Viscosity and Elliptic Flow
 Derek Teaney SUNY at Stonybrook

- Work done in collaboration with Kevin Dusling hep-ph/0710.5932

Outline

1. Viscosity of Heavy Ion Collisions
2. Remarks about relativistic viscous hydro
3. Solve viscous hydro in 2+1 dimensions with Bjorken symmetry.
4. Show the important effects for Heavy Ion Collisions
5. Discuss Limitations

Observation:

There is a large momentum anisotropy:

$$
v_{2} \equiv \frac{\left\langle p_{x}\right\rangle^{2}-\left\langle p_{y}\right\rangle^{2}}{\left\langle p_{x}\right\rangle^{2}+\left\langle p_{y}\right\rangle^{2}} \approx 20 \%
$$

Interpretation

- The medium responds as a fluid to differences in X and Y pressure gradients
- Hydrodynamic models work well enough.

Is the system Large enough? Does it live Long enough for hydro?

How Long and Large is Long/Large Enough?

- Need the mean free path times expansion rate less than one

$$
\ell_{\text {m.f.p. }} \times \text { Expansion Rate } \ll 1
$$

How Long and Large is Enough?

- Quick estimate of the mean free path:
- So the Figure of Merit:

How Long and Large is Long/Large Enough ?

- What is the mean free path? $\ell_{m f p} \equiv \frac{\eta}{e+p}$
- The mean free path should be less than the expansion rate $\frac{1}{\tau}$:

$$
\underbrace{\frac{\eta}{e+p}}_{\ell_{m} f p} \frac{1}{\tau} \ll 1
$$

- Then using the relation: $(e+p)=s T$.

1. η / s needs to be small to have interacting QGP at RHIC.
2. Even if η / s is small, dissipative effects are significant!

Estimates of η / s for the initial stage of the QGP

1. Perturbative QCD - Kinetic Theory

Arnold, Moore, Yaffe. $\eta \approx 150 T^{3} \frac{1}{g^{4}}$. Based upon kinetic theory of quarks and gluons. Set $\alpha_{s} \rightarrow 1 / 2$ and $m_{D} \rightarrow$ a reasonable value

$$
\left(\frac{\ell_{m f p}}{\tau}\right) \approx \underbrace{0.3}_{\eta / s} \underbrace{\frac{1}{\tau T}}_{\sim 1} \quad \ell_{m f p} \approx 4 \text { thermal wavelengths }
$$

2. Strongly Coupled conformal $\mathrm{N}=4 \mathrm{SYM}$ - AdS/CFT

Son, Starinets, Policastro No kinetic theory exists.

$$
\left(\frac{\ell_{m f p}}{\tau}\right)=\underbrace{\frac{1}{4 \pi}}_{\eta / s} \underbrace{\frac{1}{\tau T}}_{\sim 1}
$$

$$
\ell_{m f p} \approx 1 \text { thermal wavelength }
$$

With these sorts of numbers (not weakly coupled) expect some collectivity.

- Classical Massless Particles with Constant Cross Section

$$
\frac{\eta}{s} \sim \frac{1}{4 \pi}
$$

Summary at time τ_{0}

$$
T_{o} \sim 300 \mathrm{MeV} \quad \text { and } \quad \tau_{0} \sim 1 \mathrm{fm}
$$

- Find:

$$
\left(\frac{\Gamma_{s}}{\tau}\right) \approx 0.1-0.4
$$

How does $\frac{\Gamma_{s}}{\tau}$ evolve?

- 1D Expansion - scales set by temperature.
- 3D Expansion - scales fixed.

How does Γ_{s} / τ evolve?
Bjorken Expansion

beam direction

- 1D Bjorken Expansion - scales set by temperature
- Temperature decreases $T \sim \frac{1}{\tau^{1 / 3}}$

$$
\frac{\Gamma_{s}}{\tau} \sim \frac{\#}{\tau T} \sim \# \frac{1}{\tau^{2 / 3}}
$$

Viscous effects get steadily smaller

Viscous corrections to Ideal Hydrodynamics and Longitudinal Expansion

$$
T^{i j}=p \delta^{i j}+\eta\left(\partial^{i} v^{j}+\partial^{j} v^{i}-\frac{2}{3} \delta^{i j} \partial_{l} v^{l}\right)
$$

For a Bjorken expansion we have: $T_{v i s}^{z z} \sim \eta \partial^{z} v^{z} \sim-\frac{\eta}{\tau}$

$$
\begin{aligned}
T^{\mu \nu} & =T_{o}^{\mu \nu}+T_{v i s}^{\mu \nu} \\
& =\left(\begin{array}{llll}
\epsilon & & \\
& p & & \\
& & & \\
& & p & \\
& & & p
\end{array}\right)+\left(\begin{array}{cccc}
0 & & \\
& \frac{2}{3} \frac{\eta}{\tau} & & \\
& & \frac{2}{3} \frac{\eta}{\tau} & \\
& & & -\frac{4}{3} \frac{\eta}{\tau}
\end{array}\right)
\end{aligned}
$$

- The Longitudinal Pressure is reduced by $\frac{4}{3} \eta / \tau$.
- The Transverse Pressure is increased by $\frac{2}{3} \eta / \tau$.

Expect p_{T} spectra to be pushed out to larger p_{T} In a Radially Symmetric way

How does Γ_{s} / τ evolve?

- 3D Expansion - scales fixed
- Density decreases $n \sim \frac{1}{\tau^{3}}$

$$
\frac{\Gamma_{s}}{\tau} \sim \frac{\#}{\tau n \sigma_{o}} \sim \# \frac{\tau^{2}}{\sigma_{o}}
$$

Viscous effects get rapidly larger

Solving the Relativistic Navier Stokes Equations RNSE

- The RNSE as written can not be solved. There are unstable modes which propagate faster than the speed of light.
- Why? Because the stress RNSE tensor is not allowed time to change.

$$
\left.T_{v i s}^{i j}\right|_{\text {instantly }}=\eta\left(\partial^{i} v^{j}+\partial^{j} v^{i}-\frac{2}{3} \delta^{i j} \partial_{i} v^{i}\right)
$$

- Can make many models which relax to the RNSE.

$$
\left.T_{v i s}^{i j}\right|_{\omega \rightarrow 0} \sim \eta\left(\partial^{i} v^{j}+\partial^{j} v^{i}-\frac{2}{3} \delta^{i j} \partial_{i} v^{i}\right)
$$

- In the regime of validity of hydrodynamics the models all agree with each other and with RNSE.

Can solve these models

Relaxation Time Approximation

- Bjorken Expansion - Normal Viscous Hydro

$$
\frac{d e}{d \tau}=-\frac{e+T^{z z}}{\tau} \quad T_{e q}^{z z}=p-\overbrace{\frac{4}{3} \frac{\eta}{\tau}}^{\partial_{z} u^{z}}
$$

- Bjorken Expansion - Relaxation Time Approximation

$$
\frac{d e}{d \tau}=-\frac{e+T^{z z}}{\tau} \quad \text { and } \quad \frac{d T^{z z}}{d \tau}=-\frac{\left(T^{z z}-T_{e q}^{z z}\right)}{\tau_{R}}
$$

- What are the appropriate initial conditions for this second equation?

$$
\text { Answer: } T^{z z} \simeq T_{e q}^{z z}
$$

Solution of Relaxation Time Equations

Relaxation is practically the same as Navier Stokes
Made precise - L. Lindblom

Diffusion Equation

$$
\partial_{t} n-D \nabla^{2} n=0
$$

- Specifies the form of the spectral density at small k and ω

$$
G_{R}(\omega, k)=\frac{1}{\partial_{t}-D \nabla^{2}}=\frac{1}{-i \omega+D k^{2}}
$$

Relaxation Time Approximation:

$$
\begin{aligned}
\partial_{t} n+\partial_{x} j & =0 \\
\partial_{t} j & =-\frac{(j+D \nabla n)}{\tau_{R}}
\end{aligned}
$$

- Solve the system equations and find the retarded correlator

$$
\frac{\operatorname{Im} G_{R}(\omega)}{\omega}=\frac{D}{\pi} \frac{1}{1+\left(\omega \tau_{R}\right)^{2}}
$$

Spectral weight for a free theory:

$$
\int e^{+i \omega t-i \mathbf{k} \cdot \mathbf{x}}\left\langle\left[J^{i}(\mathbf{x}, t) J^{i}(0,0)\right]\right\rangle
$$

Free Spectral Function:

$$
\rho(\omega)=\underbrace{\frac{N_{c}}{8 \pi^{2}} \omega^{2} \sqrt{1-\frac{4 M^{2}}{\omega^{2}}}\left(2+\frac{4 M^{2}}{\omega^{2}}\right)}_{\text {Vacuum }}+\underbrace{\chi_{s} \frac{T}{M} \omega \delta(\omega)}_{\text {Thermal }}
$$

- Interactions will smear the delta function:

$$
\delta(\omega) \rightarrow \frac{\eta_{D}}{\omega^{2}+\eta_{D}^{2}} \quad \eta_{D}=\frac{T}{M D}
$$

- The total integral under the delta function is constant:

Real Spectral Densities:

- Relaxation models are a one parameter ansatz for the spectral density at small frequency which satisfy the f-Sum Rule

Cartoon of Weak Coupling

Weak Coupling Sum Rules and Short Time Response

- f-Sum Rule at Weak Coupling

$$
\underbrace{\int d \omega \frac{\operatorname{Im} G_{R}^{i i}(\omega)}{\omega}}_{\text {Short Times }}=\left\langle v_{\mathrm{th}}^{2}\right\rangle
$$

- Substitute $\frac{G_{R}(\omega)}{\omega} \propto \frac{1}{1+\left(\omega \tau_{R}\right)^{2}}$

$$
\underbrace{\frac{D}{\tau_{R}}}_{\text {Short Times }}=\left\langle v_{\mathrm{th}}^{2}\right\rangle
$$

Use short and long time parameters:

$$
\begin{aligned}
\partial_{t} n+\partial_{x} j & =0 \\
\partial_{t} j & =-\frac{(j+D \nabla n)}{\tau_{R}}
\end{aligned}
$$

- Long Time Parameters: D
- Short Time Parameters: $\frac{D}{\tau_{R}}=\left\langle v_{\mathrm{th}}^{2}\right\rangle$
- Results should (and will!) be insensitive to short time response

Shear Visocisty and Strong Coupling:

$$
\chi(k, \omega)=\int e^{+i \omega t-\mathbf{k} \cdot \mathbf{x}}\left\langle\left[T^{x y}(t), T^{x y}(0)\right]\right\rangle
$$

What happens at strong coupling?

Strong Coupling and the AdS/CFT Correspondence:

- A method to compute correlators of the stress tensor in $N=4$ Super Yang Mills when $g^{2} N \rightarrow \infty$.
- $N=4$ has 6 Scalars +1 Guage Boson $=4$ Left handed fermions
- Following strongly Son, Starinets, and Policastro.
- They computed the shear viscosity, $\frac{\eta}{s}=\frac{1}{4 \pi T}$
- They left the spectral density for someone with a computer and interest.

N=4 Spectral Density

- Absolutely no hint of structure. No hint of a Debye scale of any kind
- The spectral density oscillates arround the zero temperature result with exponentially decreasing amplitude
- Lorentzian ansatz may be a poor choice.

Euclidean Correlator: Free and Strongly Interacting

- If you use perturbation theory and do a reasonable job on the pressure - You might trick yourself into thinking its true

Hydro Simulations

Model Equations (H.C. Ottigner 2001)

1. Imagine a tensor $c_{i j}$ which relaxes quickly to $\partial_{i} v_{j}+\partial_{j} v_{i}$

$$
\partial_{t} c_{i j}-\left(\partial_{i} v_{j}+\partial_{j} v_{i}\right)=\frac{\bar{c}_{i j}}{\tau_{0}}+\frac{\left\langle c_{i j}\right\rangle}{\tau_{2}}
$$

where $\bar{c}_{i j}=(\operatorname{tr} \mathbf{c}) \delta_{i j}$ and $\left\langle c_{i j}\right\rangle=c_{i j}-\frac{1}{3} \bar{c}_{i j}$

- For small τ_{0} and τ_{2} we have:

$$
c_{i j} \approx \tau_{0} \delta_{i j} \partial_{i} v^{i}+\tau_{2}\left(\partial_{i} v_{j}+\partial_{j} v_{i}-\frac{2}{3} \delta_{i j} \partial_{l} v^{l}\right)
$$

2. Then the "effective" pressure for small strains is given by:

$$
T_{i j} \approx p\left(\delta_{i j}-a_{1} c_{i j}\right)
$$

3. Compare this to the canonical form:

$$
\begin{gathered}
T_{i j} \approx p \delta_{i j}-\zeta \partial_{i} v^{i}-\eta\left(\partial_{i} v_{j}+\partial_{j} v_{i}-\frac{2}{3} \delta_{i j} \partial_{l} v^{l}\right) \\
\text { Can map, }\left(\tau_{0}, \tau_{2}, a_{1}\right) \rightarrow\left(\zeta, \eta, v_{\mathrm{th}}^{2}\right)
\end{gathered}
$$

Running Viscous Hydro in Three Steps

1. Run the evolution and monitor the viscous terms
2. When the viscous term is about half of the pressure:

- The models disagree with each other.
- $T^{i j}$ is not asymptotic with $\sim \eta\left(\partial^{i} v^{j}+\partial^{j} v^{i}-\frac{2}{3} \delta^{i j} \partial_{l} v^{l}\right)$

Freezeout is signaled by the equations.
3. Compute spectra:

- Viscous corrections to the spectra grow with p_{T}

$$
f_{o} \rightarrow f_{o}+\delta f
$$

Maximum p_{T} is also signaled by the equations.

Bjorken Solution with transverse expansion: Step $1(\eta / s=0.2)$

- First the viscous case does less longitudinal work.
- Then the transverse velocity grows more rapidly because the transverse pressure is larger.
- The larger transverse velocity then reduces the energy density more quickly than ideal hydro.

Viscous corrections do NOT integrate to give an $\mathrm{O}(1)$ change to the flow.

Freezeout

- Freezeout when the expansion rate is too fast

$$
\tau_{R} \partial_{\mu} u^{\mu} \sim 1
$$

- The viscosity is related to the relaxation time

$$
\frac{\eta}{e} \sim v_{\mathrm{th}}^{2} \tau_{R} \quad p \sim e v_{\mathrm{th}}^{2}
$$

- So the freezeout cirterion is

$$
\frac{\eta}{p} \partial_{\mu} u^{\mu} \sim 1
$$

Monitor the viscous terms and compute freezeout: Step 2

- Contours where viscous terms become $\mathrm{O}(1)$

The space-time volume where hydro applies depends strongly on η / s

Decoupling Freezout and the Viscosity

- Freezeout at constant χ.

$$
\frac{\eta}{p} \partial_{\mu} u^{\mu}=\frac{\eta}{s} \underbrace{\frac{4}{T} \partial_{\mu} u^{\mu}}_{\equiv \chi}
$$

- The freezeout surface is independent of η / s also works for the ideal case

Elliptic Flow versus Time - No δf

$$
\alpha_{2}=\frac{\left\langle p_{x}^{2}-p_{y}^{2}\right\rangle}{\left\langle p_{x}^{2}+p_{y}^{2}\right\rangle} \approx 2 v_{2}
$$

Result without δf is insensitive to η / s (except through freezeout)

Elliptic Flow versus Time - with δf

- Corrections to thermal distribution function $f_{0} \rightarrow f_{0}+\delta f$
- Must be proportional to strains
- Must be a scalar
- General form in rest frame and ansatz

$$
\delta f=F(|\mathbf{p}|) p^{i} p^{j} \pi_{i j} \Longrightarrow \delta f \propto f_{0} p^{i} p^{j} \pi_{i j}
$$

- Can fix the constant

$$
p \delta^{i j}+\pi^{i j}=\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{p^{i} p^{j}}{E_{\mathbf{p}}}\left(f_{0}+\delta f\right)
$$

find

$$
\delta f=\frac{1}{2(e+p) T^{2}} f_{o} p^{i} p^{j} \pi_{i j}
$$

Elliptic Flow versus Time - with δf

$$
\alpha_{2}=\frac{\left\langle p_{x}^{2}-p_{y}^{2}\right\rangle}{\left\langle p_{x}^{2}+p_{y}^{2}\right\rangle} \approx 2 v_{2}
$$

Elliptic Flow as a function of viscosity and $p_{T}, \eta / s=0.2$

No delta fand Close to Ideal Curvı

No delta f and Close to Ideal Curve

$$
\eta\left\langle\partial^{i} v^{j}\right\rangle=\eta\left(\partial^{i} u^{j}+\partial^{j} u^{i}-\frac{2}{3} \partial_{l} u^{l} \delta^{i j}\right)
$$

Estimates the uncertainty

Compare to $\eta / s=0.05$

Conclusions:

- Viscosity does not change the ideal hydrodynamic solution much. Time is not very long.
- Viscosity signals the boundary of applicability of hydro
- Need $\eta / s<0.3$ in order that hydro describe a significant fraction of the collision space-time volume
- In order to obatin $v_{2}^{\text {vis }} \approx \frac{2}{3} v_{2}^{\text {ideal }}$ need $\eta / s<1 / 6$
- Large ambiguities for $\eta / s>0.3$

