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ABSTRACT

Mesoscale bounded derivative initialization (BDI) is utilized to derive dynamical constraints, from which
elliptic equations are formulated to derive smooth initial fields over complex terrain for mesoscale models. The
initialization is implemented specifically for the quasi-nonhydrostatic (QNH) model. This study presents the first
real data application of the mesoscale BDI and the QNH model to simulate a mesoscale storm that produced
heavy precipitation along the Colorado Front Range. In this study, the focus is on (i) smooth numerical solution
over complex terrain, (ii) baroclinic instability associated with condensational heating and high mountains, and
(iii) the simulation of orographic precipitation. Numerical results show that initial fields derived from BDI were
smooth and evolved smoothly in the QNH model for 48 h. It is noteworthy that the smooth solution existed up
to the lateral boundaries. During the 48-h simulation, the midtropospheric storm moved freely in and out of the
limited-area domain as if there were no lateral boundaries. The mesoscale storm for northeast Colorado was
initiated by the persistent upslope easterlies and strong upward motions that triggered heavy precipitation. The
simulated precipitation amounts and pattern were in good agreement with those observed. In general, both the
large-scale dynamic system and the mesoscale precipitation event evolved smoothly and accurately, which
indicates the value of BDI and QNH for mesoscale weather prediction.

1. Introduction

A quasi-nonhydrostatic (QNH) mesoscale weather
prediction model has been developed recently at the
National Oceanic and Atmospheric Administration’s
(NOAA’s) Forecast Systems Laboratory. An important
and unique aspect of this model is the use of bounded
derivative initialization (BDI), which is the main subject
of this paper. The mathematical theory associated with
the QNH model is presented in MacDonald et al.
(2000a), and the model description and test program are
presented in MacDonald et al. (2000b). In this study,
we show the first real data application for the QNH
model. For real data simulations, an initialization
scheme is necessary to attain smooth initial wind and
mass fields that are compatible with numerical models
(Bengtsson 1975). In most meteorological operational
centers, initialization has been blended into the data
assimilation system using dynamic models, with most
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of the models being hydrostatic (Daley 1991). However,
in many applications, initialization is needed to derive
smooth initial fields for a mesoscale model (such as a
nonhydrostatic model) from another model with differ-
ent physics or dynamics (such as a hydrostatic model).

The purpose of this study is to formulate mesoscale
BDI over complex terrain to derive smooth initial fields
from other model grid data for a storm simulation using
the QNH model. Both BDI and QNH were developed
based on the mathematical theory of well-posedness;
that is, the existence of a smooth solution (Kreiss 1980;
Browning and Kreiss 1986). Smooth solution is impor-
tant in providing a proper mathematical bound on the
inevitable exponential error growth (Kreiss and Lorenz
1989) due to the truncation, data, and physical param-
eterization errors. One of the objectives in this study is
to test the mathematical smoothness theory with BDI
and QNH in the presence of a mesoscale snow storm.
In this study, we applied the mesoscale BDI and the
QNH model to simulate a mesoscale snow storm over
the Rocky Mountains that occurred during 8–9 March
1992. It will be referred to as the 9 March storm. De-
tailed descriptions of the QNH model are given in Mac-
Donald et al. (2000a,b). In the following, we describe
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the bounded derivative initialization and the 9 March
mesoscale storm.

Bounded derivative initialization is based on the
bounded derivative principle (Kreiss and Lorenz 1989),
which states that if the solution of a symmetric hyper-
bolic system is to vary smoothly, then a number of time
derivatives must be of the order unity. In particular, this
should be satisfied at the initial time. BDI-derived dy-
namical constraints based on dynamic governing equa-
tions scaled in terms of the advective timescale. Thus
the smoothness of the BDI solution is defined relative
to the advective timescale. BDI derives initial data so
that a number of time derivatives of the dependent var-
iables at the initial time are of order unity. As a result,
a number of dynamical constraint equations are derived
to meet this criterion for smooth solutions. Based on
partial differential equations (PDEs) governing numer-
ical models, the time derivatives in the constraint equa-
tions can be expressed in terms of spatial derivatives
and result in elliptic equations. Thus, BDI converts the
initial value problem for hyperbolic equations to the
static boundary value problem for elliptic equations.
The bounded derivative principle provides an effective
and general way to reduce the amplitude of fast waves
in initial data. Unlike the nonlinear normal mode ini-
tialization (NMI) that eliminates fast waves by project-
ing the slow mode to the slow manifold in spectral space
(Machenhauer 1977), the bounded derivative principle
undertakes this task directly in physical space. Both BDI
and NMI are static initialization schemes. Other alter-
native initialization methods involving time integration
of a numerical model became available in recent years.
For example, Lynch and Huang (1992) proposed a dig-
ital filtering approach that integrates the forecast model
forward and backward in time to damp high-frequency
oscillations in the adiabatic atmosphere. Huang and
Lynch (1993) further extended their study to include the
moisture fields.

BDI was first applied to shallow water equations in
a channel by Browning et al. (1980), and then to shallow
water equations with open boundaries by Browning and
Kreiss (1982). In the context of the baroclinic primitive
equation model, Kasahara (1982) demonstrated in the-
ory that BDI and nonlinear NMI are identical to the
degree of approximation expected from the quasigeo-
strophic assumption employed in the study. This theo-
retical conclusion was reinforced by Semazzi and Navon
(1986) in a real data simulation with a global nonlinear
barotropic model that showed the two methods lead to
similar balanced initial states. Bijlsma and Hafkenscheid
(1986) came to a similar conclusion in their real data
study, specifically that BDI and NMI produced equally
satisfactory results, with BDI requiring less computation
than NMI. Although NMI has proven very successful
in global models, its construction of normal modes over
limited areas for mesoscale models is difficult, if not
impossible. On the contrary, well-posed lateral bound-
ary conditions can be naturally included in BDI through

elliptic equations without the projection of analyzed
fields onto the spectral space.

To extend BDI to three-dimensional baroclinic lim-
ited-area models, Browning and Kreiss (1986) studied
the nonhydrostatic, hyperbolic equations commonly
used in weather forecasting. They concluded that BDI
should not be applied directly to these equations because
of the extreme skewing of the equations when used in
predicting large-scale motions. To remedy the skewness
problem, they proposed the ‘‘approximate’’ system, in
which the hydrostatic terms in the vertical momentum
equation are multiplied by a constant a, called the quasi-
nonhydrostatic constant. This constant, when chosen be-
tween 0 and 1, is designed to slow down the vertical
propagating small-scale fast waves. However, it also
affects the larger-scale adjustment processes such as hy-
drostatic adjustment. Since the hydrostatic adjustment
has been degraded, it is important to obtain balanced
initial fields with the effect of a included in the ini-
tialization scheme. The BDI is developed to include the
quasi-nonhydrostatic constant in the initialization for-
mulation. The approximate system was analyzed and
used in a real data large-scale simulation initialized with
BDI for large-scale flows (Browning and Kreiss 1986).
Browning and MacDonald (1993) further incorporated
topography into the approximate system formulated on
the terrain-following coordinate. MacDonald et al.
(2000a) used the term ‘‘quasi-nonhydrostatic’’ to refer
to models that use the approximate equations. Mac-
Donald et al. (2000b) showed that this approach may
be valuable for mesoscale weather prediction, particu-
larly of clouds and precipitation.

The 9 March storm was caused by an upper-level
trough and cutoff low that moved over the Colorado
Front Range. This upper-level low pressure system ap-
proaching from the southwest coincided with the low-
level intrusion of an arctic cold front from the northeast.
The upper-level low and the surface front created a
weather pattern of strong northeasterly upslope flow,
which typically causes heavy snow along the Front
Range. In this case, almost 60 cm of snow fell from
Boulder to Ft. Collins in less than 24 h. Most of the
heavy precipitation occurred during 0000–0600 UTC
on 9 March. In addition to the heavy precipitation, the
storm also created strong winds of 20 m s21 with gusts
up to 25 m s21. The upper-level low and surface arctic
front interacted with the Rocky Mountain high terrain
producing heavy orographic precipitation, an ideal case
for testing BDI and QNH over complex terrain. Detailed
synoptic discussions of the 9 March storm may be found
in Cunning and Williams (1993) and Snook (1994).

In this study, we focus on the smooth numerical so-
lution over complex terrain, precipitation simulation
over the Colorado Front Range. Section 2 shows the
derivation of BDI dynamical constraints for mesoscale
models based on the smooth solution. In section 3, we
derive elliptic equations from these constraints based on
the QNH dynamical equations. These elliptic equations
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are formulated on the terrain-following coordinate to
account for complex terrain. We also discuss the choice
of well-posed boundary conditions for these elliptic
equations when they are solved numerically. Section 4
shows the numerical results, and conclusions are given
in section 5.

2. BDI dynamical constraints

BDI derives dynamical constraints on the initial data
equal in number to those of the fast modes to be sup-
pressed in the model. For smooth solutions these dy-
namical constraints are derived based on the dynamic
governing equations in Cartesian coordinates shown in
the following:

1
u 1 uu 1 yu 1 wu 1 p9 2 fy 5 0, (1)t x y z xr0

1
y 1 uy 1 yy 1 wy 1 p9 1 fu 5 0, (2)t x y z yr0

1 r9
w 1 uw 1 yw 1 ww 1 p9 1 g 5 0, (3)t x y z zr r0 0

r9 1 ur9 1 yr9 1 wr9t x y z

1 [r (u 1 y ) 1 (w(r ) 1 r w )] 5 0, (4)0 x y 0 z 0 z

p9 1 up9 1 yp9 1 wp9 1 gp (u 1 y 1 w )t x y z 0 x y z

2 r gw 5 0, (5)0

where t is for time and x, y, z are the independent var-
iables denoting, respectively, the east, north, and the
vertical direction. Their corresponding velocity com-
ponents in Cartesian coordinates are denoted as u, y ,
and w, respectively. The horizontal means of the density
and pressure are denoted as r0 and p0, with r9, p9 as
perturbation quantities from r0 and p0. The Coriolis
parameter is f, and g is the gravitational constant. The
constant g is defined as the ratio of cp/cy with cp, cy

denoted as the specific heat at constant pressure and at
constant volume, respectively. The above governing
equations are the momentum equations (1), (2), and (3),
the continuity equation in density (4), and the pressure
equation (5). The pressure equation is used in QNH as
the continuity equation and is also listed to aid the der-
ivation of the elliptic equations in the next section.

Scale analysis is a suitable method for evaluating the
magnitudes of various terms in the governing equations.
The relative magnitudes of the terms may be determined
by the representative magnitudes of the independent and
dependent variables in different scales of motion. For
the large-scale and mesoscale motions, the following
typical velocity, length and depth scales are used to
determine the magnitudes of various terms. The length
scales, L, are 106 m for the large-scale and 105 m for
the mesoscale. The horizontal velocity magnitude, V, is
10 m s21, and the vertical velocity magnitude, W, are

1022 m s21 for the large-scale and 1 m s21 for the me-
soscale. The atmosphere scale height and the vertical
scale of motion are chosen as D 5 104 m. Based on
these scaling parameters, the dimensionless governing
equations are written as follows in terms of « 5 1021:

1
n 2nu 5 2uu 2 yu 2 « wu 2 « p9 2 fy , (6)t x y z x1 2r0

1
n 2ny 5 2uy 2 yy 2 « wy 2 « p9 1 fu , (7)t x y z y1 2r0

1 r9
n 24n22w 5 2uw 2 yw 2 « ww 2 « p9 1 , (8)t x y z z1 2r r0 0

np9 5 2up9 2 yp9 2 « wp9t x y z

231n n n2 « [gp (u 1 y 1 « w ) 2 « wr ], (9)0 x y z 0

nr9 5 2ur9 2 yr9 2 « wr9t x y z

231n n2 « [r (u 1 y ) 1 « (w(r ) 1 r w )], (10)0 x y 0 0 z

where

61 for L ; 10 m
n 5

550 for L ; 10 m.

Note that all variables in Eqs. (6)–(10) are dimension-
less. These dimensionless governing equations are the
same as those shown in Browning and Kreiss (1986,
1997) for large-scale and mesoscale motions. Defini-
tions of the dynamic variables in Eqs. (6)–(10) as con-
straint variables of a, b, c, d are shown in the following:

1
a 5 p9 2 fy , (11)xr0

1
b 5 p9 1 fu, (12)yr0

1 r9
c 5 p9 1 , (13)zr r0 0

n nd 5 gp (u 1 y 1 « w ) 2 « wr . (14)0 x y z 0

Thus, we can write the dimensionless equations

n 2nu 5 2uu 2 yu 2 « wu 2 « a, (15)t x y z

n 2ny 5 2uy 2 yy 2 « wy 2 « b, (16)t x y z

n 24n22w 5 2uw 2 yw 2 « ww 2 « c, (17)t x y z

n 231np9 5 2up9 2 yp9 2 « wp9 2 « d. (18)t x y z

We assume initial data as well as a, b, c, and d are
smooth, that is, they and their spatial derivatives are
O(1). Thus, the first-order time derivatives of dependent
variables, ut, y t, wt, and pt are O(1) if «2na, «2nb,
«24n22c, and «231nd are less than or equal to O(1). For
example, in large-scale motions (n 5 1), the scaling
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constants associated with a and b are O(1). Thus, ut, y t

vary at O(1) timescale if the magnitudes of a and b are
less than O(«). In other words, the geostrophic approx-
imations between pressure and wind fields in large-scale
motions are valid to O(«). However, this balance is not
required in the mesoscale motions (n 5 0) where the
scaling constants in front of a and b are O(1).

In the vertical momentum and pressure equations, the
scaling constants associated with c and d are «24n22 and
«231n, respectively. They are much larger than O1 for
both large-scale and mesoscale motions. Thus, in order
to have smooth evolution of w and p, the constraints c
# O(«4n12) and d # O(«32n) should be satisfied. In other
words, hydrostatic balance and incompressibility should
be satisfied for the first-order time derivatives of w, p
to be O(1). However, it has been shown (Browning and
Kreiss 1982; Kasahara 1982) that the first-order BDI is
rather crude even for large-scale motions. Thus the sec-
ond-order BDI for mesoscale motions should be sought.

The second-order BDI derives initial data constraints
by requiring that the second-order time derivatives of
utt, y tt, wtt, and ptt are O(1). The second-order time
derivatives of dependent variables are obtained by tak-
ing the partial time derivatives of Eqs. (15)–(18) and
are written as follows:

n 2nu 5 (2uu 2 yu 2 « wu ) 2 « a ,tt x y z t t

n 2ny 5 (2uy 2 yy 2 « wy ) 2 « b ,tt x y z t t

n 24n22w 5 (2uw 2 yw 2 « ww ) 2 « c ,tt x y z t t

n 231np9 5 (2up9 2 yp9 2 « wp9) 2 « d .tt x y z t t

Since we assume a, b, c, d, and initial data are smooth
functions of x, y, and z, the first-order time derivatives
of ut, y t, wt, pt, and their spatial derivatives are O(1).
Thus, the second-order time derivatives of utt, y tt, wtt,
and are O(1) if «2nat, «2n bt, «24n22ct, and «231ndtp9tt
are less than or equal to O(1). In the horizontal mo-
mentum equations, the order of magnitude for utt and
y tt depends on at and bt, which are expressed as follows
according to Eqs. (11) and (12):

1 1
a 5 p9 2 fy , b 5 p9 1 fu .t xt t t yt tr r0 0

As mentioned previously, ut and y t and the spatial de-
rivatives of are O(1). Thus, at and bt are O(1) if thep9t
initial data are smooth.

In the vertical momentum equation, there is a large
scaling constant, «2224n, in front of ct. Thus, the con-
straint ct # O(«214n) should be satisfied in order to have
wtt evolve on O(1) timescale. Similarly, the scaling con-
stant, «231n, in front of dt is large for both the mesoscale
and large-scale motions. Thus, is O(1) if dt # O(«32n)p9tt
is satisfied. The most convenient way to choose the two
constraints for the second-order BDI is to let ct 5 0 and
dt 5 0. From Eqs. (13) and (14), ct 5 0 and dt 5 0
lead to the following two constraint equations:

, gp0(uxt 1 yyt 1 «nwzt) 2 «nr0wt 5 0.p9 1 r9 5 0zt t

These two-dimensionless constraint equations are writ-
ten in dimensional form as follows:

p9 1 r9g 5 0, (19)zt t

gp (u 1 y 1 w ) 2 r gw 5 0. (20)0 xt yt zt 0 t

Therefore, two constraints on initial data are derived in
order to have O(1) evolution of wtt and , which arep9tt
associated with fast waves in the atmosphere. In other
words, two dynamic constraints are derived to suppress
the fast acoustic waves that correspond to the two largest
eigenvalues in the system (MacDonald et al. 2000a).
These dynamic constraints are derived based on the
scaled equations. Thus, the proper choice of scaling pa-
rameters is important because wrong parameters may
result in unbalanced constraints. The scaling parameters
adopted for this study have been successfully used in
many previous studies (e.g., Browning and Kreiss
1997).

3. Formulations of elliptic equations

The dynamic constraint equations derived in BDI for
smooth solutions lead to elliptic equations when their
time derivative terms are replaced by spatial derivative
terms based on the governing equations in the system.
In this study, we derive elliptic equations for QNH based
on its dynamic governing equations (see MacDonald et
al. 2000b). The QNH governing equations for u, y , p
are, respectively, the same as those in Eqs. (1), (2), and
(5) except for the use of the terrain following coordinate.
For convenience, we derive the elliptic equations on the
Cartesian coordinate first, and then convert them to the
terrain-following coordinate used in QNH. The QNH
vertical momentum equation on the Cartesian coordinate
is written as follows:

1 g
w 1 uw 1 yw 1 ww 5 a p9 1 p9 2 gu9t x y z z 1 2[ ]r gP0 0

5 0, (21)

where u9, the potential temperature perturbation, is de-
fined as u9 5 u/u0 2 1 with u and u0 denoted, respec-
tively, as the total and mean potential temperature. This
equation is unique in the use of the quasi-nonhydrostatic
constant, a, in front of the hydrostatic terms. Because
the length scales of atmospheric motions in the hori-
zontal are generally much larger than those in the ver-
tical, the finite-difference forms of atmospheric models
are badly skewed and are sensitive to small perturbations
(Browning and Kreiss 1986). The quasi-nonhydrostatic
constant is designed to remedy this problem. Equations
(1), (2), (5), and (21) are QNH dynamic equations used
to derive elliptic equations from the BDI constraint
equations shown in (19) and (20).

To derive the elliptic equation for w, we express the
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time derivative terms of and in Eq. (19) in termsp9 r9t t

of spatial derivative terms based on Eqs. (4) and (5)

r9 5 2[r (u 1 y ) 1 (w(r ) 1 r w )], (22)t 0 x y 0 z 0 z

p9 5 2gp (u 1 y 1 w ) 1 r gw. (23)t 0 x y z 0

Note that these two equations for and are valid top9 r9t t

O(«3) for mesoscale motions as shown in the previous
scale analysis. Substituting (22) and ](23)/]z into the
constraint Eq. (19), we obtain the following one-di-
mensional elliptic equation for w

r g r g0 0w 2 w 1 d 1 (1 2 g) d 5 0, (24)zz z zp p0 0

where d is the horizontal divergence defined as d 5 ux

1 y y. This elliptic equation for the vertical velocity in
the Cartesian coordinate is equivalent to the differen-
tiated form of Richardson’s w-equation in the pressure
coordinate (Richardson 1922). A similar elliptic w-equa-
tion in the Cartesian coordinate was also derived by
Ooyama (1990) and used by DeMaria (1995) to diag-
nose the vertical velocity in a hydrostatic model.

We derive the elliptic equation for pressure from the
second BDI dynamic constraint in Eq. (20). To replace
the time derivative terms, we substitute ](1)/]x, ](2)/]y,
](21)/]z, and Eq. (21) into the constraint Eq. (20). After
algebra, we obtain the following second derivative equa-
tion for pressure

2
a r g0p9 1 p9 1 ap9 2 (r ) p 1 a (g 2 1)p9xx yy zz 0 z z 1 2r gP0 0

5 RHS, (25)

where

r g0RHS 5 r fz 2 bu 1 ag u9 2 u90 z5 1 2gP0

2 (uu 1 yu 1 wu ) 1 (uy 1 yy 1 wy )x y z x x y z y[
1 (uw 1 yw 1 ww )x y z z

r g02 (uw 1 yw 1 ww ) .x y z 6]gP0

The variable z is the vorticity defined as z 5 y x 2 uy,
and b 5 ] f /]y. This equation is similar to the traditional
nonlinear balance equation (see, e.g., Haltiner and Wil-
liams 1980) used by many others to derive the balanced
pressure mainly for large-scale motions, in which the
three-dimensional elliptic equation is usually simplified
to two dimensions and the advection terms are neglect-
ed. However, scale analysis shows that the advection
terms are O(1) terms in mesoscale motions. In this study,
we use the three-dimensional elliptic equation including
all of the advection terms to solve the balanced pressure
for mesoscale motions.

The quasi-nonhydrostatic constant, a, appears in front
of pzz in the above elliptic equation (25). In practice, it
is specified as the square of the aspect ratio of (Dz/Dx)2,
where Dz and Dx are the vertical and horizontal grid
spacing, respectively (Browning and Kreiss 1986).
Therefore, a is always positive and the above equation
is a three-dimensional elliptic equation for p. In theory,
a unique solution for p always exists with proper bound-
ary conditions for the elliptic equation. However, since
the horizontal grid spacing is generally much larger than
the vertical grid spacing, the finite-difference form of
the elliptic equation becomes badly skewed without the
constant a. In other words, for the unmodified vertical
momentum equation, a 5 1, and the coefficients for the
second-order derivative in the horizontal are much less
than those in the vertical. As a result, convergence of
a unique solution is more difficult to obtain in finite-
difference form, even though in the continuous case a
unique solution exists in theory. Thus, the effect of a
in a hyperbolic system, such as the QNH model is to
slow down the vertically propagating fast waves, and
in an elliptic system is to make the elliptic equation less
skewed.

To incorporate the topography into the initialization
procedure, the above elliptic equations are formulated
on the terrain-following coordinate defined as follows
(see MacDonald et al. 2000b):

z 2 zbx9 5 x, y9 5 y, z9 5 z ,tz 2 zt b

where x9, y9, z9 are independent variables on the terrain-
following coordinate, and zb, zt are the geometric heights
for the topography and the depth of the model, respec-
tively. The basic transformation relations for spatial de-
rivatives between the Cartesian and the terrain-follow-
ing coordinates are (see Kasahara 1974)

F 5 F 2 z z9F , F 5 F 2 z z9F ,x x9 x9 z z9 y y9 y9 z z9

F 5 z9F ,z z z9

where F denotes a dependent variable.
Utilizing the above basic transformation equations

and after lengthy algebraic manipulation, we derive the
elliptic equations on terrain-following coordinates as
follows:

r g r g 10 021 22 21w 2 (z9) w 1 (z9) 2 1 d 1 (z9) dz9z9 z z9 z z z91 2p p g0 0

5 0, (26)
2 2p9 1p9 1(a1z 1z )(z9)p9 22z z9p9 22z z9p9x9x9 y9y9 x9 y9 z z9z9 x9 z x9z9 y9 z y9z9

a
2 z9(z 1 z ) 1 2(z z9 1 z z9 ) 1 z9 (r ) pz x9x9 y9y9 x9 zx9 y9 zy9 z 0 z z9[ ]r0

2
r g01 a (g 2 1)p9 5 RHS,1 2gP0

(27)

where
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RHS 5 r [ f [(y9 2 u9 ) 2 z9(z y9 2 z u9 )] 2 bu90 x9 y9 z x9 z9 y9 z9

r g01 ag z9u9 2 u9z z91 2gP0

2 (u9u9 1 y9u9 1 w9u9 )x9 y9 z9 x91
2 z9z (u9u9 1 y9u9 1 w9u9 )z x9 x9 y9 z9 z9

2 z9z (u9y9 1 y9y9 1 w9y9 )z y9 x9 y9 z9 z9

1 (u9y9 1 y9y9 1 w9y9 )x9 y9 z9 y9

1 z9(u9w 1 y9w 1 w9w )z x9 y9 z9 z9

r g02 (u9w 1 y9w 1 w9w ) ,x9 y9 z9 2]gP0

where variables without prime (9) are relative to the
Cartesian coordinate, and those with prime are defined
on the terrain-following coordinate. Note that since the
QNH prognostic variable in the vertical momentum
equation is w, the elliptic equation for the vertical ve-
locity is also formulated in terms of w. The terrain trans-
formation does not change the ellipticity of these sec-
ond-order derivative equations. However, the transfor-
mation does introduce second-order cross derivative
terms, , that complicate the iterative processesp9 p9x9z9 y9z9

in the elliptic solver.
Elliptic equations in theory always yield a unique

solution provided boundary conditions are properly
specified. In solving Eq. (26), a one-dimensional sec-
ond-order PDE, two boundary conditions are needed.
Since the bottom of the model is sloping topography,
the kinematic boundary condition that prevents airflow
through the bottom boundary is used to specify the bot-
tom vertical velocity as follows

w 5 u9(zb)x9 1 y9(zb)y9.

The boundary condition for the top of model is not the
rigid boundary condition. Instead, we specify the mixed-
type (Dirichlet and Neumann) boundary condition for
vertical velocity at the top based on the continuity equa-
tion

r g021 21w 2 (z9) w 5 2(z9) d.z9 z zgP0

This equation is formulated on the terrain-following co-
ordinate and is derived from equation (23) by neglecting

. The above two boundary conditions determine thep9t
unique solution for the elliptic equation (26) that is
solved numerically using the direct method (see, e.g.,
Lindzen and Kuo 1969).

To solve Eq. (27), a three-dimensional second-order
PDE, two boundary conditions in each of the x9,y9, and
z9 direction are needed. In the x9 direction, Neumann
boundary conditions are specified at the western and
eastern boundaries with calculated from the u-mo-p9x9

mentum equation in (1). Similarly, Neumann boundary
conditions are used in the y9 direction with calculatedp9y9

from the y-momentum equation. In the vertical direc-
tion, mixed-type boundary conditions are specified at
the bottom and top of the model using the hydrostatic
equation:

r g021 21p9 1 (z9) p9 2 (z9) r gu9 5 0.z9 z z 0gP0

The above boundary conditions, specified at all bound-
aries for the limited-area domain, determine a unique
solution for balanced pressure in Eq. (27). The multigrid
software package, MUDPACK (Adams 1991), is used
to solve the 3D elliptic equation (27) that includes the
cross derivative terms that appear as a result of the
terrain transformation. MUDPACK software provides
efficient solutions using multigrid iteration with the non-
zero boundary cross derivative terms moved to the right-
hand side. The elliptic equations, (26) and (27), derived
from the BDI constraint equations, are solved with prop-
er boundary conditions for initial fields that are smooth
and will evolve smoothly in well-behaved models as
will be shown in the next section.

4. Numerical results

The initial and lateral boundary data for the simu-
lation of the 9 March storm were derived from the Me-
soscale Analysis and Prediction System (MAPS; Ben-
jamin et al. 1991). The MAPS assimilates meteorolog-
ical data on a 3-h cycle using a mesoscale model for-
mulated on an isentropic/sigma hybrid coordinate in the
vertical and a polar stereographic projection in the hor-
izontal. MAPS data assimilation system includes asy-
noptic data sources such as hourly wind profiler data,
automated aircraft observations, and surface observa-
tions. This allows MAPS to provide detail in mesoscale
analysis using a 60 km 3 60 km horizontal grid mesh,
and with 25 vertical levels at 3-h intervals. MAPS me-
soscale analysis provides accurate initial condition for
mesoscale models.

The isentropic MAPS system assimilates meteoro-
logical variables including pressure, Montgomery
streamfunction, virtual temperature, condensation pres-
sure, and horizontal wind components on a polar ste-
reographic projection. These variables were converted
to Kelvin temperature, geopotential height, relative hu-
midity, and the horizontal wind components on isobaric
levels using a subroutine provided by MAPS (S. Ben-
jamin 1996, personal communication). The horizontal
wind components projected on the polar stereographic
coordinate were rotated relative to the Lambert coor-
dinate used by QNH. The dependent variables in QNH,
such as specific humidity and virtual potential temper-
ature, were also derived from MAPS temperature and
relative humidity fields. Finally, interpolation schemes
were used to convert dependent variables such as pres-
sure, virtual potential temperature, specific humidity,
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FIG. 1. Model horizontal domain and smooth topography over the
Rocky Mountains used in this study. The locations of Palmer Ridge,
Cheyenne Ridge, and point E are shown as labeled.

and the horizontal wind components to the QNH model
grid with the Lambert projection and the terrain-follow-
ing coordinate. To be consistent with the QNH model,
the vertical mean pressure profile, defined as the stan-
dard atmosphere, was also removed from the total pres-
sure field.

One of the QNH-dependent variables, vertical veloc-
ity, is not directly available and must be derived from
the MAPS analysis kinematic and mass variables. In
addition, due to the imbalance that may exist between
the interpolated wind and mass fields, spurious large-
amplitude gravity waves may be generated as well as
acoustic waves, if a proper initialization is not under-
taken. Thus the main purpose of BDI is to derive bal-
anced vertical velocity and pressure for QNH as initial
and lateral boundary data. The QNH model domain with
smooth topography is shown in Fig. 1 over an area
centered on Colorado. The smooth topography was ob-
tained with the Fourier decomposition applied to the
5-km raw topographical data over North America and
truncated shortwaves for wavelengths smaller than 200
km. Figure 1 shows that the peak of the smoothed Rocky
Mountain is about 3200 m. Point E in Fig. 1 was chosen
for the evolution of the numerical solution to be shown
later. The model domain in the horizontal covers about
1500 km 3 1500 km, with a horizontal resolution of
20 km used in this study. Its vertical range includes the
whole troposphere and the lower stratosphere with a
model top height of 16 km and a vertical resolution of
500 m. The quasi-nonhydrostatic parameter in this study
is a 5 (0.5/20)2 ø 1023.

To simulate the 9 March storm, we derived smooth
initial fields from the MAPS analysis data at 1200 UTC

on 8 March 1992 using the elliptic solvers. We solved
the one-dimensional elliptic equation (26) for smooth
initial vertical velocity using the MAPS interpolated
kinematic and mass fields with the proper boundary
conditions described previously. The derived vertical
velocity was used to recompute the horizontal diver-
gence based on the continuity equation shown in (23).
The divergence together with the vorticity was used to
recompute the horizontal wind components based on the
Helmholtz relationships (see Browning and Kreiss 1986;
Lee and Browning 1994). As pointed out by Browning
and Kreiss (1986), the recomputational process is re-
versible in the continuum and should be numerically
reversible, although limited by truncational error. Thus,
the recomputation of the horizontal wind was used as
a static check on the noise in the data. The wind and
temperature fields were used to solve for the smooth
initial pressure based on the three-dimensional elliptic
equation (27) with proper boundary conditions. The
temperature and water vapor fields were kept the same
as those interpolated from the MAPS analysis data. The
initial cloud water and cloud ice, rain, snow, and graupel
were not available and were set to zero at the start of
the integration as well as at the lateral boundary during
the model integration.

The above initialization procedures do not include
condensational heating terms because no appreciable
precipitation was observed over the model domain at
the time of initialization, that is, 1200 UTC 8 March
1992. However, it is important to note that condensa-
tional heating should be included in BDI if heavy pre-
cipitation occurred at the time of initialization. The
aforementioned procedures, including interpolation and
elliptic solvers for initial data, were repeated for lateral
boundary data using MAPS analyses at 3-h intervals
through the 48-h simulation period. In a real forecast,
it is impossible to have analysis data beyond the initial
time for lateral boundary conditions. Thus, lateral
boundary data, in practice, should be derived from fore-
casts. Unfortunately, MAPS provides only a 12-h fore-
cast, which is much less than the 48-h integration un-
dertaken in this study. The accuracy of a limited-area
model forecast depends on the model error itself as well
as the lateral boundary data error inherited from another
model. Thus, the use of MAPS analysis for lateral
boundary data allows us to separate errors in BDI and
QNH from forecast errors in MAPS. The boundary data
at 3-h intervals were interpolated every time step in the
numerical simulation to update the QNH lateral bound-
ary conditions, based on the characteristic equations de-
scribed in Browning and Kreiss (1986) and MacDonald
et al. (2000a).

The initial pressure and wind fields obtained from the
elliptic solvers are displayed on the terrain-following
coordinate1 at z9 5 750 m shown in Figs. 2a and 2b.

1 Unless it is otherwise stated, all figures are displayed on the
terrain-following coordinate.
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FIG. 2. The model initial data at 1200 UTC 8 Mar 1992, derived
from the elliptic solvers are displayed at z9 5 750 m for (a) the
horizontal wind (full and half-barb denote 10 and 5 m s21, respec-
tively) and pressure perturbation (contour lines every 50 Pa) fields,
and (b) the vertical velocity field in cm s21 with positive (negative)
sign for upward (downward) motions.

Figure 2a shows the horizontal wind vector superim-
posed over the perturbation pressure (pascals) field,
which is depicted as dashed contours. The pressure field
was mainly determined by the wind and temperature
fields through the three-dimensional elliptic solver. In
the northern part of the domain, the horizontal wind
field was basically northeasterlies, while in the south,

it was southerlies or southwesterlies. The northerlies
that were adjacent to southerlies were associated with
the surface front located near the border of Nebraska
and South Dakota. The vertical velocity shown in Fig.
2b was closely related to the horizontal wind and to-
pography. The upward (downward) motions were main-
ly associated with upslope (downslope) winds. The ac-
curacy of BDI is examined by the fit of BDI-derived
wind and pressure to radiosonde observations at 500
hPa and 300 hPa over a period of one week from 12
May to 18 May 1998. The root-mean-square differences
for the wind and height fields at 500 (300) hPa are 4.6
(5.3) m s21 and 15.1 (16.1) m, respectively.

With the initial and lateral boundary data derived
from the elliptic solvers, QNH was numerically inte-
grated for 48 h to demonstrate the smooth transition of
the storm moving in and out of the model domain with-
out causing lateral boundary discontinuities. Figures 3a–
c show QNH simulations of horizontal wind and pres-
sure at the height of z9 5 5250 m on the initial hour, 6
and 12 h to demonstrate the storm smoothly entering
the model domain. Figure 3a shows that at 1200 UTC
8 March the upper-level low was initially centered at
the southwest of Four Corners and was located partially
outside of the model domain. After 6 h at 1800 UTC,
Fig. 3b shows the low continued to move into the do-
main and approached Four Corners. Figure 3c shows
the storm 12 h into the simulation at 0000 UTC on 9
March. The low was largely inside the model domain
and located east of Four Corners. During the first 12-h
simulation, when the storm smoothly entered the model
domain, there was no trace of lateral boundary discon-
tinuity problems. In the next 12- to 24-h, the upper-level
low continued to move eastward and then northeastward
after passing across the Rocky Mountain Front Range.

Figure 4a shows the simulation after 36 h at 0000
UTC 10 March. The low weakened and became an up-
per-level trough. The trough approached the eastern side
of the boundary and smoothly exited out of the model
domain on 0600 UTC as shown in Fig. 4b. Figure 4c
shows that the trough was completely outside the model
domain after the 48-h simulation. During the last 12 h
of the simulation, when the storm smoothly exited the
model domain, we did not find any noise reflection from
the eastern boundary. The root-mean-square differences
for the wind and pressure between the QNH simulation
and MAPS analysis at z9 5 5250 m are computed. These
differences are about the same size as those typically
found between MAPS analysis and radiosonde obser-
vations. Note that there is no lateral boundary transi-
tional zone nor top sponge layers to numerically damp
noise caused by the boundary discontinuity. The domain
boundaries shown in the figures are the lateral bound-
aries used in the model.

To examine the smooth evolution of the QNH solu-
tion, we show the temporal variation of the numerical
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FIG. 3. The model-simulated wind and pressure fields at z9 5 5250
m for the integration hour at (a) initial time, (b) 6 h, and (c) 12 h.
Units for wind and pressure are same as in Fig. 2.

solution at different altitudes at the location2 shown as
point E in Fig. 1. Since fast waves have more direct
impact on the model variables of p and w than those of
u, y , and u, we have shown3 the evolution of p and w
for 48 h in Figs. 5a, b. For the pressure graph shown
in Fig. 5a, there were large-scale slow variations over

2 Temporal variations at other geographical locations were exam-
ined and the results were similar.

3 The evolution of numerical solutions for u, y and u (not shown)
were very smooth at all levels.

48 h, upon which high temporal variations caused by
acoustic waves were superimposed. It is apparent that
these high temporal variations had no significant impact
on the large-scale trends, except causing them to wiggle
slightly. The pressure evolution generally was less
smooth at low levels over steep mountains than at mid-
dle and high levels with smooth terrain. This is because
the more steep the mountain, the easier smaller-scale
fast waves can be excited by impinging low-level winds
(see Browning and MacDonald 1993).

The vertical velocity evolved smoothly during the
48-h period as shown in Fig. 5b. Its evolution at various
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FIG. 4. Same as Fig. 3 except for the integration hour at (a) 36 h,
(b) 42 h, and (c) 48 h.

heights was smoother than that of pressure because the
effect of fast waves on the vertical velocity was greatly
reduced by the quasi-nonhydrostatic parameter. The
most significant vertical velocity changes occurred dur-
ing 12- to 24-h, which coincided with the 12-h active
period of the storm in the region. The arctic front moved
into the region at around 0000 UTC on 9 March and
caused heavy snow in the following 12 h (Snook 1994).
In particular, most of the snowfall occurred from 0000
UTC to 0600 UTC, that is, the integration period from
12 to 18 h. The 6-h period of heavy snowfall coincided
with the most rapid vertical velocity increases at low
and middle levels, where strong condensation occurred

during 0000–0600 UTC. After 0600 UTC, the storm
started to move eastward and the vertical velocity rap-
idly decreased. These changes in vertical velocity were
consistent with the pressure tendencies shown in Fig.
5a. The pressure decreased before 0600 UTC 9 March,
with the approaching of the arctic front and then in-
creased after the front passed through. Also low-level
temperature (not shown) decreased rapidly after the arc-
tic cold front moved into the region while temperature
in the middle troposphere increased due to the large
amount of condensational heating.

To depict the geographic structure of the storm, fig-
ures will be presented for low-level easterlies, pressure,
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FIG. 5. The 48-h evolutions for (a) pressure perturbation, (b) vertical velocity at point E on different
altitudes. Curves A, B, and C correspond to the altitude of z9 5 250 m, 5250 m, and 9250 m, respectively.

vertical velocity, and precipitation. Figures 6a and 6b
show the 12-h simulated pressure and wind fields at
0000 UTC 9 March at z9 5 750 m. Figure 6a shows
the low pressure system was located over eastern Col-
orado and western Kansas. To the north, the high pres-
sure dominated with the prevalent northeasterlies.
Strong upslope easterlies were found over the north-
eastern part of Colorado. Southeasterlies in eastern Col-
orado and western Kansas carried in an abundant supply
of moisture from the south. The easterlies impinged
upon the Rocky Mountains and resulted in the upward
motions shown in Fig. 6b. The important feature of the
vertical velocity over Colorado was the upward motion
with the maximum of 0.21 m s21 centered over north-
eastern Colorado. This maximum of vertical velocity
extended to the south-southeast corresponding to the

low pressure system along the Colorado Front Range.
The vertical velocity field was closely related to the
geographical distribution of horizontal wind and topog-
raphy over the Front Range. For example, with the pre-
dominant easterlies and northeasterlies over the region,
the upward motions were found over Cheyenne Ridge
and Palmer Ridge (see Fig. 1 for locations). In between,
there was downward motion associated with the down-
slope wind.

Figures 7a and 7b are similar to Figs. 6a and 6b,
respectively, except for 0600 UTC, at which time the
northeasterlies over northeastern Colorado intensified to
an average speed of 20 m s21. Comparisons of Figs. 7a
and 6a show that the low pressure continued to deepen
and to dominate eastern Colorado and western Kansas
from 0000 to 0600 UTC. At 0600 UTC, the low pressure
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FIG. 6. The model-simulated (a) horizontal wind and pressure, (b)
vertical velocity on z9 5 750 m simulated at 12 h, i.e., 0000 UTC 9
Mar. Units for wind and pressure are the same as in Fig. 2.

FIG. 7. Same as Figs. 6a and 6b except for the 18-h simulation at
0600 UTC 9 Mar.

center had moved eastward and was located at the north-
western corner of Kansas. As the result of this change
in pressure, the southeasterly (upslope) flow over the
south of Palmer Ridge at 0000 UTC became south-
westerly (downslope) at 0600 UTC. Consequently, the
vertical velocity in this region changed accordingly, that
is, from the upward motion at 0000 UTC to downward
motion at 0600 UTC as shown in Fig. 7b. It is also
evident that the vertical velocity at 0600 UTC was con-
siderably larger than that at 0000 UTC. Despite the

aforementioned differences, the two most prominent
features that resulted in heavy precipitation were the
persistent easterlies and strong upward motions located
over northeast Colorado. The maximum vertical veloc-
ity in both Figs. 6b and 7b was located along the Front
Range where the heaviest snow fell along the steep slope
of the Rocky Mountains.

Figures 8 and 9 showed, respectively, the model-sim-
ulated and the observed 24-h precipitation accumulated
from 1200 UTC on 8–9 March 1200 UTC. The model-
simulated and observed precipitation patterns were in
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FIG. 8. The model-simulated 24-h accumulated precipitation (mm)
from 1200 UTC 8 Mar to 1200 UTC 9 Mar.

FIG. 9. The observed precipitation (mm) over Colorado accumulated 24 h from 1200 UTC 8
Mar to 1200 UTC 9 Mar.

good agreements with both of the maximum precipi-
tation zones along the steep slope of the Rocky Moun-
tain Front Range. However, the simulated precipitation
amounts were substantially higher than the observed
amounts. It is possible that the observed precipitation
amounts shown in Fig. 9 were underestimated due to

the ‘‘snow-drifting’’ problem caused by the strong low-
level winds of 20 m s21 associated with the storm. The
maximum precipitation amount simulated by the model,
about 60 mm melted water (equivalent to 2 ft of snow),
was closer to the snow that actually fell in Boulder than
that of observed data shown in Fig. 9. Despite the dis-
crepancy in precipitation amounts, the threat score com-
puted based on the threshold of 20 mm in Figs. 8 and
9 was about 0.5. It is noted that relative dense precip-
itation contours in Fig. 8 near the western boundary in
Utah are caused by the lack of cloud fields such as cloud
water and cloud ice at lateral boundaries.

In this case, we have found the simulated precipitation
was not sensitive to the choice of a. Based on the model
grid intervals, a was specified as (0.5/20)2, which is
less than 1023. We have repeated the numerical simu-
lations with a chosen as 4 3 (0.5/20)2 and 16 3
(0.5/20)2 5 1022. The results were similar despite the
use of a different a. This is consistent with a study by
Browning and Kreiss (1997). They showed both ana-
lytically and numerically in a heating case, that the nu-
merical solution was dominated more by the heating
than by the choice of a.

5. Summary and conclusions

This study presents the first application of mesoscale
BDI and the first real data simulation for the QNH mod-
el. We have successfully demonstrated that BDI and
QNH are able to produce a smooth numerical solution
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and good precipitation simulation over the high terrain
associated with the Rocky Mountains. Following a scale
analysis for mesoscale motions, we derived the second-
order BDI from which two dynamic constraint equations
are obtained. These constraints suppress fast acoustic
waves associated with the two largest eigenvalues in the
system (see MacDonald et al. 2000a). The first dynamic
constraint leads to a one-dimensional elliptic equation
for the vertical velocity. It is basically the same as the
differentiated form of the Richardson’s w equation. The
second constraint yields a three-dimensional elliptic
pressure equation that is similar to the so-called non-
linear balance equation. These elliptic equations are
used to derive smooth initial mesoscale flows over com-
plex terrain on a limited-area domain for the QNH mod-
el.

BDI converts the initial value problem for hyperbolic
equations to a static boundary value problem for elliptic
equations. As a result, the lateral boundary conditions
for the hyperbolic system can be naturally included
through the formulation of well-posed boundary con-
ditions for the elliptic equations. This amenability to
limited domains is one of the main advantages in choos-
ing BDI over NMI, even though both of them have been
successfully applied to large-scale global models. The
BDI procedures used in this study are adiabatic. Their
uses are justified because no appreciable precipitation
occurred over the model domain at the time of initial-
ization. However, for daily mesoscale forecasts, it is
very important to properly initialize the QNH model
with diabatic heating included in the BDI procedures.
The proper initialization of diabatic heating with mois-
ture field is the key to successful weather forecasts. A
number of studies have shown promising results on the
use of diabatic initialization to improve the tropical anal-
ysis for tropical cyclone models or general circulation
models (see, e.g., Kasahara et al. 1994; Kasahara et al.
1996; Krishnamurti et al. 1994).

The QNH model initialized with BDI faithfully sim-
ulates the 9 March storm that produced nearly 2 ft of
snow in less than 24 h along the Colorado Front Range.
It was one of our main goals to examine the smoothness
of the QNH model solution in the presence of a me-
soscale storm over complex terrain in order to test the
mathematical foundation of the smooth solution
(Browning and Kreiss 1986) upon which BDI and QNH
are based. The numerical results show that the initial
fields derived from BDI were smooth and evolved
smoothly for 48 h. For the pressure evolution over 48
h, there were smooth meso- and large-scale variations,
upon which small-amplitude fast acoustic waves were
superimposed. The vertical velocity evolution was
smooth because the quasi-nonhydrostatic parameter
greatly reduced the effect of the fast waves on the ver-
tical velocity. In addition to the smooth evolution in
time, we also examined the smooth transition of the
mesoscale storm near the lateral boundaries. The sim-
ulated storm smoothly entered the model domain from

the western boundary, moved across the model domain,
and finally exited smoothly at the eastern boundary.
During the 48-h simulation, the mesoscale storm moved
freely in and out of the limited-area model domain as
if there were no lateral boundaries. The smooth evo-
lution of the numerically simulated mesoscale storm re-
inforces the theoretical mathematical analysis on the
existence of the smooth solution (Kreiss and Lorenz
1989). Based on the theory, a smooth initial solution
derived using BDI evolves smoothly in a nearly sym-
metric hyperbolic system (such as QNH) for a period
of time. In particular, the smooth solution exists up to
lateral boundaries.

The 9 March storm was caused by the intrinsic in-
teractions among the topography, upslope easterlies,
vertical velocity, and precipitation, in the vicinity of
high mountains. To investigate these interactions, we
examined the 9 March storm extensively from various
angles. They include the temporal variation at various
heights where the heaviest precipitation occurred and
the geographical extent of the storm. The temporal var-
iations of the vertical velocity showed the most rapid
increases during 0000–0600 UTC 9 March, at which
time the heaviest precipitation fell over the region. Ex-
amination of the topography within the region affected
by the storm showed that the persistent northeasterlies
and strong dynamic forcing from the midtropospheric
system resulted in the heavy precipitation concentrated
along the Colorado Front Range. These results indicate
a close relationship between the vertical velocity and
precipitation. The model simulated 24-h accumulated
precipitation was in good agreement with that observed
during the same period.

The 9 March storm was simulated rather than forecast
because lateral boundary conditions used in this study
were derived from MAPS analysis data. This is done
mainly because MAPS provides only a 12-h forecast,
which is too short to be used as lateral boundary data
in our 48-h simulation. Although the Eta model provides
a 48-h prediction, its initial data may not include me-
soscale features as accurate as MAPS analysis. Also, it
is equally important to point out that Eta provides lateral
boundary data every 6 h, which may not be frequent
enough to capture the fast moving 9 March storm. Fur-
thermore, the use of MAPS analysis data for lateral
boundary conditions allows us to focus on the accuracies
of BDI and QNH without the contamination of forecast
errors from other models. Although the results shown
in this study are by no means a forecast, we believe it
does not seriously diminish the objectives of this study.
We are currently utilizing BDI and QNH for real-time
mesoscale weather forecasting using lateral boundary
data derived from Eta model forecasts.
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