Multigrid methods for primitive variable MHD (elliptic/hyperbolic) equations

Mark F Adams

Multigrid for elliptic operators

Multigrid V - cycle

Function u = MG-V(A,f)

- if A is small
 - u ← A⁻¹f
- else
 - $u \leftarrow S^{v1}(f, u)$
 - $r_H \leftarrow P^T(f Au)$
 - $u_H \leftarrow MG-V(P^TAP, r_H)$
 - u ← u + Pu_H
 - u ← S^{v2}(f, u)

- -- v1 steps of smoother (pre)
- -- recursion (Galerkin)
- -- v2 steps of smoother (post)

- Need only
 - 1) Coarse grid space (columns of P) for (Galerkin) correction
 - 2) (iterative) solver (aka, smoother) to actually solve the problem
 - Must complement the coarse grid correction
 - For isotropic Laplacian this "smoothes" the solution

Multigrid for MHD (hyperbolic/elliptic)

- Multigrid ideal elliptic op ... but hyperbolic?
- 1) Coarse grid correction doesn't resolve shocks
 Tokamak MHD doesn't have shocks …
- 2) Solver (smoother) to relax coarse grid sol.
- MG used for elliptic/hyperbolic systems in fluid flow (Euler equations)
 - Jameson, van Leer, Brandt, Yavneh, Dendy, LeVeque,
- And to some extent for Navier Stokes
 Mavriplis, Guillard

Multigrid for MHD (highly anisotropic)

- (highly) anisotropic equations are generically very hard to solve
- Two classic methods for MG:
 - 1) Course grid correction
 - Semi-coarsening
 - -2) Smoother
 - Line and plane smoothers
 - Use power of direct solvers judiciously

Non-linear multigrid

- The full non-linear problem can included in MG
- Incorporate full non-linear physical model on each (coarse) grid
- Potential of being fast
- Tricky to get to work because of close association to physics model
 - Eg, stability on the fine grid does not automatically imply stability on coarse grid