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Beam position monitor (BPM) coefficients are calculated from induced charges on four-button
BPMs in circular and elliptic beam chambersyor> 1. Since the beam chamber cross-section for
the APS storage ring is different from an exact elliptic geometry, numerical values of the BPM
coefficients and their inversions are computed from two-dimensional electrostatic field distributions
inside an exact geometry of the beam chamber. Utilizing Green’s reciprocation theorem, a potential
value is applied to the buttons rather than changing the beam position, and potential distributions
corresponding to the beam positions are then computed.

1. Cylindrical Chamber

A charged particle beam of short bunches induces charges on the beam chamber wall. Due to
the Lorentz contraction, for >> 1, wherey is the relativistic factor, these charges have the same
longitudinal intensity modulation as the beam. The electromagnetic fields associated with the beam
are obtained by the Lorentz transformation from the fixed lab frame F to a moving reference frame
F', where the charged beam is at rest [1, 2]. The field distribution inside the beam chamber becomes
an electrostatic problem in the moving reference frame. Here we assume that the buttons are
installed flush with the inner surface of the beam chamber, with the chamber having constant cross-
section and the chamber wall at a uniform potential.

For the charge density of a filament beam locatedkat)(in the transverse plane of the
Cartesian coordinates and moving with a wave nurkberthe longitudinal directioz in the lab
frame F,

p = pk (X07 yo)COSk(Z_Vt); (1)
the charge density in the reference frame F', in which the beam is at rest, is expressed as

p=Pil%orYo) k(x;' Yo) coskz1y). )

For the filament beam of Eq. (2) located gt&) in the cylindrical coordinates, the Poisson's
equation is
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The solution for the electrostatic potential is a form of the Bessel function with an argument of
krly. Whenk/y - 0 andq(a,f) = 0, the potential for > r, is given by
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o(r,0) = —ZLcos«Z/ Vin(C) - 25{( foyr — (Eoym cosn( - 6,)]. (a)
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The surface charge density induced per unit length on the inner surface of the chamber in the
longitudinal direction is calculated from Eq. (4) in the lab frame F

a(a,e):—;nkacosk(z vt)[1+22 ( )" cosn(6 -6,)], (5)

where 1y is cancelled from the relations Ey E;. Assuming the BPM coefficients are not depend

on cosk(z-v), that factor is omitted in the following expressions. The induced charges associated
with the sum, vertical, and horizontal signals for four-button BPMs, shown in Fig. 1(a), are
therefore given by
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2. Elliptic Chamber

The Poisson's equation in the Cartesian coordinatég=-p'/e, for the filament beam
of EqQ. (2) may be written as

[aa— + 0 K6k yix, ¥a) =-8(x=%,)3(y - Y,), @)
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whereG(X,Y;%,Yo) IS @ Green's function to be solved, and the electrostatic potential in the lab frame
can be calculated from the Green’s function

0= ﬂdxodyo%‘;y‘))cosk(z—vt)e(x, ViXon Vo). ®)
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For a beam chamber of elliptic cross-section, the following inverse hyperbolic cosine
transformation makes it possible to solve Eq. (7) analytically:

w

u + i0 = cosh'(z/0),
or z=Xx+iy=d (coshu cos@ +i sinhu sin 6) (9)
with  h, =|dz/ dw| = d(coslT u-cos’ 6)"'2.



Then, for a constant,
() +(—L—)2 =1 (10)

dcoshu, dsinhu,

represents a confocal ellipse with focifatd, and similarly, constant values 6fmake a set of
confocal hyperbolas orthogonal to the ellipse as shown in Fig. 1(b). Table 1 lists the parameters for
the synchrotron and storage ring chambers before and after the transformation.

Table 1. Beam Chamber Parameters with Units in mm
Synchrotron major axis=30 minor axis=18.5u. = 0.7196 d= 23.62
Storage Ring 42.34 20.85 0.5393 36.85

After the elliptic transformation, Eq. (7) becomes

92 9% Kk3d?
[~ +—= ————(coslf u-cos 8)]G(u,6;u,,6,) = -d(u-u,)d(6 -6,), (11)
ou- 06 y

and
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Equation (11) may be separated into two Mathieu equations. After Laplace transformations, radial
solutions are obtained as a series of Bessel and Neumann functions with argurkdfytsaxhu

and kdly cos 6. For kdly << 1, it is not worthwhile to perform the task of calculating an exact
solution and then approximate it in order to compute numerical values [3]. Inkthads set to

zero in Eq. (11) and solved with boundary conditiong(gf,6) = 0 and@(0,6) = continuous. Then,

the Green's functions are given by
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Because of the boundary condition tlgabe continuous near = 0, there are no terms such as
coshMmu) sin(mf) and sinhifu) cosmd) in Egs. (13) and (14). Since the curves with constant values
of © are orthogonal with the chamber surfages u., the induced charge density on the chamber
surfaceo(uc,8) = - €,(0@au) atu=u. is calculated from Eqgs. (12) and (14) as



o(u, tS?)——pk [1+2 (mcosme cosmé@ +msinmeosinm9)]. (15)
& coshmu, sinhmu,

As in the case of the cylindrical chamber, the k@svi factor is omitted in the following
expressions. The induced charges associated with the@nvértical Q,), and horizontal @,)
signals for four-button BPMs shown in Fig. 1(b) are given by
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3. Numerical Values of the BPM Coefficients

Numerical values of the BPM coefficients and their inversions are computed from two-
dimensional electrostatic field distribution inside an exact geometry of the beam chamber. The last
three equations were used only to cross check the computation results. Figure 2 shows the cross-
section of the beam chamber. The four 10-mm-diameter buttons are installed symmetrically with
respect to the origin of the coordinatesxlg) = (+14.0 mm,x19.0 mm), flush with the chamber
surface.

When +1.0 V is applied to all four buttons and the conducting chamber is grounded, the
potential at any point in the chamber is defined as the sum S@gnadh Fig. 2 there are 20
equipotential lines between a button and the chamber. The potential near the origin is between 0.25
and 0.3 V. The potential at (5, 5), for example, is 0.302 V. HaQiyg0.302 C in Eq. (16) witlpy
= —0.95 C/mmyields equivalent results. Since we are only concerned with the relative magnitudes
of the sum, vertical, and horizontal signals, the signal units will now be ignored.

The equipotential contours for the vertical and horizontal signals are shown in Fig. 3. The
vertical signalQy was obtained by applying +1V to the upper two buttons and -1V to the lower two
buttons. Similarly, the horizontal sign@k was obtained by applying +1V to the right two buttons
and -1V to the left two buttons. Asymmetry of the signal (due to the antechamber) is relatively
small. Aty, =5 mm, the vertical signal difference fgr=+ 10 mm is less than T0and that fo,
= i315 mm is 5x 10°. Aty, = 0, the horizontal signal difference for a given, is less than 2.5
10~

Vertical and sum signals vs the vertical beam positiprare plotted in Fig. 4 at selected
horizontal beam positior,. Higher sensitivities of the signals fgg||> 10 mm at, = 15 mm, for
example, are seen from the contour plots of Figs. 2 and 3. Fortunately, the normalized vertical
signals Q,/Qs), plotted in Fig. 5, are closer to linear variations with respect to the vertical beam
positions. The normalized signals are also plotted as a function of the horizontal beam positions in
Fig. 5.



Similarly, horizontal, sum, and normalized horizon®@}/Qs) signals are plotted in Figs. 6 and
7. Relatively large variations @y andQs aty, = 15 mm are expected from the contour plots of
Figs. 2 and 3. The variations of the normalized signals are smoother. However, their sensitivities
are severely reduced fog||> 10 mm.

In Table 2, coefficients for polynomial curve fits are listed for the normalized vertical signals
(Q,/Qs) vs the vertical beam positiogs and their inversions at selected horizontal beam positions.
Ideally, the coefficients of even orders should be zero; small values are due to the antechamber and
computation errors. Withiryd < 15 mm, as the R-values indicate the reliability of the curve fits,
third-order polynomial seems to be good enough. In the last row, the coefficients for linear fits
within lyo| <5 mm are listed.

The coefficients for the normalized horizontal signals are listed in Table 3. The horizontal beam
positions are limited to{| < 15 mm fory, = 0 and 5 mm, andy] < 10 mm fory, = 10 and 15 mm.
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Table 2. Polynomial coefficients fay/Qs vSYs (lyo| < 15 mm) and their inversions up to
the fifth and third orders at selected valueg,0R-values indicate the reliability of the
curve fits. The linear coefficients withip| < 5 mm are listed in the last row.

(@) V=Mo+ Mi1yo+ Mayo™ - + Msyo, (V=Q/Q)
Xo =0 Xo=9 Xo =10 Xo =15 X = 20
Mo -1.52E-06 8.56E-05 0.0003699 0.0008404 0.0013309
M, 0.055024 0.059777 0.069485 0.074561 0.069003
M, 7.29E-09  -3.11E-06 -4.23E-06  -3.32E:06  -1.95E-06
M3 -6.14E-05  -5.22E-05 -4.59E-05 -4.36E:05  -3.69E-05
My -4.04E-11 1.38E-09 7.99E-09 1.01E+09 1.68E-09
Ms 3.37E-08 2.30E-08  -1.69E-08 -6.13E:08  -3.02E-08
R 1 1 1 1 1
(b) V= Mo+ M1Yo+ Mayo + Mayo®
Mo -1.52E-06 7.94E-05 0.000334 0.0008359 0.0013234
M1 0.055024 0.05949 0.069696 0.075324 0.069378
M, 7.29E-09  -2.84E-06 -2.66E-06  -3.13E-06 -1.62E-06
M3 -6.14E-05  -4.64E-05  -5.02E-05  -5.92E:05  -4.45E-05
R 1 1 1 0.99999 1
(©) Yo = Mo+ MV + myV?+ - + mgV>, (Inverted polynomial coefficients)
Xo =0 Xo =9 Xo =10 Xo =15 Xo = 20
Mo 3.01E-05 -0.001185 -0.005304 -0.011073  -0.019332
my 18.412 16.828 14.521 13.633 14.603
m; -0.000107 0.0054239 0.0098128 0.0011322 0.0011304
ms 2.5812 2.7239 0.75408 -0.36652 0.608
my 0.0004878 0.048948 0.00424 0.0069947  -0.009774
ms 21.593 6.6561 3.3942 3.7815 2.8276
R 1 1 1 0.99999 1
(d) Yo = mp+ myV+ m, V2 + mgV°
Mo 2.30E-05 -0.002415 -0.005465 -0.011718 -0.019131
my 17.39 16.298 13.989 12.88 14.137
m; 6.24E-05 0.02768 0.012252 0.0072527  -0.003556
ms 13.121 6.9488 3.7834 3.4361 3.1995
R 0.99993 0.99998 0.99996 0.99992 0.99997
(€)Yo=mV for |yo| <5 mm
m : 18.49 16.96 14.55 13.55 14.62




Table 3. Polynomial coefficients f@;/Qs VS X, ([%| < 15 mm fory, = 0 and 5 mm,

and X| < 10 mm fory, = 10 and 15 mm) and their inversions up to the fifth and third
orders. R-values indicate the reliability of the curve fits. The linear coefficients within
Y| <5 mm are listed in the last row.

(@) H = No+ Ny Xo+ NaXoo+ - + NsXoo, (H = Q/Q))

Yo=0 Yo=5 Yo =10 Yo =15
No 3.20E-05 -0.000551 -0.001332  -0.002377
Ny 0.057954  0.065643  0.089754 0.12658

N> -1.14E-07  4.91E-06  1.49E-05  3.21E-05

N3 -9.89E-05 -0.000129  -0.000268 -0.000516

N, 2.08E-10  -9.96E-09  -5.15E-08  -1.22E-07

Ns 1.21E-07  1.66E-07  5.64E-07  1.15E.06

R 1 1 1 1
(b) H = No+ NiXo+ NoXo® + NgXo>

No 3.11E-05  -0.0005C -0.001285  -0.002267

> 7
N1 0.05645 0.063576 0.088347 0.12371
N2 -7.33E-08 2.96E-06 1.04E-05 2.14E:05
> 5
> 4

N3 -6.82E-03 -8.66E-0 -0.000204  -0.000385
R 0.9999¢ 0.9999 0.99909 0.99997

(C) Xo = N+ N1 H + Ny H*+ --- + nsH>, (Inverted coefficients)

Yo=0 Yo=9 Yo =10 Yo =15
No -0.000551 0.0081524 0.014706 0.018208
Ny 17.462 15.597 11.248 8.2602
N, -0.000259 0.0036981 0.0001707 0.0083058
N3 4.4509 0.88597 2.4051 -1.1738
Ny -0.000822 -0.057578 -0.024826 -0.021612
Ns 30.068 29.088 9.7406 7.1476
R 1 0.99999 1 0.99997
(d) Xo = No+ Ny H + N H? + ngH*

No -0.000558 0.0094429 0.015501 0.020148
Ny 16.15 13.846 10.645 7.0779
N, -0.000341 -0.020362 -0.012441 -0.009957
N3 18.474 16.789 7.8307 5.3098
R 0.9999 0.99979 0.99994 0.99964

()Xo = nH for for |Xe| <5 mm
n 17.68 15.67 11.67 8.42
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Fig. 1. (a) Four-button BPMs on a circular beam chamber of raditieee (agy) is the
button position in the first quadrant, 48) is the button diameter, and,(8,) is the beam
position. (b) Elliptical beam chamber with major and minor radiidofosh ¢ and
d sinh u, and foci at d. (&, 8p) is the four-button BPM position in the first quadrang, (u

AB) is the button diameter, and,(8,) is the beam position.
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Fig.2. Equipotential lines for sum signals from four-button BPMs installed on the storage
ring beam chamber. The 10-mm-diameter buttons are located40(mm,£19.0 mm)
flush with the chamber surface. There are 20 equipotential lines between the BPMs

(which were applied +1.0 V) and the grounded beam chamber.
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Fig. 3. Top:

Forty equipotential lines for vertical signals between the top two BPMs at
+1.0 V and bottom two at —1.0 V. Bottom: Forty equipotential lines for horizontal signals

between the right two BPMs at +1.0 V and the left two at —=1.0 V.



Vertical signal vs. vertical beam position
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Fig. 4. Vertical (Q) (top) and sum (€) (bottom) signals vs vertical beam positipnat
selected horizontal beam positions. The signal units are in volts when the BPMs are
applied plus or minus one volt.



Normalized vertical signal vs. vertical beam position
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Normalized vertical signal vs. horizontal beam position

1-0_IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII_

08 - -1 e L Lo
gm 0.6
HJ:h
)
= 04 —
=
% B _
o L2 i T-yo=0 |
- , , , , _D_y0:5 -
0.0 ot~ T--T— - T T - - T4 — 24— y0=10 i
C : : : : : —8—yo0=15 | ]|
_0.2_||||I||||I||||I||||I||||I||||I||||I||||_
-20 -15 -10 5 0 5 10 15 20

X (mm)

Fig. 5. Normalized vertical signa(/Qs) vs vertical beam position (top) and horizontal
beam position (bottom).



Horizontal signal vs. horizontal beam position
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Fig. 6. Horizontal (Q) (top) and sum (Q (bottom) signals vs horizontal beam positigrat
selected vertical beam positions. The signal units are in volts when the BPMs are applied
plus or minus one volt.



Normalized horizontal signal vs. horizontal beam position
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Fig. 7. Normalized horizontal signaR{Qs) vs horizontal beam position (top) and
vertical beam position (bottom).



