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An Interoperability Consideration in Selecting Domain Parameters
for Elliptic Curve Cryptography

Abstract– Elliptic curve cryptography (ECC) will be an important technology for electronic privacy and authen-
tication in the near future. There are many published specifications for elliptic curve cryptosystems, most of which
contain detailed descriptions of the process for the selection of domain parameters. Selecting strong domain parame-
ters ensures that the cryptosystem is robust to attacks. Due to a limitation in several published algorithms for doubling
points on elliptic curves, some ECC implementations may produce incorrect, inconsistent, and incompatible results if
domain parameters are not carefully chosen under a criterion that we describe. Few documents specify the addition or
doubling of points in such a manner as to avoid this problematic situation. The safety criterion we present is not listed
in any ECC specification we are aware of, although several other guidelines for domain selection are discussed in the
literature. We provide a simple example of how a set of domain parameters not meeting this criterion can produce
catastrophic results, and outline a simple means of testing curve parameters for interoperable safety over doubling.

1 Introduction

Elliptic curve cryptography (ECC) appears to be emerging as a technology of choice for key transport and
agreement in cryptosystems. ECC can be used to implement public key sytems that offer advantages in
both smaller key length and faster computation time over traditional public key systems like RSA and DSA.
ECC techniques can also be used to exchange shared secret keys for traditional symmetric cryptographic
algorithms like AES or triple-DES. Government and financial industries in the United States have begun the
slow process of adopting ECC in their systems.

The major advantage that ECC has over RSA and DSA is that the lengths of ECC keys scale linearly with
those of AES keys of equivalent strength. For example the security of 256 bit AES keys is equivalent to that
of 512 bit ECC keys, while it takes RSA keys of 15,360 bits to rival this strength. Keys of this length take
up a considerably disproportionate amount of storage space and capacity for transmission in comparison to
the security level they provide. Operations using keys of that length are also terribly expensive for smaller
mobile and wireless hosts of limited power and computational resources.

The basic building blocks of ECC systems are points on curves whose coordinates are members of a
number-theoretic field. The two fields typically employed are Fp, and F2m . Elements of Fp are integers from
0 to some prime p and the field operations of addition and multiplication are performed modulo p. Elements
of F2m are binary strings of length m and operations are performed bitwise across the field elements.

Several standards bodies have produced exact descriptions of the fields Fp and F2m , along with tech-
niques for working with curves over points whose coordinates are field members (for example ANSI [X9.62,
X9.63], IEEE [P1363], NIST [FIPS 186-2], and SECG [SEC 1]). These base standards are implemented in
commercial products and used in communications protocols (by the IETF, for example [GBWM+04]) to
provide cryptographic functions.
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We describe a glaring ommision from many ECC-explanatory documents and some of the standards,
that affects the selection of domain parameters for ECC. Many of the algorithms presented for doubling
points are not able to function for certain points on the axes and thus implementations may either fail or
produce incorrect results if those points are members of a selected domain and are encountered in some
calculation. We present one example of parameters that can generate an error condition, and show how it
results in a failed Diffie-Hellman key exchange. In addition to revising some of the standards to properly
specify the doubling operation, we make the recommendation that those selecting curves for use in practice
make explicit efforts to avoid using domain parameters that can create possible error situations.

2 Problem Description

Equation 1 is used to specify the points on an elliptic curve over field Fp with domain parameters a and b

chosen from Fp, where each point’s coordinates, x and y, are also elements of Fp.

y2 = x3 + ax + b (1)

Geometrically, addition of two points, (x1, y1) and (x2, y2), on such a curve is accomplished by drawing
a line through both points. This line will intersect the curve at some other point with coordinates (x3, y3).
The additive inverse of this point, (x3,−y3), is the desired sum. To double a point on a curve (add it to
itself), the same proceedure is performed, except since it is not possible to define a line with a single point,
instead a line tangent to the curve at the point to be doubled is used. With curves over Fp and F2m where
coordinates are discrete field elements and the shape of a curve is not easily visualized, a numeric method is
employed for adding and doubling points. The rules for adding and doubling points are clearly specified in
many of the ECC standards.

For points (x1, y1) and (x2, y2) on a curve over Fp, their sum, (x3, y3) is given by equation 2, where all
operations are done modulo p.

(x3, y3) = (λ2 − x1 − x2, λ(x1 − x3) − y1) (2)

For two distinct points, λ simply represents the slope between them and is given by equation 3, while
when doubling a point (x1 = x2 and y1 = y2), λ represents the slope of a tangent to the curve at that point
and is given by equation 4. Using these equations to compute λ, fractions are evaluated using multiplication
modulo p of of the numerator by the multiplicative inverse of the denomator in Fp.

λ =
y2 − y1

x2 − x1

(3)

λ =
3x2

1 + a

2y1

(4)

These definitions of λ are always accompanied in the literature by two restrictions. Since equation 1
only contains the term y2 in the y-coordinate, no more than two points exist with the same x-coordinate.
Thus, the first restriction is that if adding two distinct points such that x1 = x2, then y1 ≡ −y2(mod p), so
the points are additive inverses and their sum is (0, 0). This intuitively makes since, as a line between the
points would lie perpendicular to the x-axis and never be able to intersect another point on the curve. In
this case, the normal addition rules are short-circuited and the point (0, 0), which is, by definition, present
on every curve, is returned. The second restriction is that for doubling a point, the y-coordinate must not be
0. In many stadards, no algorithm is given for doubling points that lie on the x-axis. At least one standard
[P1363] specifies that the double of such a point yeilds (0, 0), however several other documents ignore this
situation, and present no information on how it is to be handled.
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The situation is similar for elliptic curves over F2m . Such curves are defined by the parameters m, a,
and b, where m is the length in bits of each field element, and a and b set the curve’s shape according to
equation 5.

y2 + xy = x3 + ax2 + b (5)

In the case of such curves over F2m , doubling a point (x1, y1) into the point (x3, y3) is accomplished
via equation 6 with λ given by equation 7. Field addition is done using exclusive-or on the bit strings and
field multiplication yielding an m bit string whose value depends on the basis used1.

(x3, y3) = (λ2 + λ + a, x2
1 + (λ + 1)x3) (6)

λ = x1 +
y1

x1

(7)

In the case of equation 7, to avoid a denominator of 0, the point may not lie on the y-axis, or x1 6= 0m.
In some documents, the algorithm’s output is unspecified if this condition is not met, although at least one
[P1363] properly returns (0, 0) in such cases.

Both curves in Fp and those in F2m may contain points for which the doubling operation is unspecified.
This is evident, yet not addressed in some of the ECC standards. One of the standards [X9.63] even uses an
example curve containing such a point. The curve over Fp with p = 23, a = 1, and b = 1 contains the point
(4, 0). This is clearly on the curve as 02 = 0 ≡ 0(mod23), and 43 + 1(4) + 1 = 69 ≡ 0(mod23), yet the
standard does not specify how it is to be doubled.

With the doubling operation inconsistently specified, implementations may not always perform in either
correct or compatible ways; in fact we have seen software that does this incorrectly. Leaving point doubling
unspecified for certain points on elliptic curves would pose no problem if point doubling was not an integral
part of ECC systems. Unfortunately, this is not the case. Multiplication of points by scalars is a crucial
operation needed for elliptic curve Diffie-Hellman (ECDH) key exchanges. ECDH key exchanges are used
to establish shared secret keys for encryption and authentication between two parties over an insecure chan-
nel. The mechanism is explained in section 3. The problem is that all of the common algorithms for finding
scalar multiples of a point involve doubling it and doubling points which are generated as intermediate val-
ues during the computation of the final answer. This means that the problem may not be hedged by simply
avoiding the use of certain forbidden points, as these points may be generated as intermediate results during
a computation. Instead, we should prevent the use of curves containing such points, which is only slightly
more difficult.

3 Example Failed Key Exchange

ECDH is an adaptation of the traditional Diffie-Hellman key exchange using points on elliptic curves as the
insecurely transmitted information. Each party generates a random scalar, k, and agrees on a set of elliptic
curve domain parameters along with an initial point, P , on the chosen curve. Each party then uses P and its
value of k to generate a new point Q = kP using scalar multiplication. These values of Q are public keys,
while the k values are private keys. The Q values are exchanged and each side multiples its received Q by
its k to obtain the shared secret key S = kQ.

For example, users i and j agree to use some curve with point P . They select ki and kj respectively
and generate Qi = kiP and Qj = kjP , then transmit Qi and Qj over non-secured public channels. User i

computes S = kiQj = kikjP and user j computes S = kjkiP . Scalar multiplication being commutitive,

1Whether the basis is polynomial or normal is irrelevent for our purposes, the formula for doubling a point is the same.
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these values of the shared secret key are identical. Both users may then safely use S in symmetric key
encryption algorithms, for example.

The ECDH algorithm relies heavily on scalar multiplication of points. There are several algorithms of
varying efficiency for computing this function. The simplest is merely to add P upon itself k − 1 times. For
k > 1 however, this will involve doubling P as the initial step2. Many other more efficient (and commonly
implemented) methods also rely on doubling, including the binary method, the addition-subtraction method,
the window method, and Lim and Lee’s Comb method (all these methods are well described by Lopez
and Dahab [LD00]). More recent and even faster methods also rely on repeated doublings, and clearly do
not avoid the problem we have described, if doubling certain points is undefined. All of the listed scalar
multiplication algorithms simply assume a well-defined doubling algorithm. As we have shown, this is
simply not the case for at least certain points on some curves.

None of the standards documents that fail to include full doubling algorithms, specify amongst the re-
quirements for acceptable curves that they do not contain any points that would violate their algorithms’
constraints on doubling. Thus naive implementers may allow such curves to be used, and if a point whose
doubling is undefined is generated as an intermediate result in a scalar multiplication, bad things may hap-
pen. If implementers are not ECC experts and do not realize (0, 0) is the proper result of some doublings,
they may consider the result incomputable and throw an exception or return an error value. This could ren-
der an ECDH exchange a failure. In an implementation that ignores the restriction and attempts to double
such points with an incomplete algorithm, the result can be a point not on the curve. This will clearly be
troublesome and either lead to an error condition if checking is performed, or (as we shall demonstrate)
inconsistent shared secret keys may be generated, making symmetric encryption and decryption operations
unable to decode encoded data. These are both problematic situations, which could have been avoided in
the specifications.

As an example of how doubling of an intermediate point not on the curve can lead to inconsistent keys,
we present an example using the previously discussed curve over Fp, with p = 23, a = 1, and b = 1.
The point (4, 0) will be generated as an intermediate result of the addition-subtraction method of scalar
multiplication, and a point not on the curve will be generated as the final result due to the addition function
attempting to compute the double of a point on the x-axis without the proper algorithm.

Take the point P = (19, 18), which by equation 1 can be verified as on the example curve. Multiply this
point by the scalar k = 427. Following the addition-subtraction method, we first convert 427 into its non-
adjacent form (NAF), and initialize a return value Q to (0, 0). The chosen scalar multiplication algorithm
then iterates through the values in the NAF form of k. For each entry in the NAF, Q is doubled, and if the
entry is a 1, then the initial point (19, 18) is also added to Q, while if the entry is a -1, then the additive
inverse of the initial point (19,−18) = (19, 5) is added to Q.

We take the NAF of 427, u = [−1, 0,−1, 0,−1, 0,−1, 0, 0, 1], and list out the intermediate values of
Q = kP with respect to each NAF entry Subscripts referring to the elements of the NAF start with 0 as
the rightmost element of u, increasing to the left. Our point addition algorithm is that listed by Lopez and
Dahab [LD00], which (incorrectly) specifies no precondition that points not lie on the x-axis, and does not
check for this condition as part of the algorithm, and does not properly return (0, 0) in such cases.

initialize → Q = (0, 0)

u[0] = 1 → Q = (19, 18)

u[1] = 0 → Q = (12, 19)

u[2] = 0 → Q = (5, 19)

2Using k ∈ {0, 1} makes no sense as the result will be (0, 0) or P , either of which an eavesdropper could identify from the
domain parameters and deduce k.
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u[3] = −1 → Q = (11, 3)

u[4] = 0 → Q = (4, 0)

Up to this point in the execution, there have not been any problems with doubling Q nor performing the
subsequent possible addition of P or −P . All of the generated points have been on the curve. However,
the latest value of Q generated is (4, 0), which (while on the curve) lies on the x-axis. The next step
of the algorithm, since there are more elements of the NAF, is to double Q. Since neither the addition
nor multiplication algorithms we are using here make checks on Q before following the flawed doubling
proceedure, it is interesting to see the result.

u[5] = −1 → Q = (15, 0)

u[6] = 0 → Q = (16, 0)

u[7] = −1 → Q = (14, 0)

u[8] = 0 → Q = (18, 0)

u[9] = −1 → Q = (21, 22)

Doubling (4, 0) and adding −P to it gives (15, 0), which from equation 1 does not lie on the curve
specified. Using this value of Q and finishing through the elements of the NAF of 427, the final result
returned by the scalar multiplication is (21, 22), which is also clearly not on the curve, as it does not satisfy
equation 1.

To see why this is a problem, consider the case where two parties decide to use an ECDH key exchange
to establish a shared secret key for a session. They agree to use the example curve that we have discussed,
and the point P = (19, 18). One of the parties draws k = 427 as its random bits. The point it generates as
Q = kP will not lie on the selected curve. An error occurs in the exchange whether the generating party
checks Q and decides it is invalid, or transmits it and lets the other party notice that it is invalid. The results
are worse yet if the other party receives the bogus Q and generates a session key from it. This key will be
unusable as it is generated from a point that is not on the curve and the session keys generated by each party
will not agree, preventing them from communicating.

4 Avoidance

Since on-axis points (which are by some definitions undoublable) may be generated as intermediate results
of scalar multiplication, avoiding the doubling problem is more difficult than simply not using such points.
In an ECDH key exchange, if such a point is encountered and must be doubled during a scalar multiplication,
it is also insufficient to merely start over using another multiplication algorithm, another k, or another set of
curve parameters. Using another algorithm is a poor attempt at a solution, as even if the problem is avoided
locally, there is generally no way to ensure the other party will not run into it. Using another value of k is
also a bad idea, as the curve obviously contains troublesome points which may be encountered again, and
generating more random bits for another k may be relatively expensive on some systems. Curve domain
paramenters will have typically been agreed upon ahead of time and renegotiating them is likely to be a bad
idea, as schemes that allow this will be open to many forms of attack.

The most foolproof solution is to simply not allow curve domain parameters that specify curves with
disallowed points under certain poorly-specified doubling operations. This involves checking the domain
parameters in the curve generating function over the elements of the underlying field, Fp or F2m . For
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instance, we could clearly and easily predict problems with Fp, where p = 23, a = 1, and b = 1, by solving
for x in equation 1 with y = 0, in the range 0 ≤ x < 23, and seeing that x = 4 satisies the relation. In
general, verifying that no disallowed doublings can occur may be accomplished via two means. The brute
force approach is to iterate through the members of the underlying field, testing that no members allow the
restricted coordinate to be zero.

A more elegant approach would be to solve for the roots of the point generating functions (equations 1
and 5) with the restricted variable set to 0 and the chosen domain parameters. If none of the roots are
members of the selected field, then the set of elliptic curve domain parameters is safe to use, otherwise it is
not. For curves over Fp, the roots of equation 8 are used and for curves over F2m , equation 9 is used.

x3 + ax + b = 0 (8)

y2 = b (9)

Equation 8 can be easily solved using the domain parameters a and b in the general proceedure for
solving cubic equations. Since at least two of the obtained roots are complex, if the other does not lie in the
prime field selected, then the domain parameters are safe. Equation 9 is derived from equation 5 by setting
x = 0. Obtaining a square root function for the appropriate basis in the underlying field is all else needed
for F2m curves.

As an example, take the curve over Fp specified by p = 23, a = 1, b = 4, which only differs from the
curve we have already seen to be poor by the b parameter. We easily see that there are no zeros of x3 +x+4
in F23, and thus that the curve generated by those parameters is safe for use. This test would have easily
caught the example curve we showed to be a bad choice with b = 1, as we would find a non-complex root
of x3 + x + 1 in F23 at x = 4 using the cubic formula.

5 Conclusion

We have described a problem with the current specifications for elliptic curve cryptography in that they do
not disallow the use of curves containing points on the axes which may not be doublable using certain ECC
specifications. We have shown that the accidental use of such curves may lead to failed key exchanges, and
be confusing to debug. We have outlined a simple means of verifying that a given set of domain parame-
ters is safe with regards to this condition for curves over both Fp and F2m . Adding this verification check
to the process for selecting curves for cryptography will allow use of the current point addition and dou-
bling algorithms and scalar multiplication algorithms (and running code) without modification, and prevent
doubling-related problems from arising. Restricting the usable curve domain parameters in this way does
not influence the degree of security provided by ECC techniques. Ideally, we would fix all insufficient stan-
dards documents to fully specify doubling, however we have no effective way of making previously written
code compliant, and so must select curves so as to avoid possible problems.
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