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Abstract

The maximum principle is basic qualitative property of the solution of elliptic boundary value problems. The

preservation of the qualitative characteristics, such as maximum principle, in discrete model is one of the key

requirements. It is well known that standard linear finite element solution does not satisfy maximum principle

on general triangular meshes in 2D. In this paper we consider how to enforce discrete maximum principle for

linear finite element solutions for general elliptic equations with self-adjoint operator in 2D. First approach is

based on repair technique, which is a posteriori correction of the discrete solution. Second method is based on

constrained optimization. Numerical tests that include anisotropic cases demonstrate how our method works for

problems for which the standard finite element methods produce numerical solutions that violate the discrete

maximum principle.

1 Introduction

The maximum principle is basic qualitative property of the solution of elliptic boundary value problems. The
preservation of the qualitative characteristics, such as maximum principle, in discrete model is one of the key
requirements. It is well known that standard finite element methods can for some problems produce numerical
solutions violating a discrete maximum principle (DMP) which is the discrete analog of the maximum principle,
see, e.g., [1, 2, 3, 4, 5, 6, 7]. In the classical paper [8] Ciarlet and Raviart show that for the case of scalar isotropic
diffusion coefficient the standard linear finite element method applied to Poisson equation satisfies the DMP on
weakly acute triangular meshes. The weakly acute geometric condition is a typical condition under which some
numerical methods produce solutions satisfying the DMP. The uniform constant anisotropic diffusion tensor can
be transformed to the isotropic tensor (or the scalar diffusion coefficient) by rotating and scaling the coordinate
system, so that one can use the acute conditions in the transformed coordinates. However, often one cannot choose
the computational mesh or the anisotropy ratio is too big to provide a practical computational acute mesh in the
transformed coordinates.

The issues related to the DMP have been studied by many researches. Here we try to review the recent
contributions in the issues. The DMP for stationary heat conduction in nonlinear, inhomogeneous, and anisotropic
media is analyzed by Krizek and Liu in [9, 10]. The dependence of DMP on mesh properties for finite element
solutions of elliptic problems with mixed boundary conditions is considered by Karatson and Korotov in [11, 12].
Burman and Ern [13] have developed a nonlinear stabilized Galerkin approximation of the Laplace operator whose
solutions satisfy the DMP without the need to satisfy the acute condition. However, this requires solving a nonlinear
system of equations instead of a standard linear one. Le Potier has proposed a finite volume scheme for highly
anisotropic diffusion problems on unstructured meshes [2] and improved it to the nonlinear version [3] which is
monotone for a parabolic problem with sufficiently small time step. It has been further improved by Lipnikov et
al. in [6], resulting in a nonlinear monotone finite volume scheme for elliptic problems which keeps positivity of
the solution, however, can still violate the DMP. Mlacnik and Durlofsky [5] perform mesh optimization to improve
the monotonicity of the numerical solution for highly anisotropic problems. A new mixed finite volume scheme
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for anisotropic diffusion problems has been developed by Droniou and Eymard in [4], however, it does not satisfy
the DMP for highly anisotropic problems. The DMP has been investigated by means of discrete Green’s function
positivity by Draganescu et al. in [1]. The DMP for 1D problems with discontinuous coefficients is studied by
Vejchodsky and Solin in [14]. The criteria for the monotonicity of control volume methods on quadrilateral meshes
are derived by Nordbotten et al. in [7]. The elliptic solver on Cartesian grids for interface problems by Deng
et al. [15] uses the standard scheme away from the interface, and a positive scheme at the interface is derived
by using constrained optimization techniques. Hoteit et al. [16] study how to avoid violation of the DMP by the
mixed-hybrid finite-element method (MHFEM) applied to a parabolic diffusion problem and propose two techniques
reducing the MHFEM to finite difference methods obeying the DMP.

In this paper we consider how to enforce discrete maximum principle for linear finite element solutions for
general elliptic equations with self-adjoint operator in 2D. First approach is based on repair technique, [20, 21, 22],
which is a posteriori correction of the discrete solution. Second method is based on constrained optimization. The
quadratic optimization problem is related to variational formulation of elliptic boundary value problem and linear
constraints are explicitly introduced to satisfy discrete maximum principle.

In section 2, we introduce the discrete maximum principle for the elliptic equation with Dirichlet boundary
conditions. In section 3 we describe two new methods for enforcing discrete maximum principle. We start with
addressing an issue of keeping the solution conservative in section 3.1. The we describe a repair technique in
section 3.2. Method based on constrained optimization is described in section 3.3. Several problems (most with
strong anisotropy), for which the standard linear finite element method violates the DMP while our approach gives
numerical solution satisfying the DMP, are presented in section 4 for homogeneous elliptic equations and in section
5 for non-homogeneous equations. Some future plans are described in section 6.

2 Elliptic Boundary Value Problem. Maximum Principle. Discrete

Maximum Principle

We will consider general elliptic boundary value problem with self-adjoint operator L

Lu = −div (A · grad u(x)) = f(x),x ∈ Ω, u(b) = ψ(b),b ∈ ∂Ω. (1)

where A(x) is symmetric positive definite diffusion matrix

A =

(

axx axy

axy ayy

)

,

and f(x) is given function.
The maximum principle for an elliptic differential operator L is an important notion for elliptic problems. It

states, see, e.g. [17], that if a function u(x) satisfies Lu(x) ≥ 0 in a bounded domain x ∈ Ω then u(x) has the
maximum value on the boundary ∂Ω of Ω and vise versa. So for non-positive source if ∀x ∈ Ω, f(x) ≤ 0 then the
maximum principle states that u(x) has the maximum on the boundary, so that

∀x ∈ Ω, u(x) ≤ max
b∈∂Ω

ψ(b). (2)

For a non-negative source, if ∀x ∈ Ω, f(x) ≥ 0 then the maximum principle states that u(x) has the minimum on
the boundary, so that

∀x ∈ Ω, u(x) ≥ min
b∈∂Ω

ψ(b). (3)

For the homogeneous equation, i.e., zero source f(x) = 0 the maximum principle implies that for any solution of
this problem the value of u(x) at any internal point x of Ω is bounded by extremal boundary values ψ, so that

∀x ∈ Ω, min
b∈∂Ω

ψ(b) ≤ u(x) ≤ max
b∈∂Ω

ψ(b). (4)

When the source f changes the sign inside the domain Ω then the solution of the elliptic equation (1) might have
local extrema inside the domain Ω.

We will consider discretization of the (1) on triangular mesh in 2D domain Ω, where the functions u(x), f(x)
have discrete values Un, Fn at the mesh nodes n. We will use standard linear finite element (FEM) method. It is
well known that under some assumptions about mesh regularity the solution of standard linear FEM converges to
the solution of Dirichlet problem (1) with mesh refinement [19].

The discrete version of the maximum principle (2) for non-positive sources ∀n, Fn ≤ 0 states that for all nodes
n

∀n, Un ≤ max
xm∈∂Ω

Ψm, (5)
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where for the boundary nodes bm ∈ ∂Ω the discrete Dirichlet boundary conditions are given by Ψm = ψ(bm). The
discrete version of the maximum principle (3) for non-negative sources ∀n, Fn ≥ 0 states that for all nodes n

∀n, min
xm∈∂Ω

Ψm ≤ Un. (6)

Finally, the discrete version of the maximum principle (4) for the homogeneous states that for all nodes n

∀n, min
xm∈∂Ω

Ψm ≤ Un ≤ max
xm∈∂Ω

Ψm. (7)

As will be seen below, in the numerical tests there exist problems for which the unbounded solution Uu does
not satisfy one of the discrete maximum principles.

3 Enforcing the Discrete Maximum Principle

In this section we describe two methods to enforce discrete maximum principle. First approach is based on repair
technique, [20, 21, 22], which is a posteriori correction of the discrete solution. The repair procedure allows
correct discrete solution in such a way that discrete energy of the solution is preserved. Second method is based
on constrained optimization. The quadratic optimization problem is related to variational formulation of elliptic
boundary value problem and appropriate linear constraints (5),(6), or (7) are explicitly introduced to satisfy discrete
maximum principle.

3.1 Notion of the Conservation

Elliptic equation can be interpreted as a stationary heat equation with u being temperature. In this case, the total
heat energy

∫

Ω
u dV is in the discrete case approximated by

E[U ] =
∑

n

UnVn (8)

where the summation goes over all nodes of the computational mesh, and Vn is the volume associated with the node
n defined as one third of the sum of areas of all triangles which have node n as one of their vertices (this definition
is the same as if we add from each triangle the area of quadrilateral created by the node, triangle center, and
centers of two corresponding edges). In some application it maybe important to have some notion of preservation
of total energy when modifying discrete solution to satisfy maximum principle. In this paper, we define the total
energy, which we want to preserve using linear finite element solution, which we denote by Uu, where superscript
stands for unbounded, because it can violate bounds defined by discrete maximum principle. One can choose also
another sample solution obtained, e.g., by some other higher order numerical method. The total energy is E[Uu],
and we require the new solution to give the same total energy, i.e., to satisfy

E[U ] = E[Uu] =
∑

n

Uu
nVn. (9)

3.2 Repair

We repair the nodal values of Uu violating the given discrete maximum principle by redistributing the heat energy
to or from their neighbors so that (9) remains valid.

Let us assume that the unbounded solution at node n violates the minimum constraint (6), so that

Un < Umin = min
xm∈∂Ω

Ψm

(in the description of the repair we drop the superscript u denoting the unbounded solution). To correct this
violation of lower bound, we need to add the needed energy

En = (Umin − Un)Vn

to the node n. We denote by N(n) the set of nodes neighboring the node n (each neighboring node defines one
edge connecting this node with the node n). For all neighboring nodes m ∈ N(n) the available energy Ea

m at node
m which can be taken out of this node and given to the node n (without violating the minimum constraint (6) at
node m) is

Ea
m = max(0, (Um − Umin)Vm)
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and it is positive if Um > Umin. The total available energy in all the neighboring nodes is

Ea =
∑

m∈N(n)

Ea
m.

Now, if the total available energy is greater than the needed energy, i.e., Ea ≥ En we have enough available
energy to correct the temperature in the node n to its minimal value Umin. We set Un = Umin and take out the
needed energy En out of neighbors which have positive available energy Ea

m > 0. We update the temperature Um

at these neighbors by weighting by En/Ea to

Um = (UmVm − Ea
mE

n/Ea)/Vm, ∀m ∈ N(n),

so that the total energy (9) remains constant.
On the other hand if the total available energy is less than the needed energy, i.e., Ea < En, we take all

the available energy from all the neighbors by setting the temperature at the neighbors to minimal temperature
Um = Umin, ∀m ∈ N(n) and correcting the temperature at node n by the total available energy

Un = (UnVn + Ea)/Vn.

However, even after this update, the new temperature at node n still violates the lower bound and we extend
the neighborhood N(n) by the neighbors of all nodes from N(n) and repeat the outlined procedure. The repair
procedure is applied to all nodes violating the lower bound (6).

When the upper bound on the solution (5) is valid, the repair of temperature at nodes violating the upper
bound proceeds in a similar way as the repair of temperature at nodes violating the lower bound (6) described
above. The solution obtained by repair is called repaired solution and is denoted by Ur.

3.3 Constrained Optimization

Under some assumptions about smoothness of the coefficients and right-hand side problem (1) is equivalent to
minimization of the energy functional

F [u] =

∫

Ω

(grad u · (A · grad u) − 2f(x)u(x)) dV , u(b) = ψ(b),b ∈ ∂Ω. (10)

Standard linear finite element solution can be obtained by minimizing discrete analog of optimization problem
(10). For discrete approximation of the gradient grad u in the triangle T defined by three counter-clockwise
numbered nodes (xT

1 , y
T
1 ), (xT

2 , y
T
2 ), (xT

3 , y
T
3 ) we use: [18]

GRADx
T (U) =

(UT
1 + UT

2 )(yT
2 − yT

1 ) + (UT
2 + UT

3 )(yT
3 − yT

2 ) + (UT
3 + UT

1 )(yT
1 − yT

3 )

2VT

,

GRADy
T (U) = − (UT

1 + UT
2 )(xT

2 − xT
1 ) + (UT

2 + UT
3 )(xT

3 − xT
2 ) + (UT

3 + UT
1 )(xT

1 − xT
3 )

2VT

,

where VT is the area of the triangle T and UT
1 , U

T
2 , U

T
3 are discrete values of u(x) at corresponding nodes of the

triangle T . The discrete energy functional is now given by

Fh[U ] =
∑

T

[(axxGRAD
x
T (U) + axyGRAD

y
T (U)) GRADx

T (U)+ (11)

(ayxGRAD
x
T (U) + ayyGRAD

y
T (U)) GRADy

T (U) − 2

3
FT

3
∑

j=1

UT
j



VT ,

where the summation is over all mesh triangles covering the computational region Ω and FT = f(xT , yT ) is the

value of the source f at the center (xT , yT ) = 1/3
∑3

j=1(x
T
j , y

T
j ) of the triangle T .

It is well known that the discrete function which delivers minimum to the functional (11) coincides with linear
finite element solution of the equation (1). We call this solution unbounded since it is computed without imposing
bounds on Un, and denote it by Uu.

To enforce discrete maximum principle and to conserve the energy we suggest to minimize the discrete energy
functional (11) under constraints corresponding to appropriate bounds bounds (5) or (6) or (7) and the total energy
constraint (9). This solution is called constrained-bounded solution and denoted by Ucb.

The discrete energy functional (11) is quadratic functional (with respect to {Un}) with positive definite Hessian
matrix, the maximum principle constraints (5) or (6) or (7) are just the interval for all discrete values Un, and the
total energy constraint (9) is linear in Un, so we need to solve a convex quadratic programming problem. In our
numerical experiments we are using Schittkowski convex quadratic programming package QL [23, 24, 25].
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4 Numerical Experiments for Laplace Equation

In this section we present several numerical tests for the Laplace equation, i.e., for the Dirichlet problem for the
Poisson equation (1) with zero source f(x) = 0. The maximum principle for the Laplace equation is (4) and its
discrete analog is (7).

4.1 Two Very Simple Problems

Here we present two very simple problems for Laplace equation with only two internal nodes, so the problems
have only two unknowns U1 and U2 and their solutions can be illustrated in 2D U1 × U2 space, so that one can
easily see the features of different solutions. The first example produces the unbounded solution which violates
the maximum principle (7), nevertheless, the constrained-bounded and repaired solutions do exist. The second
example also produces unbounded solution violating the maximum principle, however, this unbounded solution
cannot be repaired. The repaired and constrained-bounded solutions (both conserving energy) do not exist.

The mesh for the first problem is presented in Fig. 1(a). The computational domain is the unit square
Ω = [0, 1]× [0, 1] The boundary conditions are specified as follows: ψ = 0 everywhere except ψ = 4 for y = 0∧ x ∈
(0.1, 0.9) (so that the value ψ = 4 is set only for two central nodes on the lower edge). Different solutions of the
first problem are plotted in Fig. 1(b) and the zoomed region of interest in Fig. 1(c). The solid line shows the
box for U1, U2 unknowns given by the discrete maximum principle (7); the dashed line shows the total energy
constraint (9). The unbounded solution Uu = (Uu

1 , U
u
2 )

.
= (1.35,−0.11) violates the minimum constraint U2 ≥ 0

for the unknown U2, and as the unbounded solution defines the total energy, the unbounded solution Uu lies on the
total energy constraint. The bounded solution U b .

= (1.38, 0) lies on the boundary U2 = 0 of U2 lower constraint
U2 ≥ 0. The constrained-bounded solution Ucb .

= (1.23, 0) which coincides with the repaired solution Ur = Ucb is
at the intersection of the total energy constraint with the boundary U2 = 0 of U2 lower constraint U2 ≥ 0. The
discrete Dirichlet functional (11) values of the unbounded, bounded, repaired and constrained-bounded solutions
are Fh[Uu]

.
= 44.41,Fh[U b]

.
= 44.51,Fh[Ur] = Fh[Ucb]

.
= 44.62. The total energy (8) of the unbounded, repaired,

constrained-bounded and bounded solutions are E[Uu] = E[Ur] = E[Ucb]
.
= 1.15, E[U b]

.
= 1.18.
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Figure 1: The first simple problem which does have constrained-bounded solution: (a) computational mesh; (b)
bounds for two unknowns U1, U2, unbounded, bounded, constrained-bounded solutions and total energy constraint
in U1 × U2 space; (c) zoom of (b) around solutions

The mesh for the second problem is presented in Fig. 2(a). The computational domain again is unit square
Ω = [0, 1] × [0, 1], and boundary conditions are specified as follows: ψ = 0 everywhere except ψ = 40 for y =
0 ∧ x ∈ (0.1, 0.9) (so that the value ψ = 40 is set only for two central nodes on the lower edge). Different
solutions of the second problem are plotted in Fig. 2(b) and the zoomed region of interest in Fig. 2(c). The
solid line shows the box for U1, U2 unknowns given by the discrete maximum principle (7), and the dashed line
shows the total energy constraint (9). The total energy constraint does not intersect the maximum principle
bounding box, which implies that the repaired and constrained-bounded solutions do not exist; so for this problem
we have only the unbounded and bounded solutions. The unbounded solution Uu = (Uu

1 , U
u
2 )

.
= (0.53,−0.83)

violates the minimum constraint U2 ≥ 0 for unknown U2, and as the unbounded solution defines the total energy,
the unbounded solution Uu lies on the total energy constraint. The bounded solution U b .

= (0.49, 0) lies on the
boundary U2 = 0 of U2 lower constraint U2 ≥ 0. The discrete Dirichlet functional (11) values of the unbounded
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and bounded solutions are Fh[Uu]
.
= 5439,Fh[U b]

.
= 5449. The total energies (8) of the unbounded and unbounded

solutions are E[Uu]
.
= 14.16, E[U b]

.
= 14.35. This problem demonstrates that for some very special problems the

repaired and constrained-bounded solutions might not exist. However, such problems are really very special and
we believe that in real practical simulations repaired and constrained-bounded solutions will always exist.
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Figure 2: The second simple problem for which repaired and constrained-bounded solution do not exist: (a) com-
putational mesh; (b) bounds for two unknowns U1, U2, unbounded, bounded, solutions and total energy constraint
in U1 × U2 space; (c) zoom of (b) around solutions

4.2 Problem with Non-smooth Anisotropic Solution

This problem originates in presentation [26], and its modified version has been used in [6]. The computational
region is the unit square with a square hole with size 1/15×1/15 (the hole is the square (7/15, 8/15)2) in the center
shown in Fig. 3(a).

We solve homogeneous elliptic equation (1) with boundary conditions ψ = 0 on the outer boundary and ψ = 2
on the inner boundary along the hole. The anisotropic conductivity matrix A is created by the rotation of the
diagonal matrix

B =

(

1 0
0 k

)

. (12)

by the rotation matrix R

R =

(

cosΘ − sin Θ
sin Θ cosΘ

)

. (13)

with angle Θ = −π/3, so that
A = R · B · R′. (14)

We use three different anisotropy ratios 1/k of heat conductivity in two orthogonal directions, namely ratios
1/k = 1/25, 1/100 and 1/1000.

4.2.1 Uniform Meshes

The computational region with the coarsest uniform triangular computational mesh is shown in Fig. 3(b). The
triangles are rectangular with the length of their cathetus being equal to ∆x = 1/15. The finer computa-
tional meshes are created by uniform refining of the mesh shown in Fig. 3(b) by splitting each triangle into
four triangles with vertices at centers of edges of the original triangle. The meshes with the triangles catheti
∆x = (1/15, 1/30, 1/60, 1/120, 1/240, 1/480) have (448, 1 792, 7 168, 28 672, 114 688, 458 752) triangles respec-
tively.

The numerical solutions of these anisotropic problems are shown in Fig. 4 for the anisotropy ratio 1/k = 1/25,
and in Fig. 5 for 1/k = 1/1000. We present in these figures the unbounded solutions; however, in this style of
figures one cannot distinguish different numerical solutions which will be distinguished later. Heat conductivity
along the line y = x/

√
3 obtained by rotating y axis by the angle Θ = −π/3 is k-times greater than the heat

conductivity in the orthogonal direction given by the line y = −
√

3x. This explains the general outlook of the
solution decreasing from the boundary value 2 at the hole boundary much faster in direction y = −

√
3x than in
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Figure 3: The computational domain (a) and the coarsest uniform computational mesh (b) for problem with
non-smooth anisotropic solution.

ratio 1/k = 1/25 ratio 1/k = 1/100 ratio 1/k = 1/1000

∆x minΩ(Uu) L
Ω(Uu<0)
1(Uu)

|Ω(Uu<0)|

|Ω| minΩ(Uu) L
Ω(Uu<0)
1(Uu)

|Ω(Uu<0)|

|Ω| minΩ(Uu) L
Ω(Uu<0)
1(Uu)

|Ω(Uu<0)|

|Ω|

1/15 -0.0089 0.00077 13% -0.029 0.0033 20% -0.039 0.0047 22%
1/30 -0.0011 0.000069 14% -0.025 0.0030 28% -0.048 0.0062 31%
1/60 -7.0 10−6 1.3 10−7 4.3% -0.011 0.0012 33% -0.053 0.0061 38%
1/120 -4.5 10−8 2.1 10−10 3.0% -0.0004 2.7 10−5 28% -0.050 0.0047 41%
1/240 -3.3 10−10 3.9 10−13 0.28% -1.0 10−8 2.0 10−10 7.5% -0.039 0.0028 43%
1/480 -2.5 10−12 7.3 10−16 0.07% -5.9 10−13 2.9 10−15 1.9% -0.020 0.0011 43%

Table 1: Problem with non-smooth anisotropic solution: minimal values of unbounded numerical solution Uu on
the computational domain Ω, L1 norm of Uu on area Ω(Uu < 0) where Uu < 0 is negative, and the relative size
of the area Ω(Uu < 0) with negative solution in % ; for three anisotropy ratios 1/k = 1/25, 1/100, 1/1000; and for
refining computational mesh. ∆x is the length of the cathetus of one triangle.

the orthogonal y = x/
√

3 direction. For the ratio 1/k = 1/1000 the solution along the line y = −
√

3x is much
steeper than that for the ratio 1/k = 1/25.

The unbounded solutions of this problem for all three anisotropy ratios 1/k = 1/25, 1/100, 1/1000 have some
negative values, thus they are violating the discrete maximum principle (6). The minimal negative values of
unbounded solutions on refined meshes are presented in Tab. 1. To quantify how badly the solutions violate the
maximum principle, we include in Tab. 1 also L1 norms of the negative part of solutions, i.e., L1 norm of the
unbounded solutions Uu over the area Ω(Uu < 0) where the unbounded solution Uu < 0 is negative and relative size
in % of this area Ω(Uu < 0). The L1 norms of the unbounded solutions on the whole domain Ω (to compare with

L
Ω(Uu<0)
1(Uu) in the table) are L1(U

u) = 0.220 for the anisotropy ratio 1/k = 1/25, L1(U
u) = 0.168 for 1/k = 1/100

and L1(U
u) = 0.138 for 1/k = 1/1000.

Inspecting the table, we notice that for the ratios 1/k = 1/25, 1/100 the unbounded solutions seem already

unbounded bounded constrained- repaired
bounded

∆x Lerr
1 ratio Lerr

1 ratio Lerr
1 ratio Lerr

1 ratio
1/15 0.0925 1.95 0.0921 1.95 0.0909 1.93 0.0914 1.93
1/30 0.0474 2.20 0.0473 2.20 0.0472 2.20 0.0474 2.30
1/60 0.0215 2.40 0.0215 2.40 0.0215 2.40 0.0215 2.40
1/120 0.0090 0.0090 0.0090 0.0090

Table 2: Problem with non-smooth anisotropic solution: convergence for the anisotropy ratio 1/k = 1/25: L1 norm
of error (difference from the reference unbounded solution on mesh with ∆x = 1/480) and ratios of two successive
error norms for the unbounded, bounded, constrained-bounded and repaired solutions.
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unbounded bounded constrained- repaired
bounded

∆x Lerr
1 ratio Lerr

1 ratio Lerr
1 ratio Lerr

1 ratio
1/15 0.1428 1.66 0.1419 1.68 0.1374 1.71 0.1363 1.70
1/30 0.0858 1.96 0.0844 1.98 0.0804 1.95 0.0804 1.89
1/60 0.0437 2.35 0.0427 2.30 0.0412 2.23 0.0426 2.29
1/120 0.0186 0.0185 0.0185 0.0186

Table 3: Problem with non-smooth anisotropic solution: convergence for the anisotropy ratio 1/k = 1/100: L1

norm of error (difference from the reference unbounded solution on mesh with ∆x = 1/480) and ratios of two
successive error norms for the unbounded, bounded, constrained-bounded and repaired solutions.

to converge to a solution which violates the maximum principle only negligibly. For the ratio 1/k = 1/100, the
convergence of the unbounded to a solution violating the maximum principle only negligibly starts later at much
finer meshes.

The exact solution for this problem is not known, so for the convergence study we use the reference unbounded
solution computed on the finest mesh with triangles cathetus ∆x = 1/480. The convergence for the unbounded,
bounded, constrained-bounded, and repaired solutions for meshes with ∆x = 1/15, 1/30, 1/60, 1/120 is presented
in Table 2 for the anisotropy ratio 1/k = 1/25 and in Table 3 for 1/k = 1/100. The unbounded solutions providing
the same results as standard linear FEM is known to converge from theory [19], and the convergence tables show
that also the bounded, constrained-bounded and repaired solutions do converge. So the imposed constraints do not
destroy the convergence. As the solution is non-smooth, the convergence is only first order. Strictly speaking of
course the solution of the elliptic problem is smooth; by non-smooth we mean here that the gradient of the solution
in the low conductivity direction changes very fast from very steep to flat. We have not made the convergence
study for the anisotropy ratio 1/k = 1/1000, as the unbounded solution on our finest mesh has still rather large
error of the order 1 % (the relative L1 norm of negative part of the solution), see Table 1.

To understand the difference in behavior of the solutions for two different ratios 1/k, we present in Fig. 6 the
areas where the unbounded solutions are negative for ratio 1/k = 1/25, and the same in Fig. 7 for ratio 1/k =
1/1000. In both cases for the first four refined meshes with the triangles cathetus ∆x = 1/15, 1/30, 1/60, 1/120.
The areas with a negative solution are presented by colormaps showing only negative values by different colors and
with all positive values presented in white. In Fig. 6 the lower end of the interval for the colormap is given by
the minimal negative value presented in Tab. 1, and the upper end of the interval is zero. The minimal values are
increasing towards zero with mesh refinement, and the area where the unbounded solution is negative is getting
smaller with refinement. On the other hand, the color map interval for all refinement levels in Fig. 7 for ratio
1/k = 1/1000 remains (-0.05,0) the regions of negative solutions move towards the solution ridge with refinement
creating oscillations. However, the areas of these regions are not getting smaller. It seems that we would need
much higher resolution for the unbounded solution to violate less the maximum principle.

To see the differences between different numerical solutions, we have chosen to present 1D cuts of the solutions
along the line y = 7/15, which is the line defining the lower boundary of the square hole in the solution domain.
The 1D cuts are presented for the ratio 1/k = 1/1000 for which the differences are more visible. Fig. 8 (a),(b)
compares 1D cuts of unbounded, bounded, constrained-bounded, and repaired solutions on the finest mesh with
120 cell edges on the outer unit boundary. The unbounded solution is negative in some regions of x. The repaired
solution is not smooth with a jump in its gradient which is clearly bad as the solution of the Laplace equation should
have a smooth gradient. The best seem to be the bounded and constrained-bounded solutions which are quite
close to each other. They are smooth and positive, i.e., satisfy the maximum principle. To show the oscillations
(from the positive to negative values) of the solution along the diagonal y = 1 − x visible in the solution on the
finest mesh in Fig. 7(d), in Fig. 8(c) we present the 1D cut of this solution on the finest mesh with 120 edges
on unit boundary. In Fig. 8(c) the green line presents the unbounded solution Uu plotted in the standard linear
scale and the blue line presents absolute value |Uu| of the unbounded solution in the logarithmic scale. Each sharp
local minimum on this logarithmic plot corresponds to one change of the sign of Uu where its value passes through
zero and the absolute value (necessary for logarithmic scale) introduces discontinuity in the first derivative. Fig.
9 presents convergence of 1D cuts for unbounded, zoomed unbounded, bounded, and repaired solutions with mesh
refined from 15 to 120 cell edges on the outer unit boundary. The constrained-bounded solutions are very close
to the bounded solutions, so that one is unable to distinguish them on such 1D cuts plots. The solutions are not
converged yet; for converged solution we would need higher resolution. We might notice an incorrect inflection
point in the finest resolution (120 cells in red) of repaired solution in Fig. 9(d).
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Figure 4: Problem with non-smooth anisotropic solution with anisotropy ratio 1/k = 1/25 ratio on mesh with 60
edges on unit boundary: (a) surface of unbounded solution; (b) colormap of unbounded solution
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Figure 5: Problem with non-smooth anisotropic solution with anisotropy ratio 1/k = 1/1000 ratio on mesh with
120 edges on unit boundary: (a) surface of unbounded solution; (b) colormap of unbounded solution

4.2.2 Non-Uniform Meshes

To show that our approach works also on non-uniform meshes, we have chosen two non-uniform triangulations of
the computational domain shown in Fig. 3(a). The first mesh is created by random movements of the nodes (by
r∆x/2 where ∆x is the length of cathetus of uniform triangles and r ∈ (0, 1) is a random number) of the uniform
mesh (and its uniform refinements) shown in Fig. 3(b). The second non-uniform mesh is the unstructured mesh
generated by PLTMG [27] package for the computational domain shown in Fig. 3(a).

Again, the unbounded solutions on such meshes violate the maximum principle while the bounded, constrained-
bounded, and repaired do not violate the maximum principle. The general shape of solution remains the same and
corresponds approximately (depending on mesh resolution) to that for the uniform mesh presented in Fig. 4 and
Fig. 5. We present here only the colormaps of areas with negative solution (violating the maximum principle) for
two randomly perturbed uniform meshes and for one unstructured PLTMG mesh in Fig. 10 for the anisotropy
ratio k = 1/1000.

The minimal negative values of unbounded solutions on refined unstructured meshes for the anisotropy ratio
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Figure 6: Problem with non-smooth anisotropic solution with anisotropy ratio 1/k = 1/25, colormaps of unbounded
solution showing areas where the solution is negative (areas where the solution is non-negative are white) on: (a)
mesh with 15 edges on unit boundary; (b) mesh with 30 edges on unit boundary; (c) mesh with 60 edges on unit
boundary; (d) mesh with 120 edges on unit boundary.

1/k = 1/100 are presented in Tab. 4. To quantify how badly the solutions violate the maximum principle, we
included in Tab. 4 also L1 norms of negative part of solutions, i.e., L1 norm of unbounded solutions Uu over
area Ω(Uu < 0) where Uu < 0 is negative and relative size in % of the area Ω(Uu < 0) where the solution
is negative. As the unstructured meshes have more smaller triangles around the central hole, the unbounded
solutions on these meshes violate the maximum principle less than that on uniform meshes with the same number
of triangles, compare with Tab. 1 for uniform triangulations, where the meshes with uniform triangle catheti
∆x = (1/15, 1/30, 1/60, 1/120) have (448, 1 792, 7 168, 28 672) triangles, respectively.

Nr. of triangles minΩ(Uu) L
Ω(Uu<0)
1(Uu)

|Ω(Uu<0)|

|Ω|

112 -0.001 2.1 10−5 5.9 %
448 -0.011 3.8 10−4 27 %

1 792 -0.0033 2.3 10−4 31 %
7 168 -0.0003 1.1 10−5 25 %
28 672 -1.8 10−6 2.1 10−8 7.1 %

Table 4: Problem with non-smooth anisotropic solution with anisotropy ratio 1/k = 1/100 on unstructured meshes:
minimal values of unbounded numerical solution Uu on the computational domain Ω, L1 norm of Uu on area
Ω(Uu < 0) where Uu < 0 is negative, and the relative size of the area Ω(Uu < 0) with negative solution in % ;
for refining computational meshes. The L1 norm of the unbounded reference solution (with ∆x = 1/480) on the

whole domain Ω on the uniform mesh (to compare with L
Ω(Uu<0)
1(Uu) in the table) is L1(U

u) = 0.168.
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Figure 7: Problem with non-smooth anisotropic solution with anisotropy ratio 1/k = 1/1000, colormaps of un-
bounded solution showing areas where the solution is negative (areas where the solution is non-negative are white)
on: (a) mesh with 15 edges on unit boundary; (b) mesh with 30 edges on unit boundary; (c) mesh with 60 edges
on unit boundary; (d) mesh with 120 edges on unit boundary.
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Figure 8: Problem with non-smooth anisotropic solution with the anisotropy ratio 1/k = 1/1000 on the mesh
with 120 edges on unit boundary: (a) full view and (b) view zoomed, scaled in y direction of 1D cuts along the
line y = 7/15, comparison of unbounded, bounded, constrained-bounded and repaired solution; (c) 1D cut of
unbounded solution Uu along the diagonal y = 1 − x, green is Uu with the right linear axis and blue is |Uu| with
the left logarithmic axis.

5 Numerical Experiments for Non-homogeneous Equation

In this section we will present several numerical tests solving the Poisson equation (1) with non-negative sources
f ≥ 0 and zero Dirichlet boundary conditions ψ = 0. The maximum principle for f ≥ 0 (3) and ψ = 0 implies that
the solution has to be non-negative u ≥ 0 everywhere. The presented tests violate this maximum principle for the
unbounded solution which is exactly the same as the standard linear finite element solution. Below, we present
only numerical results of the unbounded solutions. The bounded, constrained-bounded, and repaired solutions for
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Figure 9: Problem with non-smooth anisotropic solution with anisotropy ratio 1/k = 1/1000, 1D cuts along the
line y = 7/15, convergence with 15, 30, 60 and 120 edges on unit boundary of: (a) unbounded; (b) zoomed view of
unbounded, scaled in y direction; (c) bounded; (d) repaired solutions.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1  
unbounded

x

 

y

−0.045

−0.04

−0.035

−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1  
unbounded

x

 

y

−0.05

−0.045

−0.04

−0.035

−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1  
unbounded

x

 

y

−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

(a) (b) (c)

Figure 10: Problem with non-smooth anisotropic solution with anisotropy ratio 1/k = 1/1000, colormaps of
unbounded solution showing areas where the solution is negative (areas where the solution is non-negative are
white) on: (a) randomly perturbed uniform mesh with 15 edges on unit boundary; (b) randomly perturbed uniform
mesh with 30 edges on unit boundary; (c) PLTMG generated mesh.

all the presented problems satisfy the discrete maximum principle (6), i.e., are non-negative everywhere.

5.1 Simple Isotropic Problem

This is simple isotropic problem taken from [13]. Matrix A is identity A = I. Computational domain is Ω =
[0, 1]× [0, 0.3]. The source is defined as follows f(x, y) = 1 for (x, y) ∈ [0, 0.5]× [0, 0.075] and f(x, y) = 0 elsewhere.
The zero Dirichlet boundary conditions are specified on the boundary. The mesh is created by putting a uniform
4×4 rectangular mesh on the domain Ω and splitting each rectangle into four triangles along its two diagonals, see
Fig. 11(b). The triangulation is not acute. The solution of this problem is not known, but as −div gradu = f ≥ 0
everywhere, then the maximum principle (3) implies that the minimum of the solution is on the boundary; so due
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to zero Dirichlet boundary conditions the solution has to be non-negative everywhere. The unbounded solution of
this problem has values in the interval (-4.21 10−5, 2.24 10−3) violating the maximum principle in 3 nodes (12 %
of the domain), with L1 norm of the negative part of the solution being 6.04 10−7 (L1 norm of the unbounded
solution is 1.30 10−4).
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Figure 11: Simple isotropic Poisson equation problem: (a) surface of unbounded solution; (b) colormap of un-
bounded solution showing areas of negative solution.

5.2 Strong Uniform Anisotropy with Central Source

In this problem computational domain is unit square Ω = [0, 1]2. The anisotropic diffusion matrix A is the same as
in the problem with non-smooth anisotropic solution (14) with Θ = −π/3 and the anisotropic ratio 1/k = 1/100.
The source f(x, y) is f(x, y) = 105 inside the central region (x, y) ∈ [0.45, 0.55]2 and zero outside the central region.
The zero Dirichlet boundary conditions are applied on the boundary.

We use the mesh with the same structure as the mesh for the problem with non-smooth anisotropic solution
(presented in section 4.2) shown in Fig. 3(b), but just without the hole, with 60 triangle catheti on one [0, 1] side,
see Fig. 12(b). The shape of the solution of this problem presented in Fig. 12(a) is close to the shape of the
solution of the problem with non-smooth anisotropic solution shown in Fig. 5. The maximum principle implies
that the solution has to be non-negative, however, the unbounded solution Uu produces a negative solution in quite
a large area, as shown in Fig. 12(b). The values of unbounded solution are from interval Uu ∈(-0.097, 18), the
unbounded solution is negative in 1 262 nodes (36 %) out of the total 3 481 internal nodes, and the L1 norm of the
negative part of the unbounded solution L1(U

u)Ω(Uu<0) is 0.01 (L1 norm of the unbounded solution is 1.7). These
data, which characterize how much the DMP has been violated, for this problem solved on both coarser and finer
meshes are presented in Tab. 5.

∆x minΩ(Uu) maxΩ(Uu) L
Ω(Uu<0)
1(Uu)

|Ω(Uu<0)|

|Ω|

1/15 -0.070 4.8 -0.0079 23%
1/30 -0.17 15 -0.0214 31%
1/60 -0.097 18 -0.0106 35%
1/120 -0.0031 21 -2.4 10−4 29%
1/240 -8.4 10−8 22 -1.6 10−9 7.9%

Table 5: Strong uniform anisotropy 1/k = 1/100 ratio, central source Poisson equation problem on refined uniform
meshes: minimal values of unbounded numerical solution Uu on the computational domain Ω, L1 norm of Uu on
area Ω(Uu < 0) where Uu < 0 is negative, and the relative size of the area Ω(Uu < 0) with negative solution in %
; for refining computational meshes. The L1 norm of the unbounded reference solution (with ∆x = 1/240) on the

whole domain Ω (to compare with L
Ω(Uu<0)
1(Uu) in the table) is L1(U

u) = 1.65.
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Figure 12: Strong uniform anisotropy 1/k = 1/100 ratio, central source Poisson equation problem on uniform mesh
with 60 edges on unit boundary: (a) surface of unbounded solution; (b) colormap of unbounded solution showing
areas of negative solution.

5.3 Non Uniform Anisotropy

This problem is taken from [3]. Computational domain is the square Ω = [0, 0.5]2. The anisotropic diffusion matrix
A(x, y) depends here on the position (x, y) and is given by

A(x, y) =

(

y2 + ǫx2 −(1 − ǫ)xy
−(1 − ǫ)xy x2 + ǫy2

)

(15)

with ǫ = 10−3 which gives the anisotropy ratio. The source f(x, y) is f(x, y) = 1 for (x, y) ∈ [0.125, 0.375]2 and
zero otherwise. The zero Dirichlet boundary conditions are applied on the boundary.

For this problem we use the triangular mesh obtained from the uniform orthogonal mesh of 30× 30 squares by
splitting each square cell into four triangles by two diagonals of the square, see Fig. 13(b). The surface plot of the
unbound solution to this problem is shown in Fig. 13(a). The maximum principle (3) implies that the solution
has to be non-negative, however the unbounded solution Uu produces a negative solution in quite a large area, as
shown in Fig. 13(b). The values of unbounded solution are from interval Uu ∈(-2.0 10−3, 0.26), the unbounded
solution is negative in 209 nodes (12 %) out of the total 1741 internal nodes, and the L1 norm of the negative part
of the unbounded solution L1(U

u)Ω(Uu<0) is 8.1 10−6 (L1 norm of the unbounded solution is 0.019).
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Figure 13: Non uniform anisotropy Poisson equation problem: (a) surface of unbounded solution; (b) colormap of
unbounded solution showing areas of negative solution.

14



5.4 Non Uniform Rotating Anisotropy

For this problem computational domain is unit square Ω = [0, 1]2. The anisotropic diffusion matrix A(x, y) depends
on the position (x, y) and is given by the rotation of the diagonal matrix (12) around the origin by the angle ϕ
which is the angular polar coordinate of the point (x, y):

A(x, y) =

(

cosϕ − sinϕ
sinϕ cosϕ

)

·
(

1 0
0 k

)

·
(

cosϕ sinϕ
− sinϕ cosϕ

)

(16)

with k = 1000 which gives the anisotropy ratio and cosϕ = x/r, sinϕ = y/r, r =
√

x2 + y2. The source f(x, y)
is f(x, y) = 105 for (x, y) ∈ (0.7, 0.8) × (0, 0.1) and zero elsewhere. The zero Dirichlet boundary conditions are
applied on the boundary.

For this problem we use the triangular mesh obtained from the uniform orthogonal mesh of 20× 20 squares by
splitting each square cell into four triangles by two diagonals of the square, see Fig. 14(b). The surface plot of
the unbounded solution to this problem is shown in Fig. 14(a). The maximum principle implies that the solution
has to be non-negative, however, the unbounded solution Uu produces a negative solution in quite a large area,
as shown in Fig. 14(b). The values of unbounded solution are from interval Uu ∈(-0.015, 0.47), the unbounded
solution is negative in 354 nodes (46 %) out of the total 761 internal nodes, and the L1 norm of the negative part
of the unbounded solution L1(U

u)Ω(Uu<0) is 1.3 10−3 (L1 norm of the unbounded solution is 0.031).
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Figure 14: Non uniform rotating anisotropy Poisson equation problem on uniform mesh: (a) surface of unbounded
solution; (b) colormap of unbounded solution showing areas of negative solution.

6 Conclusion

We have proposed two new methods for enforcing discrete maximum principle for linear finite element solutions
on 2D triangular mesh for elliptic equation with Dirichlet boundary conditions. First approach is based on re-
pair technique, which is a posteriori correction of the discrete solution. Second method is based on constrained
optimization.

Numerical experiments demonstrate the ability of the new methods to produce numerical solutions satisfying
the discrete maximum principle, contrary to the standard linear finite element method.

Numerical experiments also show that convergence rate of new methods is about the same as for original linear
finite element method.

In the future we plan to analyze method using constrained optimization with respect to its performance. We
hope that we will be able to develop more practical method taking into account that we are solving very special
quadratic optimization problem with very simple constrained. We also planning to extend optimization method to
the case of mixed finite element [29] and mimetic discretizations [28].
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