Four-Button BPM Coefficients in Cylindrical and Elliptic Beam Chambers

S. H. Kim
February 17, 1999

Beam position monitor (BPM) coefficients are calculated from induced charges on four-button BPMs in circular and elliptic beam chambers for $\gamma \gg 1$. Since the beam chamber cross-section for the APS storage ring is different from an exact elliptic geometry, numerical values of the BPM coefficients and their inversions are computed from two-dimensional electrostatic field distributions inside an exact geometry of the beam chamber. Utilizing Green's reciprocation theorem, a potential value is applied to the buttons rather than changing the beam position, and potential distributions corresponding to the beam positions are then computed.

1. Cylindrical Chamber

A charged particle beam of short bunches induces charges on the beam chamber wall. Due to the Lorentz contraction, for $\gamma \gg 1$, where γ is the relativistic factor, these charges have the same longitudinal intensity modulation as the beam. The electromagnetic fields associated with the beam are obtained by the Lorentz transformation from the fixed lab frame F to a moving reference frame F^{\prime}, where the charged beam is at rest $[1,2]$. The field distribution inside the beam chamber becomes an electrostatic problem in the moving reference frame. Here we assume that the buttons are installed flush with the inner surface of the beam chamber, with the chamber having constant crosssection and the chamber wall at a uniform potential.

For the charge density of a filament beam located at $\left(x_{o}, y_{o}\right)$ in the transverse plane of the Cartesian coordinates and moving with a wave number k in the longitudinal direction z in the lab frame F,

$$
\begin{equation*}
\rho=\rho_{k}\left(x_{o}, y_{o}\right) \cos k(z-v t) ; \tag{1}
\end{equation*}
$$

the charge density in the reference frame F^{\prime}, in which the beam is at rest, is expressed as

$$
\begin{equation*}
\rho^{\prime}=\frac{\rho_{k}\left(x_{o}, y_{o}\right)}{\gamma} \cos \left(k z^{\prime} / \gamma\right) . \tag{2}
\end{equation*}
$$

For the filament beam of Eq. (2) located at $\left(r_{0}, \theta_{0}\right)$ in the cylindrical coordinates, the Poisson's equation is

$$
\begin{equation*}
\left\{\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}-\frac{k^{2}}{\gamma^{2}}\right\} \phi=-\frac{\rho^{\prime}}{\varepsilon_{o}} . \tag{3}
\end{equation*}
$$

The solution for the electrostatic potential is a form of the Bessel function with an argument of $k r / \gamma$. When $k / \gamma \rightarrow 0$ and $\phi(a, \theta)=0$, the potential for $r>r_{0}$ is given by

$$
\begin{equation*}
\phi(r, \theta)=-\frac{\rho_{k}}{2 \pi \varepsilon_{o} \gamma} \cos \left(k z^{\prime} / \gamma\right)\left[\ln \left(\frac{r}{a}\right)-\sum_{n=1}^{\infty} \frac{1}{n}\left\{\left(\frac{r_{o}}{r}\right)^{n}-\left(\frac{r r_{o}}{a^{2}}\right)^{n}\right\} \cos n\left(\theta-\theta_{o}\right)\right] . \tag{4}
\end{equation*}
$$

The surface charge density induced per unit length on the inner surface of the chamber in the longitudinal direction is calculated from Eq. (4) in the lab frame F

$$
\begin{equation*}
\sigma(a, \theta)=-\frac{\rho_{k}}{2 \pi a} \cos k(z-v t)\left[1+2 \sum_{n=1}^{\infty}\left(\frac{r_{o}}{a}\right)^{n} \cos n\left(\theta-\theta_{o}\right)\right] \tag{5}
\end{equation*}
$$

where $1 / \gamma$ is cancelled from the relation $\mathrm{E}_{\perp}=\gamma \mathrm{E}_{\perp}^{\prime}$. Assuming the BPM coefficients are not depend on $\cos k(z-v t)$, that factor is omitted in the following expressions. The induced charges associated with the sum, vertical, and horizontal signals for four-button BPMs, shown in Fig. 1(a), are therefore given by

$$
\begin{align*}
& Q_{s}=-\rho_{k} \frac{4 \Delta \theta}{2 \pi}\left[1+\sum_{n=1}^{\infty}\left\{1+(-1)^{n}\right\}\left(\frac{r_{o}}{a}\right)^{n} \cos n \theta_{p} \cos n \theta_{o}\left(\frac{\sin n \Delta \theta / 2}{n \Delta \theta / 2}\right)\right], \\
& Q_{y}=-\rho_{k} \frac{4 \Delta \theta}{2 \pi} \sum_{n=1}^{\infty}\left\{1-(-1)^{n}\right\}\left(\frac{r_{o}}{a}\right)^{n} \sin n \theta_{p} \sin n \theta_{o}\left(\frac{\sin n \Delta \theta / 2}{n \Delta \theta / 2}\right), \tag{6}\\
& Q_{x}=-\rho_{k} \frac{4 \Delta \theta}{2 \pi} \sum_{n=1}^{\infty}\left\{1-(-1)^{n}\right\}\left(\frac{r_{o}}{a}\right)^{n} \cos n \theta_{p} \cos n \theta_{o}\left(\frac{\sin n \Delta \theta / 2}{n \Delta \theta / 2}\right),
\end{align*}
$$

2. Elliptic Chamber

The Poisson's equation in the Cartesian coordinates, $\nabla^{2} \phi=-\rho^{\prime} / \varepsilon_{o}$, for the filament beam of Eq. (2) may be written as

$$
\begin{equation*}
\left[\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}-\frac{k^{2}}{\gamma^{2}}\right] G\left(x, y ; x_{o}, y_{o}\right)=-\delta\left(x-x_{o}\right) \delta\left(y-y_{o}\right) \tag{7}
\end{equation*}
$$

where $G\left(x, y ; x_{o}, y_{o}\right)$ is a Green's function to be solved, and the electrostatic potential in the lab frame can be calculated from the Green's function

$$
\begin{equation*}
\phi=\iint d x_{o} d y_{o} \frac{\rho_{k}\left(x_{o}, y_{o}\right)}{\varepsilon_{o} \gamma} \cos k(z-v t) G\left(x, y ; x_{o}, y_{o}\right) \tag{8}
\end{equation*}
$$

For a beam chamber of elliptic cross-section, the following inverse hyperbolic cosine transformation makes it possible to solve Eq. (7) analytically:

$$
\begin{array}{ll}
& w=u+\mathrm{i} \theta=\cosh ^{-1}(z / d) \\
\text { or } & z=x+i y=d(\cosh u \cos \theta+\mathrm{i} \sinh u \sin \theta) \tag{9}\\
\text { with } & h_{u}=h_{\theta}=|d z / d w|=d\left(\cosh ^{2} u-\cos ^{2} \theta\right)^{1 / 2}
\end{array}
$$

Then, for a constant u_{c},

$$
\begin{equation*}
\left(\frac{x}{d \cosh u_{c}}\right)^{2}+\left(\frac{y}{d \sinh u_{c}}\right)^{2}=1 \tag{10}
\end{equation*}
$$

represents a confocal ellipse with foci at $\pm d$, and similarly, constant values of θ make a set of confocal hyperbolas orthogonal to the ellipse as shown in Fig. 1(b). Table 1 lists the parameters for the synchrotron and storage ring chambers before and after the transformation.

Table 1. Beam Chamber Parameters with Units in mm

Synchrotron	major axis $=30$	minor axis $=18.5$	$u_{\mathrm{c}}=0.7196$	$d=23.62$
Storage Ring	42.34	20.85	0.5393	36.85

After the elliptic transformation, Eq. (7) becomes

$$
\begin{equation*}
\left[\frac{\partial^{2}}{\partial u^{2}}+\frac{\partial^{2}}{\partial \theta^{2}}-\frac{k^{2} d^{2}}{\gamma^{2}}\left(\cosh ^{2} u-\cos ^{2} \theta\right)\right] G\left(u, \theta ; u_{o}, \theta_{o}\right)=-\delta\left(u-u_{o}\right) \delta\left(\theta-\theta_{o}\right), \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi(u, \theta)=\int_{0}^{u_{c}} \int_{0}^{2 \pi} \frac{\rho_{k}\left(u_{o}, \theta_{o}\right)}{\varepsilon_{o} \gamma} \cos k(z-v t) G\left(u, \theta ; u_{o}, \theta_{o}\right) d \theta_{o} d u_{o} . \tag{12}
\end{equation*}
$$

Equation (11) may be separated into two Mathieu equations. After Laplace transformations, radial solutions are obtained as a series of Bessel and Neumann functions with arguments of $k d / \gamma \cosh u$ and $k d / \gamma \cos \theta$. For $k d / \gamma \ll 1$, it is not worthwhile to perform the task of calculating an exact solution and then approximate it in order to compute numerical values [3]. Instead, $k d / \gamma$ is set to zero in Eq. (11) and solved with boundary conditions of $\phi\left(\mu_{\mathrm{c}}, \theta\right)=0$ and $\phi(0, \theta)=$ continuous. Then, the Green's functions are given by

$$
\begin{gather*}
G\left(u, \theta ; u_{o}, \theta_{o}\right)=-\frac{u_{o}-u_{c}}{2 \pi}-\frac{1}{\pi} \sum_{m=1}^{\infty} \frac{1}{m} e^{-m u_{c}}\left[\left\{\frac{\cosh m u_{o}}{\cosh m u_{c}}-e^{-m\left(u_{o}-u_{c}\right)}\right\} \cosh m u \cos m \theta_{o} \cos m \theta\right. \\
+\left\{\frac{\sinh m u_{o}}{\sinh m u_{c}}-e^{-m\left(u_{o}-u_{c}\right)}\right\} \sinh m u \sin m \theta_{o} \sin m \theta, \quad\left(u \leq u_{o}\right) \tag{13}
\end{gather*}
$$

and

$$
\begin{gather*}
G\left(u, \theta ; u_{o}, \theta_{o}\right)=-\frac{u-u_{c}}{2 \pi}-\frac{1}{\pi} \sum_{m=1}^{\infty} \frac{1}{m} e^{-m u_{c}}\left[\cosh m u_{o}\left\{\frac{\cosh m u}{\cosh m u_{c}}-e^{-m\left(u-u_{c}\right)}\right\} \cos m \theta_{o} \cos m \theta\right. \\
+\sinh m u_{o}\left\{\frac{\sinh m u}{\sinh m u_{c}}-e^{-m\left(u-u_{c}\right)}\right\} \sin m \theta_{o} \sin m \theta . \quad\left(u \geq u_{o}\right) \tag{14}
\end{gather*}
$$

Because of the boundary condition that ϕ be continuous near $u=0$, there are no terms such as $\cosh (m u) \sin (m \theta)$ and $\sinh (m u) \cos (m \theta)$ in Eqs. (13) and (14). Since the curves with constant values of θ are orthogonal with the chamber surface, $u=u_{\mathrm{c}}$, the induced charge density on the chamber surface $\sigma\left(u_{\mathrm{c}}, \theta\right)=-\varepsilon_{\mathrm{o}}(\partial \phi / \partial u)$ at $u=u_{\mathrm{c}}$ is calculated from Eqs. (12) and (14) as

$$
\begin{equation*}
\sigma\left(u_{c}, \theta\right)=-\frac{\rho_{k}}{2 \pi}\left[1+2 \sum_{m=1}^{\infty}\left(\frac{\cosh m u_{0}}{\cosh m u_{c}} \cos m \theta_{o} \cos m \theta+\frac{\sinh m u_{0}}{\sinh m u_{c}} \sin m \theta_{o} \sin m \theta\right)\right] . \tag{15}
\end{equation*}
$$

As in the case of the cylindrical chamber, the $\cos k(z-v t)$ factor is omitted in the following expressions. The induced charges associated with the sum $\left(Q_{s}\right)$, vertical (Q_{y}), and horizontal (Q_{x}) signals for four-button BPMs shown in Fig. 1(b) are given by

$$
\begin{align*}
& Q_{s}=-\rho_{k} \frac{4 \Delta \theta}{2 \pi}\left[1+\sum_{m=1}^{\infty}\left\{1+(-1)^{m}\right\} \frac{\cosh m u_{0}}{\cosh m u_{c}} \cos m \theta_{o} \cos m \theta_{p}\left(\frac{\sin m \Delta \theta / 2}{m \Delta \theta / 2}\right)\right], \tag{16}\\
& Q_{y}=-\rho_{k} \frac{4 \Delta \theta}{2 \pi} \sum_{m=1}^{\infty}\left\{1-(-1)^{m}\right\} \frac{\sinh m u_{0}}{\sinh m u_{c}} \sin m \theta_{o} \sin m \theta_{p}\left(\frac{\sin m \Delta \theta / 2}{m \Delta \theta / 2}\right), \tag{17}\\
& Q_{x}=-\rho_{k} \frac{4 \Delta \theta}{2 \pi} \sum_{m=1}^{\infty}\left\{1-(-1)^{m}\right\} \frac{\cosh m u_{0}}{\cosh m u_{c}} \cos m \theta_{o} \cos m \theta_{p}\left(\frac{\sin m \Delta \theta / 2}{m \Delta \theta / 2}\right) \tag{18}
\end{align*}
$$

3. Numerical Values of the BPM Coefficients

Numerical values of the BPM coefficients and their inversions are computed from twodimensional electrostatic field distribution inside an exact geometry of the beam chamber. The last three equations were used only to cross check the computation results. Figure 2 shows the crosssection of the beam chamber. The four $10-\mathrm{mm}$-diameter buttons are installed symmetrically with respect to the origin of the coordinates at $\left(x_{o,} y_{o}\right)=(\pm 14.0 \mathrm{~mm}, \pm 19.0 \mathrm{~mm})$, flush with the chamber surface.

When +1.0 V is applied to all four buttons and the conducting chamber is grounded, the potential at any point in the chamber is defined as the sum signal Q_{s}. In Fig. 2 there are 20 equipotential lines between a button and the chamber. The potential near the origin is between 0.25 and 0.3 V . The potential at $(5,5)$, for example, is 0.302 V . Having $Q_{s}=0.302 \mathrm{C}$ in Eq. (16) with ρ_{k} $=-0.95 \mathrm{C} / \mathrm{mm}^{2}$ yields equivalent results. Since we are only concerned with the relative magnitudes of the sum, vertical, and horizontal signals, the signal units will now be ignored.

The equipotential contours for the vertical and horizontal signals are shown in Fig. 3. The vertical signal Q_{y} was obtained by applying +1 V to the upper two buttons and -1 V to the lower two buttons. Similarly, the horizontal signal Q_{x} was obtained by applying +1 V to the right two buttons and -1 V to the left two buttons. Asymmetry of the signal (due to the antechamber) is relatively small. At $y_{o}=5 \mathrm{~mm}$, the vertical signal difference for $x_{o}= \pm 10 \mathrm{~mm}$ is less than 10^{-3}, and that for x_{o} $= \pm 15 \mathrm{~mm}$ is 5×10^{-3}. At $y_{o}=0$, the horizontal signal difference for a given $\pm x_{o}$ is less than $2.5 \times$ 10^{-3}.

Vertical and sum signals vs the vertical beam position y_{o} are plotted in Fig. 4 at selected horizontal beam position x_{o}. Higher sensitivities of the signals for $\left|y_{o}\right|>10 \mathrm{~mm}$ at $x_{o}=15 \mathrm{~mm}$, for example, are seen from the contour plots of Figs. 2 and 3. Fortunately, the normalized vertical signals $\left(Q_{y} / Q_{s}\right)$, plotted in Fig. 5, are closer to linear variations with respect to the vertical beam positions. The normalized signals are also plotted as a function of the horizontal beam positions in Fig. 5.

Similarly, horizontal, sum, and normalized horizontal $\left(Q_{x} / Q_{s}\right)$ signals are plotted in Figs. 6 and 7. Relatively large variations of Q_{x} and Q_{s} at $y_{o}=15 \mathrm{~mm}$ are expected from the contour plots of Figs. 2 and 3. The variations of the normalized signals are smoother. However, their sensitivities are severely reduced for $\left|x_{o}\right|>10 \mathrm{~mm}$.

In Table 2, coefficients for polynomial curve fits are listed for the normalized vertical signals $\left(Q_{y} / Q_{s}\right)$ vs the vertical beam positions y_{o} and their inversions at selected horizontal beam positions. Ideally, the coefficients of even orders should be zero; small values are due to the antechamber and computation errors. Within $\left|y_{o}\right|<15 \mathrm{~mm}$, as the R-values indicate the reliability of the curve fits, third-order polynomial seems to be good enough. In the last row, the coefficients for linear fits within $\left|y_{o}\right|<5 \mathrm{~mm}$ are listed.

The coefficients for the normalized horizontal signals are listed in Table 3. The horizontal beam positions are limited to $\left|x_{o}\right|<15 \mathrm{~mm}$ for $y_{o}=0$ and 5 mm , and $\left|x_{o}\right|<10 \mathrm{~mm}$ for $y_{o}=10$ and 15 mm .

References

[1] J. H. Cuperus, "Monitoring of Particle Beams at High Frequencies," Nucl. Instrum. Methods, 145, 219 (1977).
[2] S. Krinsky, "Measurement of the Longitudinal Parameters of an Electron Beam in a Storage Ring," Lecture Notes in Phys. 343, M. Month and S. Turner (Eds.), Springer-Verlag (1989), p. 150.
[3] P. Morse and H. Feshbach, Methods of Theoretical Physics, Chapters 5 and 11, McGraw-Hill (1953).

Table 2. Polynomial coefficients for Q_{v} / Q_{s} vs $y_{o}\left(\left|y_{o}\right|<15 \mathrm{~mm}\right)$ and their inversions up to the fifth and third orders at selected values of x_{0}. R-values indicate the reliability of the curve fits. The linear coefficients within $\left|y_{o}\right|<5 \mathrm{~mm}$ are listed in the last row.

(a) $\mathrm{V}=\mathrm{M}_{0}+\mathrm{M}_{1} y_{o}+\mathrm{M}_{2} y_{o}{ }^{2}+\cdots+\mathrm{M}_{5} y_{o}{ }^{5},\left(\mathrm{~V}=Q_{v} / Q_{s}\right)$					
	$\underline{x_{0}}=\mathbf{0}$	$\underline{x_{o}=5}$	$\underline{x}_{o}=10$	$\underline{x}_{o}=15$	$\underline{x}_{o}=20$
\mathbf{M}_{0}	-1.52E-06	$8.56 \mathrm{E}-05$	0.0003699	0.0008404	0.0013309
M_{1}	0.055024	0.059777	0.069485	0.074561	0.069003
\mathbf{M}_{2}	$7.29 \mathrm{E}-09$	$-3.11 \mathrm{E}-06$	-4.23E-06	$-3.32 \mathrm{E}-06$	$-1.95 \mathrm{E}-06$
\mathbf{M}_{3}	-6.14E-05	$-5.22 \mathrm{E}-05$	-4.59E-05	-4.36E-05	-3.69E-05
M_{4}	$-4.04 \mathrm{E}-11$	$1.38 \mathrm{E}-09$	$7.99 \mathrm{E}-09$	$1.01 \mathrm{E}-09$	$1.68 \mathrm{E}-09$
M_{5}	3.37E-08	$2.30 \mathrm{E}-08$	-1.69E-08	-6.13E-08	-3.02E-08
R	,	1	1.	1	-1
(b) $V=M_{0}+M_{1} y_{o}+M_{2} y_{o}{ }^{2}+M_{3} y_{o}{ }^{3}$					
$\mathbf{M}_{\mathbf{0}}$	$-1.52 \mathrm{E}-06$	$7.94 \mathrm{E}-05$	0.000334	0.0008359	0.0013234
M_{1}	0.055024	0.05949	0.069696	0.075324	0.069378
\mathbf{M}_{2}	$7.29 \mathrm{E}-09$	-2.84E-06	-2.66E-06	-3.13E-06	-1.62E-06
M_{3}	$-6.14 \mathrm{E}-05$	$-4.64 \mathrm{E}-05$	-5.02E-05	-5.92E-05	$-4.45 \mathrm{E}-05$
R	1	1	1	0.99999	1

(c) $y_{o}=m_{0}+m_{1} V+m_{2} V^{2}+\cdots+m_{5} V^{5}$, (Inverted polynomial coefficients)

	$\underline{x_{0}}=0$	$\underline{x}_{o}=5$	$\underline{x_{o}}=10$	$\underline{x}_{o}=15$	$\underline{x_{o}}=20$
m_{0}	$3.01 \mathrm{E}-05$	-0.001185	-0.005304	-0.011073	-0.019332
m_{1}	18.412	16.828	14.521	13.633	14.603
m_{2}	-0.000107	0.0054239	0.0098128	0.0011322	0.0011304
m_{3}	2.5812	2.7239	0.75408	-0.36652	0.608
m_{4}	0.0004878	0.048948	0.00424	0.0069947	-0.009774
m_{5}	21.593	6.6561	3.3942	3.7815	2.8276
R	1	1	1	0.99999	1
(d) $y_{o}=m_{0}+m_{1} \mathrm{~V}+\mathrm{m}_{2} \mathrm{~V}^{2}+\mathrm{m}_{3} \mathrm{~V}^{3}$					
m_{0}	$2.30 \mathrm{E}-05$	-0.002415	-0.005465	-0.011718	-0.019131
m_{1}	17.39	16.298	13.989	12.88	14.137
m_{2}	$6.24 \mathrm{E}-05$	0.02768	0.012252	0.0072527	-0.003556
\mathbf{m}_{3}	13.121	6.9488	3.7834	3.4361	3.1995
R	0.99993	0.99998	0.99996	0.99992	0.99997

(e) $y_{o}=\mathbf{m}$ V for $\left|y_{o}\right|<5 \mathrm{~mm}$
\mathbf{m}

Table 3. Polynomial coefficients for Q_{N} / Q_{s} vs $x_{o}\left(\left|x_{o}\right|<15 \mathrm{~mm}\right.$ for $y_{o}=0$ and 5 mm , and $\left|x_{o}\right|<10 \mathrm{~mm}$ for $y_{o}=10$ and 15 mm) and their inversions up to the fifth and third orders. R-values indicate the reliability of the curve fits. The linear coefficients within $\left|x_{o}\right|<5 \mathrm{~mm}$ are listed in the last row.

(a) $\mathrm{H}=\mathrm{N}_{0}+\mathrm{N}_{1} x_{o}+\mathrm{N}_{2} \mathrm{x}_{o}{ }^{2}+\cdots+\mathrm{N}_{5} \mathrm{x}_{o}{ }^{5},\left(\mathrm{H}=Q_{2} \chi^{\prime}\right)$				
	$y_{o}=0$	$y_{o}=5$	$\underline{y}_{o}=10$	$\underline{y}_{o}=15$
N_{0}	$3.20 \mathrm{E}-05$	-0.000551	-0.001332	-0.002377
N_{1}	0.057954	0.065643	0.089754	0.12658
N_{2}	$-1.14 \mathrm{E}-07$	$4.91 \mathrm{E}-06$	$1.49 \mathrm{E}-05$	$3.21 \mathrm{E}-05$
N_{3}	$-9.89 \mathrm{E}-05$	-0.000129	-0.000268	-0.000516
N_{4}	$2.08 \mathrm{E}-10$	-9.96E-09	-5.15E-08	-1.22E-07
N_{5}	$1.21 \mathrm{E}-07$	$1.66 \mathrm{E}-07$	$5.64 \mathrm{E}-07$	$1.15 \mathrm{E}-06$
R	1	1	1	
(b) $\mathbf{H}=\mathbf{N}_{0}+\mathrm{N}_{1} x_{o}+\mathrm{N}_{2} \mathrm{x}_{0}{ }^{2}+\mathrm{N}_{3} x_{o}{ }^{3}$				
N_{0}	3.11E-05	-0.000507	-0.001285	-0.002267
N_{1}	0.05645	0.063576	0.088347	0.12371
N_{2}	$-7.33 \mathrm{E}-08$	$2.96 \mathrm{E}-06$	$1.04 \mathrm{E}-05$	$2.14 \mathrm{E}-05$
\mathbf{N}_{3}	-6.82E-05	-8.66E-05	-0.000204	-0.000385
R	0.99996	0.99994	0.99999	0.99997
(c) $x_{o}=\mathrm{n}_{0}+\mathrm{n}_{1} \mathbf{H}+\mathrm{n}_{2} \mathrm{H}^{2}+\cdots-\mathrm{n}_{5} \mathrm{H}^{5}$, (Inverted coefficients)				
	$\underline{y}_{o}=0$	$\underline{y}_{o}=5$	$\underline{y}_{o}=10$	$\underline{y}_{o}=15$
n_{0}	-0.000551	0.0081524	0.014706	0.018208
n_{1}	17.462	15.597	11.248	8.2602
n_{2}	-0.000259	0.0036981	0.0001707	0.0083058
n_{3}	4.4509	0.88597	2.4051	-1.1738
n_{4}	-0.000822	-0.057578	-0.024826	-0.021612
n_{5}	30.068	29.088	9.7406	7.1476
R	1	0.99999	1	0.99997
(d) $\boldsymbol{x}_{o}=\mathbf{n}_{0}+\mathbf{n}_{1} \mathbf{H}+\mathbf{n}_{2} \mathbf{H}^{2}+\mathbf{n}_{3} \mathbf{H}^{3}$				
n_{0}	-0.000558	0.0094429	0.015501	0.020148
n_{1}	16.15	13.846	10.645	7.0779
n_{2}	-0.000341	-0.020362	-0.0.012441	-0.009957
n_{3}	18.474	16.789	7.8307	5.3098
R	0.9999	0.99979	0.99994	0.99964
(e) $\boldsymbol{x}_{o}=\mathrm{nH}$ for for $\left\|x_{o}\right\|<5 \mathrm{~mm}$				
n	17.68	15.67	11.67	8.42

Fig. 1. (a) Four-button BPMs on a circular beam chamber of radius a. Here (a, θ_{p}) is the button position in the first quadrant, $(a \Delta \theta)$ is the button diameter, and $\left(r_{0}, \theta_{o}\right)$ is the beam position. (b) Elliptical beam chamber with major and minor radii of $d \cosh \mathrm{u}_{\mathrm{c}}$ and $d \sinh \mathrm{u}_{\mathrm{c}}$, and foci at $\pm d$. $\left(\mathrm{u}_{\mathrm{c}}, \theta_{\mathrm{p}}\right)$ is the four-button BPM position in the first quadrant, (u_{c} $\Delta \theta)$ is the button diameter, and ($\mathrm{u}_{\mathrm{o}}, \theta_{\mathrm{o}}$) is the beam position.

Fig.2. Equipotential lines for sum signals from four-button BPMs installed on the storage ring beam chamber. The $10-\mathrm{mm}$-diameter buttons are located at $(\pm 14.0 \mathrm{~mm}, \pm 19.0 \mathrm{~mm})$ flush with the chamber surface. There are 20 equipotential lines between the BPMs (which were applied +1.0 V) and the grounded beam chamber.

Fig. 3. Top: Forty equipotential lines for vertical signals between the top two BPMs at +1.0 V and bottom two at -1.0 V . Bottom: Forty equipotential lines for horizontal signals between the right two BPMs at +1.0 V and the left two at -1.0 V .

Fig. 4. Vertical $\left(\mathrm{Q}_{\mathrm{y}}\right)$ (top) and sum $\left(\mathrm{Q}_{\mathrm{s}}\right)$ (bottom) signals vs vertical beam position y_{o} at selected horizontal beam positions. The signal units are in volts when the BPMs are applied plus or minus one volt.

Fig. 5. Normalized vertical signal $\left(Q_{y} / Q_{s}\right)$ vs vertical beam position (top) and horizontal beam position (bottom).

Fig. 6. Horizontal $\left(\mathrm{Q}_{\mathrm{x}}\right)$ (top) and sum $\left(\mathrm{Q}_{\mathrm{s}}\right)$ (bottom) signals vs horizontal beam position x_{o} at selected vertical beam positions. The signal units are in volts when the BPMs are applied plus or minus one volt.

Fig. 7. Normalized horizontal signal $\left(Q_{x} / Q_{s}\right)$ vs horizontal beam position (top) and vertical beam position (bottom).

