for further segmentation. It is clear that the RCT map is
smoother and well focused. Figure 4 shows final segmenta-
tion results for two fields of cells. We have applied our tech-
nique to 68 images with a total of 2417 cells, and 61 cells
were incorrectly segmented. These images can be found at
http://vision.lbl.gov/Projects/bioinformatic/images.html.

6. Conclusion

This paper has outlined a layered computational tech-
nique to delineate overlapping nuclei and to extract their in-
ternal substructures. The first step of the process is removal
of random and speckled (internal substructure) noise, which
are subsequently interpolated with harmonic cut. The next
step of the process delineates overlapping regions through
a novel process that we call regularized centroid transform
(RCT). Our approach has been applied to analysis of images
obtained through a confocal microscope, and it is currently
in production use. It is possible for the proposed method to
produce incorrect segmentation, however, this is due to the
incomplete amount of information that is present at a given
focal plane. We suggest that RCT is a generic blob detec-
tion and separation technique that can be used as a generic
tool for early vision problems.
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Figure 3. Comparison of RCT and distance
function energy map: (a) RCT energy func-
tion; (b) distance transform.
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Figure 4. Segmentation of two fields of cells.


