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Abstract. Accurate numerical modeling of complex physical, chemical, and biological systems
requires numerical simulation capability over a large range of length scales, with the ability to cap-
ture rapidly varying phenomena localized in space and/or time. Adaptive mesh refinement (AMR) is
a numerical process for dynamically introducing local fine resolution on computational grids during
the solution process, in response to unresolved error in a computation. Fast adaptive composite-
grid (FAC) methods are a class of algorithms that exploit the multilevel structure of AMR grids
to solve elliptic problems efficiently. This paper develops a theoretical foundation for AFACx, an
asynchronous FAC method. A new multilevel condition number estimate establishes that the con-
vergence rate of the AFACx algorithm does not degrade as the number of refinement levels in the
AMR hierarchy increases.
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1. Introduction. Adaptive mesh refinement (AMR) is a numerical process for
dynamically introducing local fine resolution on computational grids during the solu-
tion process in response to unresolved error in a computation. Local fine resolution
is achieved by dynamically adapting the existing computational grid based on addi-
tional grid points (point-based AMR) or finer local grids (block-structured AMR).
AMR approaches are attractive because they often achieve orders of improvement in
computational efficiency and memory usage. AMR techniques were first introduced
by Brandt [19] in the early 1970s for general problems in a multilevel context and by
Berger and Oliger [6] in the 1980s for hyperbolic problems. Since then, AMR research
has been pursued by several groups (cf. [1, 2, 5, 29, 42, 43]).

For elliptic problems, when numerical simulations involve a large number of re-
finement levels and are extremely large, effective parallel methods for AMR must be
considered. It is then desirable to develop elliptic solvers that asynchronously process
all grids, or at least asynchronously process grids at a fixed refinement level. In ad-
dition, as the number of refinement levels increases, the convergence rate should not
degrade as a function of the number of refinement levels.
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The fast adaptive composite-grid (FAC) method was developed in the 1980s [32,
33, 34, 35] to provide more robust discretization and solution methods for elliptic
problems on AMR grids. Its strength lies in its ability to use existing single grid
solvers on uniform meshes for different refinement levels, with the combined effect of
solving a nonuniform composite-grid problem. Though FAC allows for asynchronous
processing of disjoint grids at a given refinement level and its convergence rate is
bounded independently of the number of refinement levels, the multiplicative way
it treats the various refinement levels imposes sequentialness in its processing. For
large-scale parallel AMR applications, this sequential nature of FAC, like that of other
AMR techniques, represents a serious bottleneck to full scalability.

This difficulty led to the development of the asynchronous version of FAC, called
AFAC [28, 33, 36, 37]. AFAC, like FAC, is blessed with level-independent convergence
bounds and the convenience of enabling uniform grid solvers. But it has the added
advantage of allowing asynchronous processing of all refinement levels. This impor-
tant asynchronous feature is obtained at the cost of only a modest fixed decrease in
convergence rates [33].

Further research into improving computational efficiency associated with the uni-
form grid solvers on local grid patches led to the development of AFACx [41]. AFACx
is very inexpensive because it uses only simple relaxation methods on all but the
coarsest grid. Numerical results [39, 41] show that the attendant reduction in com-
putational and communication costs of AFACx comes with no significant degradation
in convergence rates compared to AFAC based on multigrid solvers.

Convergence bounds for FAC were established in [32, 38] under certain regularity
assumptions. Widlund and Dryja proposed and analyzed variants of FAC [45, 23].
Reusken and Ferket [24] compared FAC with the local defect correction (LDC) method
[27] introduced by Hackbusch. AFAC was introduced by Hart and McCormick in [28].
Optimality in the multilevel case for AFAC applied to a model problem was shown in
[31]. This was followed by the development of AFACx [41]. Cheng [21, 22] established
optimal bounds on the condition number of the multilevel AFAC iteration operator
with exact solvers. Moe [39, 7] presented performance results for FAC and AFAC
on parallel machines. Quinlan, in his thesis [41], presented a two-level convergence
analysis for AFACx assuming a sufficient number of smoothing steps at each level
and showed that it is closely related to the convergence rate of AFAC. Shapira [44]
compared the performance of AFAC and AFACx. However, a multilevel theory for
AFACx remained a gap in the theory of multilevel FAC-type methods.

Closely related to AFACx are the additive preconditioners of Bramble, Pasciak,
Xu [16] and Bramble, Pasciak, and Vassilevski [18]. The theoretical framework de-
veloped by Bramble, Pasciak, Xu, Wang, Oswald, Griebel, and others [16, 15, 12, 14,
13, 17, 11, 47, 48, 50, 9, 8, 49, 26] presents a powerful tool for analyzing multilevel
methods. Relying heavily on this modern multilevel framework for multilevel meth-
ods and some of the assumptions therein, we present in this paper a new multilevel
condition number estimate for the AFACx operator.

The new theoretical results presented in this paper are strongly backed by nu-
merical evidence [41, 40] and performance results [41]. Recent numerical work [40, 30]
shows that AFACx can be applied successfully to elliptic PDE systems arising from
first-order system least squares (FOSLS) formulations on adaptively refined curvilin-
ear AMR grids. As increasingly complex PDE systems are simulated and the need
for AMR is increasingly crucial, theoretical and computational analyses of fast, paral-
lelizable, and efficient multilevel solvers and preconditioners such as AFACx and BPX
[16] become increasingly important for validating the results of complex simulations.
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This paper develops new multilevel estimates establishing that the condition num-
ber of the AFACx operator, like that for AFAC, is bounded independently of the
number of refinement levels. We start by introducing the model problem and nec-
essary preliminaries in section 2. In section 3, we introduce the various FAC-type
methods, and finally, in section 4, we establish the theory.

2. Model problem. Consider a linear, self-adjoint, second-order elliptic bound-
ary value problem in R

n, n = 2, 3, of the form
 Lu ≡ −

n∑
i,j=1

∂
∂xi
(aij(x)

∂u
∂xj
) = f in Ω,

u = 0 on ∂Ω,
(2.1)

where u is the unknown, f ∈ L2(Ω) is the source term, and aij are appropriate
coefficients. Assume that

• domain Ω ⊂ R
n is convex polygonal;

• coefficients aij(x) ∈ C0(Ω), 1 ≤ i, j ≤ n;
• matrix [aij(x)]1≤i,j≤n is symmetric almost everywhere in Ω; and
• operator L is uniformly elliptic in the sense that there exists a constant θ > 0
such that

∑n
i,j=1 aij(x)ξiξj ≥ θ|ξ|2 for almost all x in Ω and all ξ in R

n,
where | · | is the Euclidean norm.

This section is concerned with the numerical solution of the algebraic equations that
arise from discretizing problem (2.1) on adaptively refined curvilinear grids. We focus
on the plane R

2 for simplicity.

2.1. Variational formulation. Under the above assumptions, the natural lin-
ear space in which to seek a weak solution of (2.1) is V := H1

0 (Ω), and the variational
problem is Find u ∈ V such that

a(u, v) = f(v) ∀v ∈ V,(2.2)

where the respective bilinear and linear forms are

a(u, v) =

∫
Ω

n∑
i,j=1

aij(x)
∂u

∂xj

∂v

∂xi
dΩ,(2.3)

f(v) =

∫
Ω

fvdΩ.(2.4)

It is known [25] that (2.2) has a unique solution, u ∈ V . Moreover, a(·, ·) :
V ×V → R is symmetric and continuous [25], so uniform ellipticity of L and Poincaré’s
inequality (cf. [10]) imply that a(·, ·) is coercive on V : there exists a constant γ > 0
such that

a(u, u) ≥ γ‖u‖2
V ∀u ∈ V.(2.5)

Coercivity, in turn, implies that a(·, ·) defines an equivalent inner product over space
V . Furthermore, by the Riesz representation theorem (cf. [10]), a(·, ·) induces a
bounded linear operator A : V → V uniquely determined by

a(u, v) = (Au, v) ∀u, v ∈ V.(2.6)
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2.2. Partially refined meshes. To discretize (2.2) on partially refined meshes,
we introduce the following notation. Let ΩJ ⊆ ΩJ−1 ⊆ · · · ⊆ Ω1 ≡ Ω be a
nested sequence of nonempty bounded open polygonal Lipschitz domains. Subdo-
mains Ωk, k = 2, 3, . . . , J , can be viewed as regions where the solution may vary on
increasingly finer scales and, hence, regions where local refinement patches are gener-
ated during the AMR process. Let T c

1 = {τ1
i }N1

i=1 be a triangulation of Ω1, N1 ≥ 4,
meaning that they cover Ω1 and do not overlap in the sense that the intersection of
any two triangles in the triangulation is either empty, a common vertex, or a common
edge. Assume that T c

1 is quasi-uniform. We assume also that the boundaries of Ω2

align with the edges of elements in T c
1 , and at least one edge of T c

1 is contained in
Ω2. Triangulation T c

k = {τki }Nk
i=1, k = 2, 3, . . . , J , of Ω, is obtained from T c

k−1 in the
following manner. Since Ωk ⊆ Ωk−1 and its boundary aligns with elements of T c

k−1,

then there exists a local “coarse” triangulation, T hk−1

k = {τk−1
ij

}Mk
j=1,Mk ≤ Nk−1,

consisting of elements of T c
k−1 that cover Ωk, where hk−1 is the length of the longest

edge of triangles in T hk−1

k . T hk−1

k is then a quasi-uniform triangulation of Ωk. Now

we uniformly refine elements of T hk−1

k by subdividing each triangle into four triangles

by connecting the midpoints of the edges. This yields a “fine” local triangulation T hk

k

of Ωk, which is regular in the sense of Bank, Dupont, and Yserentant [3]. Elements
of T c

k−1 that lie in the complement of Ωk and the elements of T hk

k together form

the elements of T c
k = (T c

k−1\T hk−1

k ) ∪ T hk

k . This process leads to a series of nested

triangulations {T c
k }Jk=1 of Ω that form partially refined locally quasi-uniform meshes.

2.3. Finite element spaces. Henceforth, we assume that conforming piecewise
linear finite elements are used, although our results will clearly apply to more gen-
eral cases. We thus define V c

k ⊂ H1
0 (Ω), k = 1, 2, . . . J , to be the space spanned by

standard piecewise linear nodal basis functions with local support about the nodes of
triangulation T c

k . Because of the conformity of the finite elements, note that there
are no degrees of freedom associated with fine nodes that lie on boundary ∂Ωk. Con-
tinuity implies that these “slave” nodes are evaluated simply by interpolation from
adjacent coarse nodes. Now, the “fine” local finite element space defined in the inte-
rior of domain Ωk is V

hk

k = V c
k ∩H1

0 (Ωk). By our use of H
1
0 (Ωk) here, we mean that

functions in V hk

k have support only in the interior of Ωk. Similarly, we define “coarse”

local finite element spaces by V
hk−1

k = V c
k−1 ∩ H1

0 (Ωk), V
hk−1

k ⊂ V hk

k , k = 2, . . . , J .
Note that the local spaces are nested: V c

1 ⊆ V c
2 ⊆ · · · ⊆ V c

J ⊂ H1
0 (Ω). However,

the coarse local spaces are generally nonnested because they typically correspond to
increasingly smaller local subdomains.

2.4. The discrete variational problem. Having chosen finite-dimensional
composite-grid space V c

J , the discrete variational problem is Find u
c ∈ V c

J such that

a(uc, v) = f(v) ∀v ∈ V c
J .(2.7)

This problem is equivalent to solving the linear system

Acuc = fc,(2.8)

where Ac is a symmetric positive-definite matrix induced by the linear operator Ac

defined over composite-grid space V c
J . Note that V

c
J is a finite-dimensional subspace of

H1
0 (Ω). For notational convenience, denote spaces V

c
k by Vk, k = 1, 2, . . . , J ; operator

Ac by A; A-inner product a(·, ·) on VJ by A(·, ·); and the induced A-norm by ‖| · |‖.
The L2 inner product on VJ is denoted by (·, ·) and its induced norm by ‖ · ‖.
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2.5. Stationary linear iteration. A consistent stationary linear iterative pro-
cess for linear system

Au = f

can be written in the form

un+1 = un +B(f −Aun),(2.9)

where B is an approximate inverse of A. Here we are thinking of iteration (2.9) as one
of our FAC-type algorithms defined below. If B is symmetric with respect to the A
inner product, then the process is said to be symmetric. Letting en = u− un denote
the error in the nth iterate, then (2.9) implies that

en+1 = (I −BA)en.(2.10)

Therefore, for the iteration to converge in general, we must have ρ(I − BA) < 1,
where ρ(·) denotes the spectral radius. For common multiplicative-type algorithms, it
is often easy to establish this condition. However, for additive-type multilevel solvers,
typically all that can be shown is that κ(BA), the condition number of the operator
BA, is independent of the number of levels. Such a result implies that the “damped”
linear iteration

un+1 = un + ωB(f −Aun)(2.11)

converges for sufficiently small ω. It is this type of a result that we establish for the
AFACx algorithm defined below.

To describe the FAC algorithms, we need to define operators that approximate
(2.7) at the different refinement levels, projection operators that transfer data from
fine to coarse spaces, and smoothing operators on the different spaces, all in terms of
the discrete inner products (·, ·) and A(·, ·).

2.6. Approximating composite-grid operators on coarser levels.
Definition 1. For k = 1, 2, . . . , J , define operator Ak : Vk −→ Vk by

(Akw, φ) = A(w, φ) ∀φ ∈ Vk.

Note that operator Ak is symmetric and positive-definite in inner products A(·, ·)
and (·, ·).

2.7. Projection operators. We introduce the following projection operators
typically used in multilevel theory.

Definition 2. For k = 1, 2, . . . , J , define “elliptic projection” operator Pk :
VJ −→ Vk by

A(Pkw, φ) = A(w, φ) ∀φ ∈ Vk.

Definition 3. For k = 1, 2, . . . , J , define “L2 projection” operator Qk : VJ −→
Vk by

(Qkw, φ) = (w, φ) ∀φ ∈ Vk.

It can be shown that Pk and Qk are orthogonal projection operators satisfying
the following basic properties:

• PkPl = Pl, PlPk = Pl, QkQl = Ql, QlQk = Ql for l ≤ k.
Additionally, Pk and Qk are related according to

AkPk = QkA.(2.12)
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2.8. Smoothing operators. We can write one step of a general stationary
linear smoothing procedure applied to

Akuk = fk(2.13)

in the form

un+1
k = unk +Rk(fk −Aku

n
k ),(2.14)

where Rk : Vk −→ Vk. Note that (2.14) is of the same form as (2.9), but we use R
here and below (possibly with subscripts and hats) to signify smoothing. Now the
error, enk = uk − unk , obeys the following propagation equation:

en+1
k = (I −RkAk)e

n
k(2.15)

or

en+1
k = (I − Tk)e

n
k ,(2.16)

where Tk : VJ −→ Vk is defined by Tk = RkAkPk. For simplicity, we assume that
R1 = A−1

1 and that Rk, k = 2, 3, . . . , J , are symmetric with respect to the L
2 inner

product. Consider the special case Rk = R̂k ≡ 1
λk
I, where λk is the spectral radius

of Ak. The smoothing process is then just Richardson’s iteration defined by

un+1
k = unk +

I

λk
(fk −Aku

n
k ).(2.17)

Corresponding to R̂k, we define T̂k = R̂kAkPk.
To further quantify the properties that a simple smoother must satisfy, we make

the following assumptions commonly made in modern multilevel analyses. While
we do briefly comment on the motivation for each assumption and the conditions
under which they hold, we refer the reader to [11, 46, 15, 16, 12, 13, 48, 17, 47, 50]
for further details. It suffices to state that the assumptions are valid (cf. [11]) for
our model problem with partially refined locally quasi-uniform meshes and simple
smoothers like Richardson, damped Jacobi, and symmetric Gauss–Seidel.

The first assumption concerns the Richardson operator, R̂k.
A.1. There exist constants ε ∈ (0, 1) and γ > 0 such that

A(T̂kw,w) ≤ (γεk−l)2A(w,w) ∀w ∈ Vl, l ≤ k, k = 1, 2, . . . , J.(2.18)

Roughly speaking, assumption A.1 asserts that the smoother attenuates “smooth”
error components slowly; i.e., energy reduction in “smooth” components (represented
by components in subspaces Vl, l < k) is small compared to energy reduction in the
“oscillatory” components. This assumption is a generalization of the strengthened
Cauchy–Schwarz inequalities first introduced by Yserentant [49] for hierarchical bases
and used extensively in multilevel theory [47, 14, 11, 48]. Constant γ depends on
the ellipticity of the boundary value problem and the variation of the coefficients in
(2.1). For our model boundary value problem (2.1) discretized with piecewise linears
on simplices, (2.18) has been shown to hold (cf. [14, 48]). However, it is apparently
not known whether assumption A.1 holds when the coefficients in (2.1) are not very
smooth, e.g., when they are only bounded and measurable (cf. [11]).
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The next two assumptions allow for more general smoothers, Rk.
A.2. There exist constants a0 ∈ (0, 1) and a1 > 1 such that

a0
‖u‖2

λk
≤ (Rku, u) ≤ a1

‖u‖2

λk
∀u ∈ Vk, 2 ≤ k ≤ J.(2.19)

Assumption A.2 can also be written in the form

a0(R̂ku, u) ≤ (Rku, u) ≤ a1(R̂ku, u) ∀u ∈ Vk, 2 ≤ k ≤ J,(2.20)

which implies that smoothing operator Rk, k = 2, 3, . . . , J , is spectrally equivalent to
the Richardson smoothing operator R̂k. It is easy to see that A.2 implies that

a0 A(T̂ku, u) ≤ A(Tku, u) ≤ a1 A(T̂ku, u) ∀u ∈ VJ , k = 2, 3, . . . , J.(2.21)

Spectral equivalence of symmetric Gauss–Seidel to the Richardson smoother is shown
in [48]. The upper inequality in (2.21) holds in general for point-smoothers (cf. [11]).

A.3. There exists a constant θ ∈ (0, 2) such that

A(Tkv, Tkv) ≤ θA(Tkv, v) ∀v ∈ Vk, k = 1, 2, . . . , J.(2.22)

Assumption A.3 is a natural consequence of assuming that operators I − Tk are
contractive in the energy norm, i.e.,

‖|I − Tk|‖ < 1, k = 1, 2, . . . , J.(2.23)

Note that θ = 1 for Richardson, θ < 1 for under-damped Richardson, and θ = 1
for suitably scaled Jacobi and block Jacobi smoothers. In [13], (2.22) is shown to hold
for various line and point-based Jacobi and Gauss–Seidel smoothers.

Assumption A.3 can be derived from assumption A.1 under a suitable assumption
on γ and spectral equivalence of the smoothers to Richardson iteration. However, in
general, the assumption on γ cannot be established without special scaling of the
smoothers, so we choose to state both assumptions separately.

In addition to assumptions A.1–A.3 on smoothers Rk and R̂k, a “weak regular-
ity” assumption is required. This condition replaces the standard full regularity and
approximation assumption (cf. [12]) with a weaker assumption on operator A and
smoothers R̂k, k = 2, 3, . . . , J .

A.4. There exists a constant η > 0 such that

A(v, v) ≤ η

J∑
k=1

A(T̂kv, v) ∀v ∈ VJ .(2.24)

Assumption A.4 is shown to hold for our model problem discretization in [11].
However, it is also noted in [11] that, in the application to second-order elliptic equa-
tions for coefficients with large jumps, A.4 is not known to hold independent of the
size of the jumps.

3. Algorithms. We now describe the FAC, AFAC, and AFACx algorithms and
complete the section with a discussion of existing theory.
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3.1. FAC. Let unc ∈ VJ denote the current approximation to the solution of
composite-grid equation (2.8).

Algorithm 1. One iteration of the basic FAC algorithm consists of the following
steps.

For k = 1, 2, . . . , J , do:
find wk ∈ V hk

k such that

a(u
n+(k−1)/J
c + wk, v) = f(v) ∀v ∈ V hk

k ;

set u
n+k/J
c = u

n+(k−1)/J
c + wk.

As can be seen from this pseudolanguage, FAC involves the solution of the residual
equation on all refinement levels. The correction on a coarse level is computed before
the correction on the next finer level, thus providing boundary conditions for the finer
level equations. FAC is multiplicative, since it can be represented as a product of linear
operators. Multiplicative algorithms are inherently sequential because each operation
depends on its predecessor, making them less attractive in a parallel environment.

3.2. AFAC. Processing on each level in FAC attempts to resolve all components
of the solution to the composite-grid residual equation that are represented on a
refinement level and coarser levels. On the other hand, processing of each level by
AFAC [33, 36, 37] attempts only to resolve components that can be represented on
that refinement level. This objective is not dependent on resolving components of the
solution to the residual equation that are represented on coarser or finer levels, so it
provides for independent level processing. The principal step in AFAC is resolving
solution components on each composite-grid level. Let unc ∈ V denote the current
approximation to the solution of composite-grid equation (2.8).

Algorithm 2. One iteration of the AFAC algorithm consists of the following
steps.

For k = 1, 2, . . . , J , do:
find wf

k ∈ V hk

k such that

a(unc + wf
k , v) = f(v) ∀v ∈ V hk

k ;
if (k > 1), then

find wr
k ∈ V

hk−1

k such that

a(unc + wr
k, z) = f(z) ∀z ∈ V

hk−1

k ;
set wr

1 = 0;

set un+1
c = unc +

∑J
k=1(w

f
k − wr

k).
AFAC appears to have optimal or near-optimal complexity in a parallel com-

puting environment because it allows for simultaneous processing of all refinement
levels. This is important because the solution process on each grid, even with the
most efficient solvers, dominates computational complexity. This is especially true
for systems where the solution process is significantly more computationally intensive
than the evaluation of the residuals. Coupled with multigrid processing on each level
and nested iteration [32] on the composite-grids, the computational cost of AFAC is
proportional to the cost of a global-grid solve alone (see Hart and McCormick [28]
and McCormick [33] for further details).

The following two-grid result is proved in [32].
Theorem 3.1. Suppose Ac is positive-definite. Then the spectral radii of the

two-level exact solver forms of AFACc and FACc satisfy

ρ(AFACc) = ρ
1
2 (FACc).(3.1)

Here, FACc and AFACc denote the respective FAC and AFAC error propagation op-
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erators on the composite-grid space, and ρ(·) denotes spectral radius. The convergence
factor for one iteration of the two-level exact solver form of AFAC satisfies

‖|AFACc|‖| ≤
(

δ

1 + δ

) 1
4

,(3.2)

where constant δ > 0 is independent of h but depends on the regularity of (2.1) and
the approximation properties of its discretization (see [32] for further details).

Now, assume for each k, 1 ≤ k ≤ J , that there exists a bounded Lipschitz
polyhedral region Ω̂k such that Ωk ⊂ Ω̂k, (Ω̂k \Ωk)∩Ω = ∅, and ∂Ω̂k∩Ωk+1 = ∅, and
that the Lipschitz constants of Ω̂k\Ωk+1 are uniformly bounded. In addition, assume
there exist constants γ1 ≥ γ0 > 0 and q ∈ (0, 1) such that γ0q

k ≤ hk ≤ γ1q
k, k =

1, 2, . . . , J . Under these assumptions, the following theorem was proved in [21].
Theorem 3.2. The AFAC operator has a condition number that is bounded

independent of the number of refinement levels and the number of degrees of freedom.
It is important to note that the results hold when the exact solvers on each level in

FAC and AFAC are replaced by approximate solvers (e.g., multigrid solvers), provided
that they give a fixed local error reduction (see [32] and [21]). Note also that in [32],
the two-level results do not depend on the refinement ratios (hk+1/hk).

3.3. AFACx. AFAC removes the sequential nature inherent in the FAC algo-
rithm. However, it is possible to further reduce the computational effort on each level
by carefully replacing the local solvers in AFAC with smoothers. AFACx is exactly
such an algorithm.

To define this scheme, we introduce auxiliary bilinear forms brk(·, ·) : V hk−1

k ×
V

hk−1

k −→ R and bfk(·, ·) : V hk

k × V hk

k −→ R. These forms correspond to symmetric

positive-definite operators Br
k : V

hk−1

k −→ V
hk−1

k and Bf
k : V

hk

k −→ V hk

k that rep-

resent the action of smoothers on the “restricted” local coarse grid space V
hk−1

k and

the local “fine” grid space V hk

k . Let unc ∈ V denote the current approximation to the
solution of composite-grid equation (2.8).

Algorithm 3. One iteration of the AFACx algorithm consists of the following
steps.

For k = 1, 2, . . . , J , do:
if (k = 1), then

find uf1 ∈ V h1
1 such that

a(unc + uf1 , v) = f(v) ∀v ∈ V h1
1 ;

else
find wr

k ∈ V
hk−1

k such that

brk(w
r
k, z) = f(z)− a(unc , z) ∀z ∈ V

hk−1

k ;

find ufk ∈ V hk

k such that

bfk(w
r
k + ufk , v) = f(v)− a(unc , v) ∀v ∈ V hk

k ;

set un+1
c = unc +

∑J
k=1 u

f
k .

The above pseudolanguage shows that AFACx replaces the solves on the local
restricted coarse and fine levels in AFAC on all but the coarsest level by smoothing
steps. Smoothing is performed on the restricted coarse level to obtain the correction
wr

k on each level k. Smoothing on the fine level with initial guess w
r
k then yields u

f
k ,

which approximates the component of the correction that is representable only on
level k.
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AFACx is generally more efficient than AFAC because the various uniform grids
(the local fine and restricted coarse refinement levels) are processed only by smooth-
ing, instead of the somewhat more expensive multigrid solvers used in AFAC. This
reduction in cost apparently comes with no significant degradation in convergence
rates. The following two-level result is due to Quinlan [41].

Theorem 3.3. Consider the two-level AFACx algorithm that involves one smooth-
ing step on the fine grid patch and n smoothing steps on the restricted coarse grid.
Then, for sufficiently large n, the spectral radius of the AFACx error propagation op-
erator is bounded uniformly by a constant less than one, assuming only that this is
true for the AFAC error operator.

3.4. Symmetric AFACx. The operator corresponding to the AFACx algo-
rithm described above is not symmetric with respect to the A inner product. To
facilitate condition number estimates, we work instead with a symmetrized form of
AFACx developed as follows. Let unc ∈ V denote the current approximation to the
solution of composite-grid equation (2.8).

Algorithm 4. One iteration of the symmetrized AFACx algorithm consists of
the following steps.

For k = 1, 2, . . . , J , do:
if (k = 1), then

find uf1 ∈ V h1
1 such that

a(unc + uf1 , v) = f(v) ∀v ∈ V h1
1 ;

else
find wr

k,0 ∈ V
hk−1

k such that

brk(w
r
k,0, z) = f(z)− a(unc , z) ∀z ∈ V

hk−1

k ;

find wf
k,0 ∈ V hk

k such that

bfk(w
r
k,0 + wf

k,0, v) = f(v)− a(unc , v) ∀v ∈ V hk

k ;

find wf
k,1 ∈ V hk

k such that

bfk(w
f
k,1, v) = f(v)− a(unc , v) ∀v ∈ V hk

k ;

find wr
k,1 ∈ V

hk−1

k such that

brk(w
r
k,1, z) = f(z)− a(unc + wf

k,1, z) ∀z ∈ V
hk−1

k ;

set wf
k,1 = wf

k,1 + wr
k,1;

set wf
k,2 = wf

k,1 − wr
k,0;

set ufk = (w
f
k,0 + wf

k,2)/2;

set un+1
c = unc +

∑J
k=1 u

f
k .

The pseudolanguage above principally involves computing two approximations
wf

k,0 and w
f
k,2 and averaging them to form ufk at each level k. u

f
k then approximates

the component of the composite-grid correction that can be represented at level k.
wf

k,0 is obtained in the following manner: smooth on the coarse-grid residual equation
and interpolate to the local fine level to obtain wr

k,0, then smooth on the fine level

with initial guess wr
k,0 to obtain wf

k,0. To compute w
f
k,2, we first compute w

f
k,1 by

applying a two-level correction scheme (as described in [20, p. 33]) on the local fine

and restricted levels. wf
k,2 is then set to be the difference w

f
k,1 −wr

k,0. In practice, the
unsymmetric form of AFACx is used, while the symmetric form is useful for theoretical
analysis.
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4. Condition number estimates for AFACx. In this section, a new condition
number estimate is developed for the multilevel AFACx algorithm. We show that the
condition number of the symmetrized AFACx operator (Algorithm 4) is bounded
independently of the number of refinement levels.

The following lemma, which is a generalization of the standard Cauchy–Schwarz
inequality, is used extensively in the proofs that follow.

Lemma 4.1 (see [47]). Let T ∈ L(W ) be a nonnegative self-adjoint operator with
respect to 〈·, ·〉, where (W, 〈·, ·〉) is a finite-dimensional inner product space and L(W )
is the space of linear operators that map W into itself. Then

|〈Tu, v〉| ≤ 〈Tu, u〉 1
2 〈Tv, v〉 1

2 ∀u, v ∈ W.(4.1)

It is easy to show that the following lemma holds for operator Tk = RkAkPk.
Lemma 4.2 (see [11]). Operator Tk : VJ −→ VJ , k = 1, 2, . . . , J , is nonnegative

and self-adjoint with respect to the A inner product on VJ .

4.1. Full refinement. Consider first the case of full refinement: Ω1 = Ω2 =
· · · = ΩJ . Note that the “restricted coarse” grid is the entire global coarse grid, so

that V
hk−1

k = Vk−1, k = 2, 3, . . . , J , and the “local fine” grid is the entire global fine

grid, so that V hk

k = Vk, k = 1, 2, . . . , J . Define R0 = 0, P0 = 0, and Q0 = 0. Then
the operator corresponding to one iteration of AFACx (Algorithm 3) with a single
smoothing step each on the fine grid and the restricted coarse grid can be expressed
as

Ba =

J∑
k=1

(RkQk −RkAkRk−1Qk−1)A.(4.2)

To avoid theoretical complications in satisfying assumption A.3 for θ ∈ (1, 2) for
general smoothers, we work instead with the operator

Ba =

J∑
k=1

(
RkQk − 1

2
RkAkRk−1Qk−1

)
A,(4.3)

which corresponds to damping the restricted coarse grid smoothing by an additional
factor of 1

2 . Using relation (2.12), B
a may be rewritten as

Ba =

J∑
k=1

Tk

(
I − Tk−1

2

)
,(4.4)

where T0 is identically zero. Expressing Pk as the telescoping series
∑k

l=1(Pl −Pl−1),
we can then write

Ba =

J∑
k=1

Tk(Pk − Pk−1) +

J∑
k=1

k−1∑
l=1

Tk

(
I − Tk−1

2

)
(Pl − Pl−1).(4.5)

Interchanging the order of summation in the second term in (4.5) allows us to rewrite
Ba as

Ba =

J∑
l=1

Tl(Pl − Pl−1) +

J−1∑
l=1

J∑
k=l+1

Tk

(
I − Tk−1

2

)
(Pl − Pl−1).(4.6)
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4.2. Richardson smoothing. First, consider the case when Richardson itera-
tion is used as the smoother. We then have Rk = R̂k and Tk = T̂k. Let P0 ≡ 0 and
define wl = (Pl − Pl−1)v, l = 1, 2, . . . , J , for a given v ∈ VJ .

Our next lemma establishes a simple but important approximation property on
each level.

Lemma 4.3. Let Tk, k = 2, 3, . . . , J , satisfy bound (2.22). Then

A

(
Tk

(
I − Tk−1

2

)
wl,

(
I − Tk−1

2

)
wl

)

≤
(
1 +

γ
√
θ

2

)2

(γεk−l)2A(wl, wl), k = 2, 3, . . . , J, l < k.(4.7)

Proof. First, note that

A

(
Tk

(
I − Tk−1

2

)
wl,

(
I − Tk−1

2

)
wl

)

≤ A(Tkwl, wl) + |A(Tkwl, Tk−1wl)|+ 1
4
A(TkTk−1wl, Tk−1wl).(4.8)

Setting T = Tk, u = wl, and v = Tk−1wl in Cauchy–Schwarz inequality (4.1), we have

|A(Tkwl, Tk−1wl)| ≤ A(Tkwl, wl)
1
2A(TkTk−1wl, Tk−1wl)

1
2 .(4.9)

From (4.8) and (4.9), we thus have

A

(
Tk

(
I − Tk−1

2

)
wl,

(
I − Tk−1

2

)
wl

)

≤
(
A(Tkwl, wl)

1
2 +

1

2
A(TkTk−1wl, Tk−1wl)

1
2

)2

.(4.10)

Using assumption A.1 with w = Tk−1wl and applying assumption A.3, we see that
the last term in (4.10) is bounded according to

A(TkTk−1wl, Tk−1wl) ≤ (γε)2θA(Tk−1wl, wl).(4.11)

Applying assumption A.1 again, we have

A(Tk−1wl, wl) ≤ (γεk−l−1)2A(wl, wl).(4.12)

Combining (4.11) and (4.12) yields

A(TkTk−1wl, Tk−1wl) ≤ γ2θ(γεk−l)2A(wl, wl).(4.13)

Now, using assumption A.1 to bound the first term on the right-hand side of
(4.10) and (4.13) to bound the second term, we have

(4.14)

A

(
Tk

(
I − Tk−1

2

)
wl,

(
I − Tk−1

2

)
wl

)
≤
(
1 +

γ
√
θ

2

)2

(γεk−l)2A(wl, wl).

Before we prove the main results of this section, we state the following useful
identity (cf. [11, 47]).
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Lemma 4.4. Let wl = (Pl − Pl−1)v, v ∈ VJ , l = 1, 2, . . . , J , with P0 = 0. Then

J∑
l=1

A(wl, wl) = A(v, v).(4.15)

The next few lemmas are used to show that a symmetrized version of Ba has a
uniformly bounded condition number. We first show that Ba is bounded uniformly
in the A-norm.

Lemma 4.5. There exists constant C1 > 0, independent of the number of levels
J , such that

A(Bav, v) ≤ C1A(v, v) ∀v ∈ VJ .

Proof. From (4.6), we have

A(Bav, v) =

J−1∑
l=1

J∑
k=l+1

A

(
Tk

(
I − Tk−1

2

)
wl, v

)
+

J∑
l=1

A(Tlwl, v)

=

J−1∑
l=1

J∑
k=l+1

A

(
Tk

(
I − Tk−1

2

)
wl, Pkv

)
+

J∑
l=1

A(Tlwl, Plv).

Expressing Pk as a telescoping series, Pk =
∑k

j=1(Pj − Pj−1), we have

A(Bav, v) =

J−1∑
l=1

J∑
k=l+1

A


Tk

(
I − Tk−1

2

)
wl,

k∑
j=1

(Pj − Pj−1)v


+ J∑

l=1

A(Tlwl, Plv)

=
J−1∑
l=1

J∑
k=l+1

k∑
j=1

A

(
Tk

(
I − Tk−1

2

)
wl, wj

)
+

J∑
l=1

A(Tlwl, Plv).(4.16)

Now, applying Cauchy–Schwarz inequality (4.1) with T = Tk, u = (I − Tk−1)wl, and
v = wj yields

A

(
Tk

(
I − Tk−1

2

)
wl, wj

)

≤ A

(
Tk

(
I − Tk−1

2

)
wl,

(
I − Tk−1

2

)
wl

) 1
2

A(Tkwj , wj)
1
2 .(4.17)

Bounding the first factor on the right-hand side of (4.17) using Lemma 4.3 and the
second factor using assumption A.1 yields

(4.18)

A

(
Tk

(
I − Tk−1

2

)
wl, wj

)
≤
(
1 +

γ
√
θ

2

)
(γεk−l)A(wl, wl)

1
2 (γεk−j)A(wj , wj)

1
2 .

Finally, applying the arithmetic-geometric mean inequality in (4.18) yields

A

(
Tk

(
I − Tk−1

2

)
wl, wj

)
≤ (1 + γ

√
θ

2 )γ
2ε2k−l−j

2
(A(wl, wl) +A(wj , wj)).(4.19)
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Using bound (4.19) for the individual terms in (4.16), we have

A(Bav, v) ≤
(
(1 + γ

√
θ

2 )γ
2

2

)J−1∑
l=1

J∑
k=l+1

k∑
j=1

ε2k−l−j(A(wl, wl) +A(wj , wj))




+

J∑
l=1

A(Tlwl, Plv).(4.20)

We now bound each of the three terms on the right-hand side of (4.20) individually.
Term I. First write

S1 ≡
J−1∑
l=1

J∑
k=l+1

k∑
j=1

ε2k−l−jA(wl, wl) =

J−1∑
l=1

J∑
k=l+1

εk−lA(wl, wl)


 k∑

j=1

εk−j


 .

Hence,

S1 ≤
(

1

1− ε

) J−1∑
l=1

A(wl, wl)

(
J∑

k=l+1

εk−l

)
.

Again, bounding terms involving powers of ε and applying Lemma 4.4, we have

S1 ≤ ε

(1− ε)2

J∑
l=1

A(wl, wl) =
ε

(1− ε)2
A(v, v).(4.21)

Term II. Let

S2 ≡
J−1∑
l=1

J∑
k=l+1

k∑
j=1

ε2k−l−jA(wj , wj)

=

J−1∑
l=1

J∑
k=l+1

εk−l


 k∑

j=1

εk−jA(wj , wj)


 .(4.22)

Now, let α = (α1, α2, . . . , αJ)
t, where αj = A(wj , wj), j = 1, 2, . . . , J . Also, let

E = (Eij)1≤i,j≤J denote the J × J lower triangular matrix with entries given by

Eij =
{

εi−j : i ≥ j,
0 : i < j.

Finally, let β
l
= (β1l, β2l, . . . , βJl)

t, l = 1, 2, . . . , J , denote column vectors with entries
given by

βil =

{
0 : i ≤ l,

εi−l : i > l,

and define β̃t = (1, 1, . . . , 1). Then, (4.22) can be written as

S2 =

J−1∑
l=1

J∑
k=1

βkl


 J∑

j=1

Ekjαj


 = J−1∑

l=1

βt

l
E α =

(
J−1∑
l=1

βt

l

)
E α.(4.23)
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Each entry of the column vector
∑J−1

l=1 βt

l
can be bounded by ε

1−ε . Since all quantities
are nonnegative,

S2 ≤
(

ε

1− ε

)
β̃tE α =

(
ε

1− ε

) J∑
k=1

k∑
j=1

Ekjαj .(4.24)

Interchanging the order of summation and noting that E is lower triangular, we thus
have

S2 ≤
(

ε

1− ε

) J∑
j=1

J∑
k=j

Ekjαj

=

(
ε

1− ε

) J∑
j=1

J∑
k=j

εk−jA(wj , wj)

=

(
ε

1− ε

) J∑
j=1

A(wj , wj)


 J∑

k=j

εk−j




≤ ε

(1− ε)2

J∑
j=1

A(wj , wj).(4.25)

Applying Lemma 4.4 in (4.25), we therefore have

S2 ≤ ε

(1− ε)2
A(v, v).(4.26)

Term III. Again using the telescoping series Pk =
∑k

l=1(Pl − Pl−1), we have

S3 ≡
J∑

k=1

A(Tkwk, Pkv) = A(P1v, P1v) +

J∑
k=2

A(Tkwk, Pkv)

= A(P1v, P1v) +

J∑
k=2

A

(
Tkwk,

k∑
l=1

(Pl − Pl−1)v

)

= A(P1v, P1v) +

J∑
k=2

k∑
l=1

A(Tkwk, wl).

Let Ŝ3 =
∑J

k=2

∑k
l=1 A(Tkwk, wl). Then applying Cauchy–Schwarz inequality (4.1)

followed by assumption A.1 yields

Ŝ3 =

J∑
k=2

k∑
l=1

A(Tkwk, wl) ≤
J∑

k=2

k∑
l=1

A(Tkwk, wk)
1
2A(Tkwl, wl)

1
2

≤
J∑

k=2

k∑
l=1

γA(wk, wk)
1
2 (γεk−l)A(wl, wl)

1
2

≤ γ2
J∑

k=1

J∑
l=1

A(wk, wk)
1
2 (ε|k−l|)A(wl, wl)

1
2 .(4.27)
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Set αk = A(wk, wk)
1
2 . Then

Ŝ3 ≤ γ2
J∑

k=1

J∑
l=1

(ε|k−l|)αkαl = γ2〈〈Ê6α, 6α〉〉,

where Ê is the J × J symmetric positive-definite matrix with entries ε|k−l|, 6α is the
J × 1 column vector with entries αk, k = 1, 2, . . . , J , and 〈〈·, ·〉〉 is the Euclidean inner
product. The largest eigenvalue of Ê is bounded by its maximal row sum, which in
turn is bounded by 2

1−ε . Therefore,

Ŝ3 ≤ γ2

(
2

1− ε

)
〈〈6α, 6α〉〉

=

(
2γ2

1− ε

)( J∑
k=1

α2
k

)

=

(
2γ2

1− ε

)( J∑
k=1

A(wk, wk)

)
.(4.28)

From Lemma 4.4 and (4.28), we thus have

S3 = A(P1v, P1v) + Ŝ3

≤ A(v, v) +

(
2γ2

1− ε

)
A(v, v)

=

(
1 +

2γ2

1− ε

)
A(v, v).(4.29)

Substituting (4.21), (4.26), and (4.29) into (4.20), we therefore conclude that

A(Bav, v) ≤

 (1 + γθ

1
2

2 )γ
2ε

(1− ε)2
+ 1 +

2γ2

1− ε


A(v, v),(4.30)

which proves the lemma with

C1 =



(
1 + γθ

1
2

2

)
γ2ε

(1− ε)2
+ 1 +

2γ2

1− ε


 .

The next lemma shows that Ba is coercive in the A inner product.
Lemma 4.6. Under assumptions A.3 and A.4, there exists constant C0 > 0,

independent of the number of levels J , such that

A(Bav, v) ≥ C0A(v, v) ∀v ∈ VJ .
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Proof. From (4.4), we have that

A(Bav, v) =

J∑
l=1

A

(
Tl

(
I − Tl−1

2

)
v, v

)

=
J∑

l=1

A(Tlv, v)−
J∑

l=1

1

2
A(TlTl−1v, v)(4.31)

=

J∑
l=1

A(Tlv, v)−
J∑

l=1

1

2
A(Tl−1v, Tlv).(4.32)

Applying the standard Cauchy–Schwarz inequality yields

|A(Tl−1v, Tlv)| ≤ A(Tl−1v, Tl−1v)
1
2A(Tlv, Tlv)

1
2 .(4.33)

Applying assumption A.3 to (4.33), we get

|A(Tl−1v, Tlv)| ≤ θA(Tl−1v, v)
1
2A(Tlv, v)

1
2 .(4.34)

Hence, using the standard Cauchy–Schwarz inequality and nonnegativeness of opera-
tor TJ with respect to the A inner product we have

J∑
l=1

A(TlTl−1v, v) ≤ θ

J∑
l=1

A(Tl−1v, v)
1
2A(Tlv, v)

1
2

≤ θ

(
J∑

l=1

A(Tl−1v, v)

) 1
2
(

J∑
l=1

A(Tlv, v)

) 1
2

≤ θ

(
J∑

l=1

A(Tlv, v)

)
.(4.35)

Relations (4.32) and (4.35) and assumption A.4 combine to show that

A(Bav, v) ≥
(
1− θ

2

)( J∑
l=1

A(Tlv, v)

)

≥ 1

2η
(2− θ)A(v, v) ∀v ∈ VJ .(4.36)

The following theorem is a direct consequence of Lemmas 4.5 and 4.6.
Theorem 4.7. There exists constant C > 0, independent of the number of levels

J , such that

κ(Bs) ≤ C,

where Bs = 1
2 (B

a + (Ba)∗) is the operator corresponding to symmetrized AFACx
(Algorithm 4), with (Ba)∗ denoting the adjoint of Ba with respect to the A inner
product.
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4.3. More general smoothers. The estimates established above apply when
the smoother used on each level is a Richardson iteration. In practice, simple but
more robust smoothers such as damped Jacobi or Gauss–Seidel are usually employed.
Assumption A.2 now becomes important in establishing condition number estimates
for AFACx with general symmetric smoothers on each level. Lemma 4.3 is restated
as follows for general Rk �= R̂k that is symmetric in the L

2 inner product.
Lemma 4.8. Let Tk satisfy (2.21). Then

A

(
Tl

(
I − Tl−1

2

)
wk,

(
I − Tl−1

2

)
wk

)

≤ a1

(
1 +

γ
√
a1θ

2

)2 (
γεk−l

)2
A(wk, wk), l = 2, 3, . . . , J, k < l.(4.37)

The proof is along the same lines as that for Lemma 4.3.
Also, Lemma 4.5 now reads as follows.
Lemma 4.9. We have

A(Bav, v) ≤ C1A(v, v) ∀v ∈ VJ ,

where

C1 =

(
a1

(
1 +

γ
√
a1θ

2

)
γ2 ε

(1− ε)2
+ 1 +

2a1γ
2

(1− ε)

)
.

Lemma 4.6 becomes the following.
Lemma 4.10. We have

A(Bav, v) ≥ C0A(v, v) ∀v ∈ VJ ,

where C0 =
a0

2η (2− θ).
For symmetric smoothers that are spectrally equivalent to Richardson iteration,

the condition number of the symmetrized AFACx operator is therefore again bounded
independently of the number of levels.

4.4. Partial refinement. For the case of partial refinement, local “restricted

coarse” V
hk−1

k is a subspace of V hk

k ∩ Vk−1, and local “fine” V hk

k is a subspace of

Vk, k = 2, 3, . . . , J . However, spaces V
hk

k , k = 2, 3, . . . , J , need not be nested. To
treat this more general setting, we need to define operators at the different levels,
projection operators between levels, and smoothing operators. Note that, in what
follows, superscripts of “f” and “r” denote linear operators mapping to local “fine”

V hk

k and “restricted coarse” V
hk−1

k , respectively, for given level k.

Definition 4. For k = 2, . . . , J , define operator Af
k : V

hk

k −→ V hk

k by

(Af
kw, φ) = A(w, φ) ∀φ ∈ V hk

k , w ∈ V hk

k .

Definition 5. For k = 2, . . . , J , define operator Ar
k : V

hk−1

k −→ V
hk−1

k by

(Ar
kw, φ) = A(w, φ) ∀φ ∈ V

hk−1

k , w ∈ V
hk−1

k .

Orthogonal “elliptic” projection operators P f
k , k = 1, 2, . . . , J , and P r

k , k =
2, 3, . . . , J , are defined as follows.
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Definition 6. P f
k : VJ −→ V hk

k is defined by

A(P f
k w, φ) = A(w, φ) ∀φ ∈ V hk

k , w ∈ VJ .

Definition 7. P r
k : VJ −→ V

hk−1

k is defined by

A(P r
kw, φ) = A(w, φ) ∀φ ∈ V

hk−1

k , w ∈ VJ .

Orthogonal “L2” projection operatorsQf
k , k = 1, 2, . . . , J , andQ

r
k, k = 2, 3, . . . , J ,

are defined as follows.
Definition 8. Qf

k : VJ −→ V hk

k is defined by

(Qf
kw, φ) = (w, φ) ∀φ ∈ V hk

k , w ∈ VJ .

Definition 9. Qr
k : VJ −→ V

hk−1

k is defined by

(Qr
kw, φ) = (w, φ) ∀φ ∈ V

hk−1

k , w ∈ VJ .

Symmetric positive-definite smoothing operators Rf
k : Vk −→ V hk

k and Rr
k :

Vk−1 −→ V
hk−1

k are also assumed to be defined.

The following relationships hold between the various operators: Qf
kA = Af

kP
f
k ,

Qr
kA = Ar

kP
r
k , R

f
k = Rf

kQ
f
k , and R

r
k = Rr

kQ
r
k, k = 2, 3, . . . , J .

For the case of partial refinement, we present the proof for only the AFACx
operator with Richardson iteration as the smoother. It is obvious by now that the
case of more general symmetric smoothers that are spectrally equivalent to Richardson
iteration is easily handled through conditions like assumption A.2. Henceforth, let
Rf

1 = (A
f
1 )

−1, Rf
k =

1
λk
I, k = 2, 3, . . . , J , and Rr

k =
1

λk−1
I, k = 2, 3, . . . , J . Define

T f
k = Rf

kA
f
kP

f
k and T

r
k = Rr

kA
r
kP

r
k .

The following lemma is needed for the case of partial refinement.
Lemma 4.11. We have

A(T r
k v, v) ≤ A(T f

k−1v, v) ∀v ∈ VJ , k = 2, 3, . . . , J.(4.38)

Proof. From the basic properties of the L2 projection operators listed in section
2.7, we have

‖(Qf
k−1 −Qr

k)u‖2 = ((Qf
k−1 −Qr

k)u, (Q
f
k−1 −Qr

k)u)

= ‖Qf
k−1u‖2 + ‖Qr

ku‖2 − 2(Qf
k−1u,Q

r
ku)

= ‖Qf
k−1u‖2 + ‖Qr

ku‖2 − 2(Qf
k−1u, (Q

r
k)

2u)

= ‖Qf
k−1u‖2 + ‖Qr

ku‖2 − 2(Qr
kQ

f
k−1u,Q

r
ku)

= ‖Qf
k−1u‖2 + ‖Qr

ku‖2 − 2(Qr
ku,Q

r
ku)

= ‖Qf
k−1u‖2 − ‖Qr

ku‖2 ∀u ∈ VJ , k = 2, 3, . . . , J.(4.39)

Since ‖(Qf
k−1 −Qr

k)u‖2 ≥ 0, (4.39) implies that

‖Qr
ku‖2 ≤ ‖Qf

k−1u‖2 ∀u ∈ VJ , k = 2, 3, . . . , J.(4.40)
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Let u = Av. Then

‖Qr
kAv‖2 ≤ ‖Qf

k−1Av‖2

⇒ ‖Ar
kP

r
k v‖2 ≤ ‖Af

k−1P
f
k−1v‖2

⇒ 1

λk−1
(Ar

kP
r
k v,A

r
kP

r
k v) ≤

1

λk−1
(Af

k−1P
f
k−1v,A

f
k−1P

f
k−1v)

⇒ (Rr
kA

r
kP

r
k v,A

r
kP

r
k v) ≤ (Rf

k−1A
f
k−1P

f
k−1v,A

f
k−1P

f
k−1v)

⇒ A(T r
k v, v) ≤ A(T f

k−1v, v).

Assumptions similar to A.1 and A.3 in the previous section are made for the case
of partial refinement. We refer to [14] for proof that the assumptions made below are
valid in the case of partial refinement.

A.5. There exist constants ε ∈ (0, 1) and γ > 0 such that
A(T f

k w,w) ≤ (γεk−l)2A(w,w) ∀w ∈ V hl

l , l ≤ k, k = 1, 2, . . . , J.(4.41)

Then, from Lemma 4.11 and assumption A.5, we have

A(T r
kw,w) ≤ (γεk−l−1)2A(w,w) ∀w ∈ V hl

l , l ≤ k − 1, k = 2, . . . , J.(4.42)

A.6. There exists constant θ ∈ (0, 2) such that
A(T f

k v, T
f
k v) ≤ θA(T f

k v, v) ∀v ∈ VJ(4.43)

and

A(T r
k v, T

r
k v) ≤ θA(T r

k v, v) ∀v ∈ VJ , k = 1, 2, . . . , J.(4.44)

In addition to the assumptions on the smoothers, a weak regularity assumption
analogous to A.4 is also needed.

A.7. There exists a constant η > 0 such that

A(v, v) ≤ η

J∑
k=1

A(T f
k v, v) ∀v ∈ VJ .(4.45)

Finally, we make the following assumption.
A.8. Range(Pk − Pk−1) ⊆ V hk

k , k = 1, 2, . . . , J .
AFACx operator Ba for the case of partial refinement can be written as

Ba =

J∑
k=1

Rf
kA

f
kP

f
k

(
I − 1

2
Rr

kA
r
kP

r
k

)

=
J∑

k=1

T f
k

(
I − T r

k

2

)
.(4.46)

The proofs of the following lemmas are virtually the same as the proofs for Lem-
mas 4.5 and 4.6, respectively. Assumptions A.5–A.8 and Lemma 4.11 take the place
of assumptions A.1, A.3, and A.4.

Lemma 4.12. Under assumptions A.5, A.6, and A.8, there exists a constant
C1 > 0, independent of the number of levels J , such that

A(Bav, v) ≤ C1A(v, v) ∀v ∈ VJ .(4.47)
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Lemma 4.13. Under assumptions A.5–A.8, there exists a constant C0 > 0, inde-
pendent of the number of levels J , such that

A(Bav, v) ≥ C0A(v, v) ∀v ∈ VJ .(4.48)

The following theorem follows immediately from Lemmas 4.12 and 4.13.
Theorem 4.14. There exists constant C > 0, independent of the number of levels

J , such that

κ(Bs) ≤ C,

where Bs = 1
2 (B

a + (Ba)∗) is the operator corresponding to symmetrized AFACx
(Algorithm 4).

5. Conclusions. In this paper, we have presented a new multilevel condition
number estimate for the AFACx algorithm. This estimate shows that the condition
number of the AFACx operator does not degrade as the number of refinement lev-
els in the AMR hierarchy increases. Numerical results supporting these theoretical
estimates are presented in a forthcoming paper.
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fect Correction Methods, K Böhner and H. J. Stetter, eds., Comput. Suppl. 5, Springer,
Vienna, 1984, pp. 89–113.

[28] L. Hart and S. McCormick, Asynchronous multilevel adaptive methods for solving partial
differential equations: Basic ideas, Parallel Comput., 12 (1989), pp. 131–144.

[29] S. Kohn, X. Garaizar, R. Hornung, and S. Smith, SAMRAI, available online at http://
www.llnl.gov/CASC/SAMRAI/.

[30] B. Lee, S. F. McCormick, B. Philip, and D. J. Quinlan, Asynchronous fast adaptive
composite-grid methods: Numerical results, SIAM J. Sci. Comput., 25 (2003), pp. 682–
699.

[31] J. Mandel and S. McCormick, Iterative solution of elliptic equations with refinement:
The model multi-level case, in Domain Decomposition Methods (Los Angeles), T. F.
Chan, R. Glowinski, J. Periaux, and O. B. Widlund, eds., SIAM, Philadelphia, 1989,
pp. 81–92.

[32] S. McCormick, Fast adaptive composite grid (FAC) methods: Theory for the variational case,
in Defect Correction Methods: Theory and Applications, K. Böhmer and H. J. Stetter, eds.,
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