Elliptic Flow Analysis at BRAHMS

Charged-particle anisotropy over pseudorapidity and transverse momentum ranges of $0 < \eta < 3$ and 0 < pt < 3 in AuAu Collisions at \sqrt{s} NN = 200 GeV

Current status of BRAHMS elliptic flow analysis

Hironori Ito BNL

BRAHMS Collaboration

I.G. Bearden⁷, D. Beavis¹, C. Besliu¹⁰, Y. Blyakhman⁶, J.Brzychczyk⁴, B. Budick⁶,
H. Bøggild⁷, C. Chasman¹, C. H. Christensen⁷, P. Christiansen⁷, J.Cibor⁴, R.Debbe¹,
E. Enger¹², J. J. Gaardhøje⁷, M. Germinario⁷, K. Grotowski⁴, K. Hagel⁸, O. Hansen⁷,
A.K. Holme¹², H. Ito¹, E. Jacobsen⁷, A. Jipa¹⁰, J. I. Jordre¹⁰, F. Jundt², E. Johnson¹¹,
C.E.Jørgensen⁷, R. Karabowicz⁴, T. Keutgen⁹, E. J. Kim⁵, T. Kozik³, T.M.Larsen¹²,
J. H. Lee¹, Y. K.Lee⁵, G. Løvhøjden², Z. Majka³, A. Makeev⁸, B. McBreen¹,
M. Mikkelsen¹², M. Murray¹¹, J. Natowitz⁸, B.S.Nielsen⁷, K. Olchanski¹, D. Ouerdane⁷,
R.Planeta⁴, F. Rami², D. Roehrich⁹, B. H. Samset¹², D. Sandberg⁷, S. J. Sanders¹¹,
R.A.Sheetz¹, Z.Sosin³, P. Staszel⁷, T.S. Tveter¹², F.Videbæk¹, R. Wada⁸,
A.Wieloch³ and I. S. Zgura¹⁰

¹Brookhaven National Laboratory, USA, ²IReS and Université Louis Pasteur, Strasbourg, France
 ³Jagiellonian University, Cracow, Poland, ⁴Institute of Nuclear Physics, Cracow, Poland
 ⁵Johns Hopkins University, Baltimore, USA, ⁶New York University, USA
 ⁷Niels Bohr Institute, University of Copenhagen, Denmark
 ⁸Texas A&M University, College Station. USA, ⁹University of Bergen, Norway
 ¹⁰University of Bucharest, Romania, ¹¹University of Kansas, Lawrence, USA
 ¹² University of Oslo Norway

Size of created medium?

Vast majority of data as well as models about elliptic flow concentrates on describing phenomena at midrapidity.

That is great, but how about longitudinal information?

Elliptic flow at Midrapidity

At midrapidity, several measurements of elliptic flow have been reported at RHIC.

Hydrodynamic models describe the data well up to $\sim 2 GeV/c$

Phys. Rev. Lett. 89 (2002) 212301-1

Not at midrapidity

Phys. Rev. Lett. 88 202301 (2002)

At forward and backward rapidities, understanding of v2 is not quite sufficient.

The model seems to follow the pseudorapidity distribution.

The data exhibits sharp triangular shape.

PRC 65 (2002) 011901

BRAHMS Detector System

Two rotatable spectrometers: MRS and FS Small solid angles

Modification to the SMA detector

Up to RUN03, BRAHMS had not been able to measure event planes.

SMA is rotated 90 deg normal to the beam axis.

Before

Silicon has two rings

6 segments per 2π

After

42 segments per 2π

Idea to measure event plane and flow

Measure event plane by global detectors: SMA and BBC

Look at the correlation between the angle between observed event angle and particle angle measured in the tracking detectors (MRS and FS).

Complication?

They are small solid angle spectrometers.

--- require large number of events.

--- may require corrections due to the missing solid angles.

Equations

$$E\frac{d^{3}N}{d^{3}p} = \frac{1}{2\pi} \frac{d^{2}N}{p_{t}dp_{t}dy} (1 + \sum_{n=1}^{\infty} 2v_{n}\cos(n(\phi - \Psi_{r})))$$

Methods describe by A. M. Poskanzer and S. A. Voloshin Phys. Rev. C58 (1998) 1671

Reaction plane angle:

$$X_{n} = \sum_{i=1}^{N} w_{i} n_{i}^{ch} \cos(n \phi_{i})$$
$$Y_{n} = \sum_{i=1}^{N} w_{i} n_{i}^{ch} \sin(n \phi_{i})$$

 $\langle \cos(n(\phi - \Psi_n)) \rangle$

 $v_n^{observed}$

 $\langle \cos(n(\Psi_n - \Psi_r)) \rangle$

vobserved Vn

vreau

n

$$\Psi_n = \frac{1}{n} \arctan\left(\frac{\sum_{i=1}^{N} w_i n_i^{ch} \sin\left(n\phi_i\right)}{\sum_{i=1}^{N} w_i n_i^{ch} \cos\left(n\phi_i\right)}\right)$$

Currently, the preliminary data suggests the event plane resolutions of ~ 27 deg with n = 2.

Conclusion

We can not show any results of elliptic flow at this time.

Can we measure v2 at $\eta=0, 1, 2$ and 3? Do we have enough events? Yes (Hopefully) Can we measure event plane? Yes.

Recently, it was pointed out that it is not necessary for flow measurement to know event planes.