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The Craik—Criminale class of exact solutions is examined for a nonlinear-reactive fluids theory that
includes a family of turbulence closure models. These may be formally regarded as either large eddy
simulation or Reynolds-averaged Navier—Stokes models of turbulence. All of the turbulence closure
models in the class under investigation preserve the existence of elliptic instability, although they
shift its angle of critical stability as a function of the rotation réeof the coordinate system, the
wave numbes of the Kelvin wave, and the model parameterthe turbulence correlation length.
Elliptic instability allows a comparison among the properties of these models. It is emphasized that
the physical mechanism for this instability is not wave—wave interaction, but rather wave,
mean-flow interaction as governed by the choice of a model's nonlinearitg0@ American
Institute of Physics.[DOI: 10.1063/1.1638750

I. INTRODUCTION ergy in an elliptic columnar vortex is transferred to a travel-
) e o ing Kelvin wave whose wave vector is fully three-

The fully nonlinear “elliptic instability” rapidly gener-  gimensional. A detailed review of elliptic instability can be
ates three-dimensional flows in regions of two-dimensional¢y ;nd in Ref. 2. The topic was first investigated by Lord

elliptical flowlines, e.g., in an elliptical vortex column, or \a\in3 in 1887 for a circular vortex column and then was
vortex tube. This instability is triggered when it becomes eneralized to elliptical vortex columns almost a century

tpozsmle for a Wfave packtlalt. gro;)lagalltlng mfthree d|m<etp§t|on ter by Bayly* Both investigations considered the stability
0 draw energy from an eliiptical column of mean VOrtcty. ¢ traveling wave for the equations of motitinearized

The m(_echamsm for elliptic mstablllty 'S a parametrlc reS0" about the rotating column of fluid. The groundbreaking work
nance in the wave, mean-flow interactions. The instability |sOf Craik and Criminal® showed that the sum of a rotatin
fundamentally three-dimensional, and its average maximum . : _ "9
growth rate is proportional to the mean strain rate, or equivagOlumn of fIdeand a trayelmg Kelvin wave together with
lently, the eccentricity of the elliptical flowlines. The mecha- any numb(_er of its harmonics |s_mxact solutiorto the non-
nism for elliptic instability is the same as that for critical N€ar Navier—StokesNS) equations. These exact nonlinear
layer absorptiorh. Laboratory experiments and numerical Slutions are called Craik—Criminal€C) solutions.
modeling show that elliptic instability quickly breaks down  The CC class of exact NS solutions provides a means of
the elliptical vortex columns by producing complicated analyzing the three-dimensional nonlinear dynamics of ellip-
flows, which themselves break down into small-scale disorfiC instability. These exact solutions show that elliptic insta-
der. As a result, elliptic instability is a natural candidate forPility is generated by wave, mean-flow interaction via the
Studying mechanisms involved in the onset and dynamics d‘ﬂonlinear term in the NS equations. ThUS, elllptIC |n5tab|l|ty
turbulence, in which the intermittent stretching of vortex fila- is @ fundamental nonlinear mechanism in the dynamics of
ments by rapid three-dimensional fluctuations is a fundameriurbulence. It seems reasonable to compare computational
tal process. models of turbulence in the light of whether they realistically
Thus, elliptic instability is the nonlinear mechanism by incorporate the effects of elliptic instability. In this paper, we
which vorticity creates three-dimensional instabilities inextend the literature of the CC flows by considering the el-
swirling two-dimensional flows. In the classic paradigm, en-liptic instabilities allowed by a nonlinear-reacti@s op-
posed to nonlinear-dissipativéluid theory that includes a
aE|ectronic mail: bfabi@mail.smu.edu new class of one-point turbulence closure models whose

PElectronic mail: dholm@Ilanl.gov derivation by Lagrangian averaging alters the nonlinearity of
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the NS equations. This class of models was identified earlieere, the base flow in this case is a rigidly rotating column
and studied analytically and numerically in a series of pa-of fluid whose flowlines are ellipses with eccentricityThe
pers; see Refs. 6 and 7 and references therein. The questiertreme values are circlesy€0) and simple shear flows
that we shall investigate here is, “How do these nonlinear{y—17).
reactive turbulence closure models deal with elliptic instabil-  Outline We begin by reviewing the classic CC solutions
ity?” The answer to this question for each turbulence modefor the NS equations in Sec. Il. In particular, we shall review
in this class allows us to compare the models according tthe case of elliptic instability. Section 11l examines this class
how their exact nonlinear solutions describe, or alter, theof solutions and elliptic instability for certain turbulence clo-
fundamental NS elliptic instability. Formally, the mathemati- sure models, regarded as “constitutive laws” for nonlinear-
cal analysis we present applies equally well to turbulenceeactive fluids that include the LAN&-model. In Sec. 1V,
closure models derived by either the RANReynolds- we perform a detailed examination of the CC class of exact
averaged Navier—StoKeapproach or LES$large eddy simu-  solutions and elliptic instability in the LAN%- model. We
lations. then examine the class of CC solutions in full generality for
The CC class of solutions have recently been revisitectach of the other turbulence closure models in Sec. V. We
by the present authofslt was shown that the CC class of summarize our results in Sec. VI. Overall, we conclude that
exact solutions persists for the Lagrangian-averaged Navierthe study of exact nonlinear CC solutions for these models
Stokes-alphdLANS-«) model, a new closure model for in- defines sharp distinctions among them. For example, the CC
compressible turbulence that was introduced in Refs. 9 andolutions for these models provide detailed comparisons of
10. This paper investigates the CC solutions of the LANS- their principal critical angles of instability and maximum
model in detail together with the effects of rotation and ex-growth rates, as functions of their parameters. The CC solu-
tends the CC analysis for several other constitutive modeltons for these models also determine to what extent each
for turbulence closure in a class of nonlinear-reactive fluidsmodel preserves the fundamental attributes of the elliptic in-
Nonlinear exact CC solutions of the NS equatiohlse  stability for NS. Thus, elliptic instability analysis allows a
CC class of nonlinear exact solutions decomposes both fluitully nonlinear comparison of turbulence closure models on
velocity and pressure into the sum of two terms,uasu,  the basis of the specific and fundamental physical mecha-
+u; andp=py+ p;. Here the base flojuy, pg} is anexact  nism of their wave, mean-flow interaction, rather than on the
solution to the equations of mation in an unbounded physicabasis of tensor transformation properties, or other generali-
domain linear in the spatial coordinate. Consequently, in théies.
CC solutions, both of the paifaiy,pe} and{u,p} are exact
solutions to the nonlinear equations. While the base flow in
the CC decomposition is an exact solution, the disturbancl- REVIEW OF CC SOLUTIONS OF THE
{uq,pq} by itself is, in general, only a solution of the equa- NAVIER-STOKES EQUATIONS
tions linearized about the base flduy, po}- We begin with a review of the classic CC results for the
The CC solutions consider the disturbarieq,p:} in NS equations
the form of a traveling wave,

' du+u-Vu+Vp+2QXu—vAu=F, (©)]
u;=R{ua(t)e'},

in which preservation of incompressibility, div=0, deter-
mines the pressurgy. Here, I represents the sum of all
, , external body forces. Clearly,=S(t)-x+ U(t), together
where the amplitudea(t) depends only on time and the \ i the pressur@y(x,t) =x- O(t) - x+ 7 (t)x is a solution in

phasey(x,t) = BK(t) - x+ 4(t) is linear in the spatial coordi- 5 nbounded domain. The mati$t) is a time dependent
nate. The phase shii(t) may also be regarded as arising yatrix with zero trace such that

from a time-dependent shift of the origin of coordinates. The

. | . 1
p1=R{i up1a(t) e+ upi(t)e? ¥}, @

scaling parameterg and 8 are chosen so the initial condi- 0iSij + SimSij+ 2€imkmS; = M;; . (4)
tions may be normalized dk(0)|=1 and|a(0)|=1. The  Here,d, denotes full time derivative, and () is a symmet-
paramete3 can be viewed as the product of the wave Nnum-ric matrix defined adl;;=—d,d;P, where

ber and the relative scale of lengths between the base flow

and the Kelvin wave. The base flow is linear in the spatial ~ p_ _ fXF-derpo(x )+ (d,U+S-U+20xU)-x. (5)
coordinatespy=S(t) - x+ U(t), whereS-x=S;x; is the ac- '

tion of the matrixS(t) on the vectorx=[xy,x,Xs]" ffom A typical solution approach is to choose a matfii) for
the left andU(t) is the instantaneous velocity at the origin. which the left-hand side of Eq4) is symmetric. Then, the
The construction method is one in which the Kelvin wavecorresponding pressupg(x,t) is determineda posterioriby

does not alter the evolution of the base flow. The classi¢q (5). We may nondimensionalize the NS equations by
problem of elliptic instability is found in this class of solu- ysing the variablesx’' =x/l, t'=|o|t, u=u/|w|l, Q'

tions, =Q/|wl|, wherel is a typical length scale an@=curlu, is
0 ~1+y 0 the vorticity of the flowu,. After dropping primes from the
notation, Eq.(3) reappears in nondimensional form with
S=| 1ty 0 0, uU=o. 2 replaced byv/|w|. Furthermore, in nondimensional forif,is
0 0 0 now interpreted as a signed inverse Rossby number. The
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equations for the amplitude and the phases are obtained where is a 3X 3 matrix which may have some parametric
upon making the CC substitution=uy+u; and p=p, dependence, as well. Earlier, we noted that hgftfand the
+p, into Eqg. (3), whereu; andp, are given in Eq(1l) and sumug+u; are exact solutions to the nonlinear equations.
by collecting on terms linear and constantinrespectively, However, the disturbance velocity by itself is, in general,
only a solution to Eq(3) linearized aboutiy. As an impor-
d(k-x) +k-5x=0, ®  tant exception, in a rotating coordinate syste®@#0), the
da velocity u; by itself is also an exact solution, since this sce-
Tt i(ds+Bk-U)a+ST-a+IIxa+E,|k|?a— Bpyk=0, nario corresponds ta,=7R- X in a nonrotating frame, where
%) R is rigid body rotation about the axis; cf. Ref. 12. The
specific problem of elliptic instability in the NS equations

p1,=0, (8)  using the base flowy=S-x as in Eq.(2) was first investi-
gated by Bayl§ for =0, by Craik! for Q+0, and later by
ak=0. ©  others!?-17 Equation (10) for the wave vectok(t) has an

Here, II=curluy+2Q is the total vorticity of the system, analytical solution for all elliptical eccentricitieg namely
that is, the vorticity of the base flow, plus that of the rotating ) . ) T
coordinate system, anl,,=v8?%/|w| is the vorticity-based k=[sin# cog x(t)),« sin@sin(x(t)),cosd]", (14)
Ekman number. Note that we have used the identity wgurl ) )

X a=(S—ST)-afor reasons we explain below. The transver-Wherex“=(1—y)/(1+7v), x(t)=ty1—y*, andgis the po-

sality condition in Eq.(9) arises from the incompressibility Igr anglek makes with the axis of rotathn. For circular flow-
condition. This transversality is why the tenm- Vu, qua-  ines, y=0, Eq. (7) for the wave amplitude also has an
dratic in the disturbance velocity vanishes. We emphasiz&halytical solution: a=cyay(t) +C,8,(t) +C35(t), where
that CC solutions are exact, nonlinear solutions of the N1:C2,Cs, aré constants and

equations because the nonlinear wave—wave interaction van-

ishes exactly. This transversality condition fails when one ay(t) =Ccos&(t) + )k 1 +siN(E(D)+ Pk, (15)
tries to add two Kelvin waves where the phases are not ra- )

tionally related. Without loss of generality, we may choose (1) =SiN(&(t)+ ¢)k 1 —cod&(D) + pk, 2, (16)
the kinematic phase relatiod,s+ Bk-U=0, whereU(t) de-

notes the coordinate-independent contributiomigf By do- a(t)=e,. 17

ing this, the termd(t) exactly balances the instantaneous ) .

velocity of the base flow at the origitJ(t). Then, we see AlISO, kllz[cosacos()g(t)),cosasm(x(t)),—sm o', ko
from Eq. (7) that we can assume thaft) is a real-valued = [SIN(x(t),—cos{(1).0]", &(t)=2t(1+Q)cosd, and ¢ is
function. The equation for the wave vectl(t) obtained an arbitrary phase. For elliptical flowlines with eccentricity

from the phase equatioi) is the transport equation, v, the solution to Eq(7) for the CC wave amplituda must
be determined numerically. Because the wave vektas

periodic, Eq.(13) for the amplitudea satisfies a Floquet
problem?® Thus, integration of Eq(13) over one period ok

. T . L . will determine the Lyapunov growth rate @af if any such
Since &/dt+S"-k is the total time derivative ok in a growth occurs. These growth rates are determined by com-

Galilean frame m'oving With the base flowg, we see that puting the eigenvalues; of the monodromy matrixP(7,),
the wave vectok is frozen into the base flow. Equati@r) whereP(0)=diag{1,1,1}

states that the evolution of the real amplitwdin this frame

undergoes rotation by the total vorticity of the base flow, as it

decays exponentially with viscosity. In fact, the change of —=N\"P, (18
variables dt

dk -
5 tSTk=0. (10)

_ t oo s and 7, is the period ofV; in this caser,=27/\1— 2, the
a=aexr< - wa0|k(t)| dt) (12) period ofk. Once computed, the Lyapunov growth rates are
given by oq=max[In(R{p;})]/7,. The growth rates for the
will transform away viscosity from the problem. The pres- Euler equations are shown in Fig. 1 fr=0. We see from
sure termpy; can be expressed in termsaandk by taking  this figure that the amplituda has an exponential growth
the dot product of Eq(7) with k and recalling that-k is an  rate for certain orientations of the wave vector and for all
integral of motion. Consequently, one finds the pressure renonzero eccentricities. We emphasize that the CC solution is

lation, an exact solution to the nonlinear NS equations for all pa-
a-(S+8T) - k+ Mx ak rameter values. A CC solution is said to be unstable, if the
Bp1= > ) (12) magnitude of its amplituda is unbounded at— .
K| CC solutions of NS for circular flowlineg'he circular
Thus, Eq.(7) can be expressed as casey=0 can be treated analytically. One may construct the
monodromy matrix explicitly from the solutions in Egs.
d—azj\/(t)-a 13 (15—(17). For the initial condition”(0)=diag{1,1,1}, we
dt ' find the monodromy matrix,

Downloaded 06 Feb 2004 to 129.119.144.59. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



856 Phys. Fluids, Vol. 16, No. 4, April 2004 B. R. Fabijonas and D. D. Holm

0.75
0751

0.5

cos(thata)

0.25

cos(theta)

T T T T T T T T

A S TP SR, I 0.25
0.25 0.5 0.75 1
¥

FIG. 1. Parameter plane for elliptic instability in NS equations b+ 0.

For y=0, the Kelvin wave is periodic in time with period/cosé, for

values ofy, cosé which fall into the white region foy>0, the Kelvin wave

is quasiperiodic, that is, the periods@fndk are incommensurate; for the

remaining region, the Kelvin wave has an exponentially growing amplitude.

The maximum growth rate is 0.36 at c8s0.29 andy=0.81. FIG. 2. Instability domain folE,=0, (1=1.0 computed on an extremely
fine grid aimed at capturing the predicted fingers. The white background
represents regions for whiah,< 10" %, The principal finger emanates from
cosf=112(1+Q)], the second finger clearly emanates from e€os

(@]

P(7y) =2/[2(1+Q)], and the third finger appears to emanate from &os
P =3/[2(1+Q)]. The remaining few points seen correspond to the fourth and
cod &(2m)) cosfsin(é(2m)) O fifth fingers.
=| —sin(é(2))/cosH cog&(2m)) 0
tanf(1—cod{(2m))) —sindsin(é(2m)) 1 This claim is contrary to previous thought®°We empha-

(19 size that these fingers are physically insignificant in the NS

The eigenvalues are, ;= exp(i&2m)), ps=1, and we con- equations. However, they will be of importance in the

. N LANS-a model discussed in the next section. Finally, one
clude that traveling waves in circular NS flows are stable. .
. . . can determine the average value of the growth rate, to lead-
The parameter values for critical stability, that is, the param-

eter values at which exponentially growing amplitudes will ing order iny<1, as in Ref. 15 by computing

appear for nonzero values of, occur when|p;|=1, i 1 gem 1 d (1

=1,2,3, or equivalentlyé{(27)=ma, wherem is any inte- ngmﬁ) W dt §|a| dt

ger. As argued by Bayl{the evenness o8p,;k as a func-

tion of k in Eq. (7) implies that the eigenvalues of the mono- 9 (3+20)? )

dromy matrix, if real and unequal, must be positive. This =167% 91+ Q)2 +0O(y9). (21

eliminates the odd choices af. The casen=0 cannot be
analyzed using Floquet theory since the equations are n@. cc SOLUTIONS FOR ROTATING
longer periodic. Therefore, the critical stability points are NONLINEAR-REACTIVE FLUIDS

determined by¢(27)=2n, or equivalently, . . .
¥(2m) . q y A. Navier—Stokes nonlinear-reactive models

cosf= iL, n=1,2,3,.... (20) The turbulence closure models may be expressed as a set

2(0+1) of partial differential equations for the divergenceless veloc-
The critical angle of cog=1/2 for Q=0 is seen in Fig. 1. ity of the fluid, u(x,t),
Since |cosf<1, it follows from Eq. (20) that no critical u
stability points exist for— 3<Q+1< 3. Computation of the T vrAu+Vp+2QXu+dive=0 (22
unstable region on an extremely fine grid yields fingers for
0>0 andQ<-—2. These fingers have growth rates aboutwith V-u=0. Hered/dt=d;+u-V is the material time de-
five or six orders of magnitude smaller than in the principalrivative following the resolved flow velocity, or mean veloc-
region. Figure 2 shows one such simulation for the Euleiity, u, and vy is the eddy viscosity. The nonlinear stress
equations. The fingers were first discussed by MiyaZaki. tensor o we shall consider is a recent extension of the
We are certain that the fingers are not numerical artifactssubgrid-stress tensor for turbulence that was introduced by
since they are not randomly distributed in the parameteBpezialé® to account for Reynolds-stress relaxation effects
plane. Rather, they follow specific paths. We claim that thesand the response to rotational strain rates in turbulence. In
fingers correspond to solutions of E(O) for n>1. The the following reactive closure model for the Reynolds stress,
fingers are numerically resolvable fé1>0 and A<—-2.  we introduce a parameterwhich will later be defined as a
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turbulence correlation length. One obtains the model introthe strain-rate tensar is invariant under the MFI transfor-
duced by Speziafé for Reynolds-averaged Navier—Stokes mations. In the present work, we shall consider b8 0
(RANS) modeling of turbulence based on nonlinear consti-and«?# 0 in the reactive stress tens@5). In this case, we

tutive relations, by setting the parametef— 0, emphasize that the parameter+0 corresponds to ordinary
1 1 eddy viscosity, not hyperviscosity. Later, we shall obtain a
o= (1—a?A)e;+Creyey simplification by relating C,#0 and a?#0 as «?
Cof to =Cyl?C,4/2. It is immaterial for the motion equatiof22)

whether one uses the symmetric stress tensay its devia-
toric (tracelesy component,o— 3ldtr(o), since the differ-
+Cy( e+ U o). (23)  ence merely adjusts the pressysewhich is determined by

As usual, one sums over repeated indices. The tereprs preservation of the divergence-free condition, wiv0. The
mass density has been set equal to unity.

andwj; withi,j=1,2,3 are, respectively, the mean strain rate ; ) _ _
We may summarize this discussion of the nonlinear, re-

and mean vorticity, _ S
) ) . active and dissipative RANS turbulence closure models rep-
€=z (Uji+u)=3(Vu +Vu);, resented by Eq(22) with Reynolds-stress tensd25), by
24 distinguishing the following subcases.
wij=3(uji—u ) =z(Vu' = Vu);. (29 g g g
(1) Navier—StokesC,=0.
. I - . (2) Isotropic eddy viscosityC,,=0 anda?=0.
Suppressing indices, we may rewrite the symmetnc( : : : .m _
Reynolds-stress tens@@3) as (3 Agf,gtroplc eddy viscosityC,,C,,C53#0, C,=0 and
(4) Isotropic eddy hyperviscosityC,,=0 anda?#0.
(5) Anisotropic eddy viscosity, isotropic hyperviscosity:
C;,C,,C3#0, C,=0 anda?+0.
Caw?+C de (25 (6) Spezialé®® C,,#0 anda®=0 (reactive and damped, not
3 4dt” actually viscous
(7) Present workC,,#+0 anda?#0 (reactive, damped and
viscous,not hyperviscous

+ Ca(€jkwij— wik€;) + Camjkwy;

g
Cot?

e
= —(1—a2A)0—+CleZ+ Cre-w—w-e)
0

The parameter€,,,, m=1,...,4, in Eq.(25) are four di-
mensionless constants that model nonliné&ay,C5,C3) and

reatl:tlve %) 1eeszeczjs |£1 turbulenceg, |;s|a d'fhs'pat'lon tllm?h As we have discussed, MFI of the Reynolds-stress tensor
ls_cae, ant-o tgn I'a _tare sqouare_s 10 eng scales. In e(25) would require certain restrictions among the parameters
inear, nonreactive limitC,—0, m=1,... 4, one recovers Cn. However, to make the analysis that follows of the

:Efn hzggg\ﬁ]sgsofrlz Eﬁgﬁ;g;;ujibstéfgf;nz%‘zzoby-r;; ;nettmglraik—Criminale solutions of Eq22) as broad as possible,
' ) e shall leave the paramet free and unrestricted.
«?—0. When bothC,=0 anda?=0, the stress tensor in Eq. P o

(?5) ta.kes the formoy; = Ay Uy of an “anlsotr.oplc eddy- B. Recasting the Navier—Stokes nonlinear-reactive
viscosity model”(where A;j, depends algebraically on the ,4qels
mean-velocity gradientsWhenC,+0 and«?=0, Eq.(25) . ) o o
reduces to the Speziale model, which represents a class of 10 facilitate the Craik—Criminale analysis in the next
nonlinear-reactive models, which have wave-numberSection, we shall recast the stress tensor in(E§). in terms
independent damping instead of ordinary Navier—Stokes vis?f the mean velocity gradient. We begin by rewriting Eq.
cosity. For example, settingC{,C,,Cs)= (C,/2) (0,1,0) (25 equivalently as
with @?=0 in Eq. (25) yields the stress tensor for second-

. ) . o e de
grade fluids' Thus, both the nonlinear-reactive constitutive +(1-a?A)——Cy—
models of Rivlin—Ericksod? Noll-Truesdef® and the Cof? to dt
RANS turbulence closure models of Spezfalmay be re-
covered by setting:>=0 in Eq.(25). The analogies between

:Cle2+ Cz(E' w—w~e)+C3w2

the mean turbulent flow of a Newtonian fluid and the laminar C, Cj C, C, Cj3
flow of a non-Newtonian fluid have been a perennial subject =|—+—|Vu"-Vu'+| —+ ———|Vu-Vu'
. ) . . ; S 4 4 4 2 4
of discussion at least since RivifA.One recurring topic in
this discussion has been the question of material frame indif- C, G, C, C, C4
ference(MFI), defined as form invariance of the Reynolds- +|—+ n Vu-Vu+ 2 2 4 vu'-Vu
stress divergence under arbitrary time-dependent rotations
and translations of the reference frame. In turbulence, MFI is (26)

applied modulo the Coriolis force, so that rotation enter
solely through the total mean vorticity tensdl;;= w;;
+26iijk. The application of MFI restricts the allowable
form of the Reynolds-stress tensors for RANS turbulence gy 2e=Au, div(VuT-vu")=V r(Vu-Vu), (27)
models in Eq.(25) by requiringC,=C,/2 andC3;=0. The

remaining parametet; is left unrestricted by MFI, because and

SComputing divergences and using di# 0 yields the fol-
lowing three useful identities:

Downloaded 06 Feb 2004 to 129.119.144.59. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



858 Phys. Fluids, Vol. 16, No. 4, April 2004

di 2de

v dt
—Adu div| Vu-V 1V VTlVTV
=— a—i—lv u~u+§u-u—§u-u.

(28)

Hence, the divergence dW("- Vu') may be absorbed into

the pressure gradient. The other divergence terms arisi
from div o are not gradients, and they may be rearranged intd't

an equivalent version of the motion equatiori22) for
nonlinear-reactive fluids in a rotating frame as

(1—C0€2%A) d—u:( o C°€2(1—a2A) Au-Vp
2 7/ dt 26,
—2QXu—Cyl?div T, (29
with divu=0 and stress divergence,
div r=div(b,;Vu-Vu+b,Vu-Vu'+bzVu'- Vu). (30

B. R. Fabijonas and D. D. Holm

ov
E+(u-V)v+(Vu)T~v+29>< u

1 1
+V(p—§|u|2—§aZ|Vu|2 =vAv. (34)
Leray«w model: (C4,C,,C3)=(C,/2)(1,0~1) and
(bq,by,b3)=(C4/2) (1,1,0) expressed as
+(u-V)v+Vp=rAv. (35

Clark- model: (C;,C,,C3)=(C4/2) (—1,0-3) and
(bq,by,b3)=(C4/2) (0,1,0) expressed as
au
e +u-Vu—vAu
—a?div(Vu-vu'). (36)
As a fourth choice, we shall alter the Leraymodel into
the Bardinaee model, as

(1—a?A) +Vp

N
E+(ro)u+Vp=vAv. (37)

In components, this stress divergence relation is expressed as

(le T)i:&j Tij :aj(blui’kuk'j‘f'bzui’kUj'k'f‘ bguk’iuk’j(). )
31

These four special cases are chosen for their analytical
regularity. The LANSa model, the Clarka model and the
Bardinae model(the first, third, and fourth choicgsll pro-

After absorbing diVV”T'_V“T) into the pressure gradient, the yjde analytical control of th&.2 norm of the velocity gradi-

resulting stress tensar is no longer symmetric. However, ent |vu|. This may be verified by taking the scalar product
one fewer constant is needed in specifying this version of thg the velocityu with each of these equations and integrating
nonlinear-reactive fluid model. The relations between congyer the volume of flow, to find the energetics for homoge-

stantsb,, n=1,2,3, in Eq.(30) andC,,, m=1,2,3,4, in Eq.
(23) are given by

C, C; C,
bl:T_l—T 7, C1:2b1+b2+b3—C4,
C;, C, C3 C,4 1
b=t 5 T gt Combabsm5Cs
C; C, C3 C,
bg__4 __2 —_4 __4 y C3:2b1_b2_b3_C4.

(32

C. Outlook: CC solutions for nonlinear-reactive fluid
motion

neous boundary conditions,

d

1 1
Tt j E|u|2+ §a2|Vu|2d3x

=—vf |Vu|2d3X—Vf a?|Au|? d3x. (39

This energy equation illustrates the reactive feature of these
four models. The second term in the integrand on the left-
hand side is the reactive term: kinetic enefthe first term

may be converted into enstroplihe second terim not just

into heat(the viscous terms on the right-hand 9id&imi-
larly, the Lerayer model controls thé.? norm of the Laplac-

ian of velocity,||Aul|, as shown by taking its scalar product

In what follows, we shall analyze exact nonlinear CC With the other velocityy. Thus, these models are reactive, as

solutions of Eq.(29) for incompressible nonlinear-reactive
fluid motion with stress tensor in E¢B0). For this, we shall
choose three special cases of the coefficie@tg, m
=1,...,4, in stress tensdR5), or equivalently, the coeffi-
cientsb;, i=1,2,3, in stress tens@B0), subject to the rela-
tion

a?=Cyl%C,/2, (33

which unifies the Helmholtz operations in E@9). These
three choices are, as follows, all with-u=0 and definition
v=(1—a?A)u.

(1) LANS-a model: (C;,C,,C3)=(C,4/2)(0,1,0) and
(bq,by,b3)=(C,/2) (1,1~1) expressed as

well as dissipative, and their energetic exchanges invofve
norms of velocity derivatives. Consequently, their solutions
possess greater analytical regularity than solutions of the NS
equations. We shall analyze the CC solutions for these four
special choices among the nonlinear-reactive fluids as candi-
date turbulence models. The fourth modBardina«) does

not quite fit into the nonlinear-reactive stress tensor scenario
of the first three models. Instead, the Bardimaaodel arises
naturally in the context of filtered NS equations for large
eddy simulations. The interpretations sélutions of LES

and RANS models are usually considered to be different.
However, from the viewpoint of formal analysis of constitu-
tive relations and elliptic instability, one cannot distinguish
between LES and RANS equations. Therefore, with an apol-
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ogy for our abuse of notation, and since the velocitgnay
be regarded as a filtered version of velocityfiltered by
inversion of the Helmholtz operafprwe shall regard the
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1

P= ke

{Yk-(S+ST)-a+IIxak}, (43

four alpha models above as either RANS or LES models. - o _ _
Because only the first of these four models satisfies the convhereP is the coefficient ok in Eq. (41). As in the NS case,

ditions of MFI, we shall only consider this one, the LANS-
model, in a rotating frame.

IV. ROTATING CC SOLUTIONS OF THE LANS- «a
MODEL

We shall explain the CC solutions of the LANSmodel
in full detail. The LANS« model was derived by averaging
over fluctuations along particle trajectories in Hamilton’s

viscosity may be transformed out of the problem by consid-
ering the same change of variables as in @d). Note that
the termi (d; 5+ Bk-U) was incorrectly placed in the eikonal
equation(6) in Ref. 8. The difference, however, is trivial and
does not affect the results of that investigation.

Insight into the dynamics of the LAN&-CC problem
can be gained by examining E@t1) in the asymptotic re-
gimesI'<1 andI'>1, where for brevity of notation we in-
troduce '=Y—1. We shall assume thatk|?> remains

variational principal for the Euler equations, then using Tay-bounded and never vanishes. In these extreme parameter re-
lor's hypothesis for frozen-in fluctuations as a nonlinear tur-gimes, Eq.(41) becomes
bulence closure in the framework of the Euler—Poincare

variational theory, before finally adding Navier—Stokes vis-

cosity. See Ref. 7 and references therein for more details and

subsequent developments. The LANSnodel closure equa-
tions for incompressible turbulence consist of the nonlinear
reactive fluid equation&29) and(30), subject to the relation
a?=Cyt?C,/2 and coefficients i;,b,,b3)= (C4/2) (1,1,

—1). The LANS« equations can be expressed equivalently

as in Eq.(34),

ov
E+(u~V)v+(Vu)T-v+2.Q><u

1 1

+V p—§|u|2—§ozZ|Vu|2 =vAV+T, (39
with V-u=0 andv=(1— «?A)u. Here,vis a turbulent eddy
viscosity. Thus, the motion equation for the LANSmodel
contains two velocitiesi andv. The transport velocity, is
smoother than the transported velocitypy the inversion of
the Helmholtz operator, (£ a?A).

In constructing CC solutions to the LAN&-equations
(39, we again focus on base flows in the linear form
Ug=3S(t)-x+U(t) only. In this case,vo=uy and the

a 1
—+8T.a=—E,|k|?a—IIxa+ W(|<-($+5T)-a

dt
- 1
+IIxXa-k)k+T| IIxa+ W{2(k-5-k)a
—(Hxa-k)k})+0(r2), r<i, (44)
da+8T =—E,|k|?a+ 2 k-S-k
T -a=—E,|k|’a W{(")a
1
—(k-(S+ST)-akl+0 F)' I'>1.

(45

These equations preserve the wave transversality condition
a-k=0 to all orders. However, as we shall explain, care
should be taken in interpreting these LANSEC equations
whenv>0, since the Ekman numbé&t, contains a factor of

B%. The parametew is interpreted as the nondimensional

LANS-a CC equations for pressure and amplitude correyyrhylence correlation length for Lagrangian fluid trajectories

sponding to the NS CC Eqg$8) and(7) are given by

p1— (Y —1)|a*=0, (40)
dya ;

" +i(dio+Bk-U)Ya+YS'-a+IIXa

—(Bp11— a?B%a-S-k)k=—YE |k|%a. (41)

Equations(6) and (9) for the CC solution properties of

in the LANS-« model anda<1 is typically regarded as a
small, fixed number. In this case, the two limifs<1 and
I'>1 correspond to low and high wave numbers, respec-
tively. The O(1) term in Eq.(44) for low wave numbers is
exactly Eq. (7) for NS. This is not unexpected, since
LANS-« reduces to NS forr=0. We see in Eq44) that the
amplitude a decays exponentially with viscosity, while it
stretches with the base shear, and rotates with the vorticity of
the undisturbed system. When the limitc1 corresponds to

frozen-in phase and transverse amplitude, respectively, rdixed « and lowg, the evolution is essentially inviscid. In the

main unchanged for the LANG-model. Here, the LANSx

opposite limit, forI'>1, the terms of orde©(1/1"), and

CC variables are defined the same as for the classical NS C&naller, are independent &, . In this limit, the amplitude

solutions, and the quantity (t) is given by
Y (t)=1+ a?B2k(t)|2. (42)

Without loss of generality, we may again sef¥/dt+ gk-U
=0 for the kinematic phase condition, assume #(a} is a
real-valued function, and obtain E(LO) for k(t). We may
also solve the pressure as before to obtain

to leading order still decays with viscosity and stretches with
the base shear as in the low wave-number case, but the ef-
fects of rotation with the total vorticityl are higher order. In
particular, whed > 1 corresponds to fixed and 38—, the
viscous term on the right-hand side of Eg5) is O(82),

from which we conclude that the amplitude decays exponen-
tially with viscosity to leading order.
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A. Inviscid LANS- « CC solutions 1k 1L

Circular inviscid LANS«a flowlines For the LANS«
model, when the flowlines are circular and the flow is invis-

0.75 0.75

cid, theny=0 andE,=0. In this case, the elliptic instability gos gos
problem can again be solved analytically. Sinkg=1, the ] (a) g
qguantity Y in Eq. (42) becomes constant, which we denote o.2sf 0.25
by Yo=1+ «?B2. Equations(15—(17) provide three lin-
early independent solutions to E41) when &(t) =2t(1 O o s oy 0
+Q)cosdY,. Once again, we may construct the mono- Y
dromy matrix explicitly, and the eigenvalues are again
=exp[+i&@2m)}, ps=1. By the same arguments as before, [ k
the critical stability points are now determined by _(b) |
0.75F - 0.75
cos¢9—+n—YO n=1,2,3 (46) %0»5’ gO-ﬁ-
S T2(1+Q) o T g g
0.25F 025
Since|cos#|<1, it follows that there are no critical stability
points for 0
—3Y<Q+1<3Y,. (47) "
The average maximum growth rate for small values of ec- ol
centricity y<1 may again be calculated as ;' °
O (2+Y9?2  (24+Y,+20)? , 7 %°
Oq= X +0 , 48 °
=16 2evgrasne O W8
which is valid forY ;<2 and(} outside the range in E¢47). 0

Elliptical LANS « flowlines For nonzero values of ec-
centricity y, the solution to Eq(41) for the LANS« wave
amplitude must be simulated numerically. We find that for
QO # —1 andYy>1, there exists a principal instability region 5L
in the (y,cos#) parameter plane; see Figs. 3 and 4. For non-
zero eccentricityy, and for() satisfying Eq.(47), we find a
band of eccentricities for which the amplituge remains
bounded. Thus the flow is stable in this band. In particular, °25f
the entire /,cosf) parameter plane is stable fér=—1.
For ) outside the range in Eq47), we also find a large
number of fingers which lie abovgespectively, beloythe
principal instability region for cog>0 (respectively, cO8  FIG. 3. Instability domains for CC solutions in LAN&-model for
<0). The fingers are exactly those we saw in the NS equaE,=0, 2=5 and various values af*s* (a) 0.0, (b) 2.5, (c) 5.0,(d) 7.5,
tions. However, forY,>1 these fingers become more sig- (© 10:0:(f) 12.5,(9) 15, () 17.5. The white background represents regions

- . . . for which 0y<10™ . As & increases, the angle of critical stability shifts
nificant and their widths increase. The growth rates aSSOCla_.CCOI’ding to Eq(46). The nonprincipal fingers correspond to critical angles
ated with the fingers also increase. In fact, the maximumith n>1. The parameter?s2 shifts the angle of critical stability towards
growth rate over the entire parameter plane increases to @sé=1 while increasing the maximum growth rate. AS3? exceeds

maximum value Ong= y at cos9=1, ie., at Y= 2(1 1+2Q (f), a stable band of eccentricities appears and the maximum growth

+Q). As Y, exceeds this threshhold, a stable band of gclate decreases.

centricities appears and the maximum growth rate begins to
decrease. See Fig. 3. Thus, the wave number at which the
growth rate attains a maximum is not only a function of the —a?p?
turbulence correlation lengthy, but it also depends on the O=—7.
inverse Rossby numbe®). For the inviscid case, the results 1+a’p
in the limits «?B?<1 and «’B?>1 are independent of Although the two instability domains it and «>8? do not
whethera is fixed andB— o, or vice versa. overlap exactly, numerical simulations show that where they
Remark We observed during numerical simulations thatdo overlap, the difference in the growth rates is small. In
the change of the instability domain forsQv?8%<c with  particular, the relative difference of the individual maximum
Q=0 is extraordinarily similar to that for 1< =<0 with  growth rates, which occur at cds-1, y=1 whena?B?=1
a?B%=0. In fact, the two different cases will have the same(or equivalently,—1<Q<—3), is less that 1%. Since Eq.
principal critical angle when (49) can be rewritten ag?g%?=—Q/(1+Q), valid for —1

cos(theta)
o
o

(49
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=1+a?@ increases from unity to two while shifting the
critical stability angle towards cas=1. Figure 5 shows the
neutral stability surface for the nonrotating case. In particu-
lar, the entire §,cosé) parameter plane can be stable for
fixed large values oE, andY =1, then destabilize a¥
increases to two, and then stabilize adgdtig. 5(c)]. To em-
phasize the effects of fixed and variousB as described by
the asymptotics, Fig. 6 shows a representative surface for
various values ofv/|w|. Finally, in Fig. 7, we show the
growth rates maximized over the (c@%) plane.

Rotation intensifies the effects of,, and viscosity
dampens out many of the insignificant fingers. In fact, the
physically insignificant fingers are removed by viscosity
from the contour plots, and we are left with only the main
region. See Fig. 4.

V. CC SOLUTIONS IN FOUR TURBULENCE MODELS,
IN THE ABSENCE OF ROTATION

The field of large eddy simulatiodLES) models is
driven by the desire to simulate reliably the motion of the
large scales in turbulent flow, without completely simulating
the smaller scales. A common approach is to introduce a
filter operationL(-) and to examine the evolution of a fil-
tered velocity fieldu which corresponds to an exact velocity
field v by the relationshipu=L(v). Introducing filtering
causes the effects of length scales smaller than the width of
the filter to become negligible. Focusing on nonrotating co-
ordinate systems, the resulting LES equationufdas

du+u-Vu—vAu+Vp—T—vAu=—divr(u), (50

where diwu=0. The variableg andT are the filtered pres-
sure and body forces, respectively, ar(d)=L(vv)—uu is

the LES closure for the stress tensor. Just as in RANS mod-
eling, the bulk of the work in LES modeling focuses on
deriving a form forr based on physical assumptions, e.g.,
symmetry, material frame indifference, etc. We apologize
again for conflating these two approaches in a single treat-

FIG. 4. Instability domain for CC solutions in LAN&-for E,=0.1, . . .
Q=5 and various values 282 (compare with Fig. B (a 0.0, () 25, ~ ment. However, from the viewpoint of formal analysis of CC

() 5.0,(d) 7.5, (e) 10.0, (f) 12.5,(g) 15.0, (h) 17.5. The white background solutions for nonlinear-reactive fluids, based on their consti-

represents regions for whialky, < 10 1% The results are similar to those in  tytive relations, one cannot distinguish between LES and
Fig. 3 with a stable band of eccentricities introduced by viscosity. Of Pa-RANS

ticular interest is the introduction of an instability finger emanating from

cosf=1, y=1 (d) and merging with the principal fingée). ) ) )
A. LANS- @ and other nonlinear-reactive-fluid models
of turbulence

<=0, we conclude that the effect af in the LANS«
model on elliptic instability is essentially equivalent to
counter rotation of the coordinate system.

As we discussed earlier, the LANSmodel in Eq.(39)
may be expressed as

(1—a?A)(du+u-Vu—vAu)+Vp—F=—a?div r
B. Viscous LANS- a CC solutions (51

Landman and Saffmahextended Bayly’s elliptic insta- together with diwi=0, where divr is the right-hand side of
bility analysis to add viscous effects. They found that viscosEq. (30). Comparing Eq(51) with Eq. (50), we see that (1
ity decreases the growth rate and introduces a high wave «?A)~'div  is equivalent to the divergence of a filtered
number cutoff in the {,cosé) plane. ForY,>1 in the stress tensor, for which the filtering is performed by inver-
LANS-« model, viscosity again introduces a high wavesion of the Helmholtz operator (1a?A). We emphasize
number cutoff. However, for fixe&,, the LANS«w model that the filtering in Eq(30) is not a modeling choicéas is
destabilizes somébut not al) of the eccentricities a¥ the norm in LES modeling rather, it is a reformulation of
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FIG. 5. Approximation of the neutral stability surfagee., o;=0.01) for CC solutions in LANSx for O =0, fixed 3=1.0, and various values &, : (a) 0.1,
(b) 0.5, (c) 1.0.

the LANS-« model. We shall search for CC solutions to Eq. Here, we are keeping track of the contributions of various
(51) in full generality and will omit termsa posteriorito  terms in the stress tensor, thereby allowing us to examine all
investigate the various models. the models simultaneously. As in the NS case, we sédtitd

CC solutions for the nonlinear-reactive fluidset us de- + Bk-U=0. We take the gradient of E¢53) to obtain Eq.
fineu=up+uy, p=po+p1, Whereug=S(t)-x+U(t) isan  (10) for the evolution ofk. Then the third term in Eq(54)
exact solution to Eq(51) andpg is the corresponding pres- vanishes exactly, and we assume théf) is a real-valued
sure as before, andi,,p,} are as in Eq(1). Again incom-  function. Again, we remove the effects of viscosity by an
pressibility yields wave transversality, as expressed in Eqintegrating factor. Finally, we use the identityY (it

(9). The resulting equations for the amplitudethe phasey, =—2a?pB%k-S-k to obtain
and the pressure terms are obtained as before by coIIectin&Ya)
on terms linear and constant xn 5 +(Y—by(Y—1))S-a—by(Y-1)ST-a
p1o—bsa®B?la?k|*=0, (52 +E,|k[?Ya—Pk
F(k=x) + k-Sx=0, (53 =a?B%(b;+b,—2)(k-Sk)a, (55)
da ~ . - .
YE+iY(dt5+IBU°k)a_2i a?B2((dk+k-S)-k)a whereP is the coefficient ok in Eq. (54)
+(Y—by(Y—1))Sa—by(Y-1)ST-a+E,|k|*Ya 1. LANS-a
—(Bpyt bsa?B(a:5-K))k The LANS-« model corresponds tobg,b,,bs)=(1,1,

—1) in Egs.(52)—(54). These are the equations we examined
=a’B(by+by) (k-Sk)a. (54  in Sec. IV.

FIG. 6. Approximation of the neutral stability surfagee., 74=0.01) for CC solutions in LANSx for Q =0, fixed «=1.0, and various values of|w|: (8
0.1, (b) 0.5, (c) 1.0. Notice that the flow behaves inviscidly faf3?<1 and decays exponentially fast a43? increases as predicted by the asymptotics.
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1r 1
0.75} 0.75}
3 3 I
£ £ H FIG. 7. The maximum growth rates in LAN&-for
© 05 © 05 I different values ofv/|w| and 2=0.0. In each picture,
the values ofv/|w| are, from top to bottom, 0, 0.1, 0.5,
and 1.0.(a) corresponds to fixeg= 1.0 and variousy,
0.25 025k and(b) to fixed a=1.0 and variougs.
907 907
2. Leray-a equations for the elliptic instability dynamics of the linear
Leray®® introduced a class of regularized NS equations,0ase flowup=5-x+U are Egs(8), (6), (9), plus
which for Helmholtz-inversion filtering we call the Leray- da . -
model. These equations were introduced not as a turbulence Y 4 +YS-a—Bpyk+ E.lk|*Ya—a®B*(k-S-k)a=0.
closure model, but rather as a deformation of the NS equa- (59)

tions, for which Leray was able to show global existence and _ )
uniqueness of solutions. The Leraymodel is similar to the NOt€ that the integrating factor
LANS-« model and may be written as

a(t)= é(t)exp(

ta?B2k(t)-S(t)-k(t) .
dv+u-Vv+Vp=rAv, (56) f dt

0 Y (1)
with pressure determined by preservation of uivO andv

=(1—a?A)u. The Leraya model corresponds to will reduce the problem to that for the Euler equations. Thus,

(by,b,,b3)=(1,1,0) in Egs.(52—(54). The equations of the growth rate for the Clark-model is modified by
motion for the Leraye CC solutions are Egg9), (10), and 1 ij a2,82k(f)-8(f) _ k(f) .

) (60)

p1,=0, (57 Og,Clark— Ug,EuIer"‘ T_p 0 Y(E)
dYa) +S-a— Bpyk+E,|k|2Ya=0. (58)  For the case of elliptic instability for whic(t) is given in
dt Eqg. (2), the wave vectok(t) is given in Eq.(10) and the

The specific case of elliptic instability for the Leray-
model is similar to the CC analysis for the NS equations. The
wave vectokk is given in Eq.(14) with x(t)=ty1— 2. For
y=0, in the case of circular flowlines, the Leraysolutions
for the wave amplitude arise as in Eqs(15)—(17), except
with &(t)=t(1+Yg)coshY,. For elliptical flowlines with
nonzeroy, we again may use Floquet theory.

Figure 8 shows the critical stability surface for elliptic
instability in the Leraye model. The effects are drastically
different from those of the LANSx model. The angle of
critical stability shifts according to the formula cés
=Yo/(1+Yy). Since this quantity is always less than unity in
magnitude, no stable band of eccentricities ever appears. Fur-
thermore, the maximum growth rate has an average value
calculated as before afy=(1+2Y)?y/{4Yo(1+Y)?} to
leading order iny<1 for all values ofa?8?. Thus, asw?s?
increases from zero, the maximum growth rdézreasess
a function of «?82. However, the parameter’3? does not
introduce a stable band of eccentric Lerayftows.

cos(the‘a)

3. Helmholtz-filtered Clark- « model FIG. 8. Critical stability surface for elliptic instability in the Leraymodel
. 6-28 for 0=<a?B?<10, E,=0. Again, Fig. 1 corresponds to the slia€3?=0.
The Helmholtz-filtered Clarke modef corresponds  The critical angle shifts as predicted, though always touches the glice

to (by,bs,b3)=(0,1,0) in Eqs(52)—(54). The resulting CC =o.
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period is Tp=277/\/1—72, the above integral vanishes ex-
actly. Consequently, the Helmholtz-filtered Clarkmodel
preserves exactly the NS elliptic instability

B. Bardina- @ model

The Bardinaa modef® is similar to those above, but it
does not arise as a choice in E8O) for the stress tensor.
The motion equation for the Bardinamodel is

dv+u-Vu+Vp=rAy, (61

with pressure determined by preservation of \divO and
v=(1—a?A)u. This model still uses the inverse Helmholtz
filter, albeit with a different stress tensor. As was the case for
all previous models, the elliptical columnar flow is an exact
solution subject to the same conditions. We construct a CC

solution by adding the Kelvin traveling wave to the column 0.5
and collecting on terms linear and constankifiThe result- cos(theta)
ing equations of motion for elliptic instability are Eq®),
(9), plus FIG. 9. Critical2 sgability surface for_ eIIip_tic instability in the Bardimq—
model for O<a“B°<10, E,=0. Again, Fig. 1 corresponds to the slice
Y 9,(k-x) + k-S-x=0, (62) «B=0.

d(Ya)+ia(Y a6+ Bk-u)+S-a— pyk+ v|k|?Ya=0. . . :
(Y@ +ia(Ya o+ pheu) + Sa-puk-+vk[*Ya 63) Circular Bardina- flowlines The casey=0 for the

Bardinae model can be simplified by considering a change

The first observation is thaY does not factor out of the of time variablet,=t/(1+a?). In this new variable, the
equation for the wave vectéras it did before. This is due to  equations recover exactly those for the classical Euler case.
the fact that the model’s nonlinearity is of the fonmVu, Thus, the angle of critical stability is again c#s1/2, and
and notu-Vv as in the previous models. This means that,the average maximum growth rate, under appropriate scal-
upon taking the gradient of E¢62), we obtain the following ings, is T4=9y/{16Y¢}. Thus, the effect of the Bardina
nonlinearequation for the evolution of: model on elliptic instability is tareducethe average maxi-

dk (Vug) Tk mum growth rate for all values af but not shift the angle of

— 0 (64)  critical stability. See Fig. 9.
dt  1+a?B?k|?

That is, the wave vectok(t) is no longer frozen into the VI DISCUSSION

fluid. We shall analyze the specific case of elliptic instability. ~ We have examined the CC class of exact nonlinear so-
Numerical simulations indicate that the componentk afe  lutions for several recently introduced turbulence closure
periodic. Upon guessing a solution in the form of Etg), models that appear in the framework of nonlinear-reactive
we find thaty(t) is the solution to the transcendental equa-fluid dynamics. We find that all these models preserve the
tion existence of elliptic instability. This is a desired property of
any turbulence model—it should at least preserve the classic
NS instabilities. We emphasize that elliptic instability is gen-
erated by the nonlinear term in the NS equations, via para-
metric resonance mediated by vortex stretching. Thus, the
=tV1-92 (65  choice of the nonlinearity plays a crucial role in elliptic in-
stability. In the models we have examined here, the effect of
the nonlinearity choice on the CC class of solutions deter-
mines the presence of the functidf(t) in the amplitude
equation (54). For example,Y appears linearly in the

Y Clark-a model and factors out of the equation, and thus el-
X~ T o ot aZsir? ity (66) liptic instability is unaltered in this model. In contrast, the

presence ol (t) in the Bardinae model leads to a nonlinear

Although this choice ofy(t) is not an accurate approxima- equation for the wave vectdr. Since the term quadratic in
tion, numerical simulations show that it is sufficient to deter-the disturbance; - V u; vanishes as a result of transversality,
mine the periodicity of the wave vectdr for all parameter a-k=0, the instability is a result of wave-mean-flow interac-
regimes. Consequently, the wave amplit@dagain satisfies tion, rather than wave—wave interaction. Thus, elliptic insta-
a Floquet problem, whose period is determined by (66). bility is complementary to the triad resonance mechanism,
As before, we assume thatis a real-valued function upon which results from nonlinear wave—wave interaction gener-
settingY dé/dt + Bk-U=0. ated by the quadratic disturbance term.

2 0@ a?sir? 0 azysinzﬂ_
1+ a“cos 6+ 155 x(t)+ 2(1+7) sin(2x(t))

For the casey=0, we have thaty(t)=t/(1+ a?) exactly.
For small nonzero eccentricity of the flowlineg<1, we
may neglect the nonlinear term y(t) to find
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TABLE I. All of the nonlinear-reactive-fluid models of turbulence preserve the classic CC solutions for base
flows of the formuy=S-x+U. The second column lists the angle of critical stability for the linear flows of the
form in Eq.(2) for Q =0, where for brevityY' =1+ «>82. The third column lists the average maximum growth
rate to leading order in the eccentricity Note that in all the models, the values for NS are regained by setting

a?B%=0.
Model Principal critical angle Maximum growth rate
NS cosf=1/2 oy=97/16
LANS-a cosf=Yy/2 T4=(2+Y()?y/16
Leray-w cosb=Yy/(Yo+1) T4=(2Y o+ 1)/ (4Y (Yo +1)?)
Clark-a cosf=1/2 oy=97/16
Bardinae cosf=1/2 oy=97v/(16Y,)

Our main conclusion is that these models alter the NSACKNOWLEDGMENTS
structure of the CC solutions. Detailed resultsoithe criti-

cal instability angle, andii) the average maximum growth interest in CC solutions. One of the auth@BsF.) thanks the

rgte for the various t.urbulence closu_re models are SUMM3ey o oretical Division of the Los Alamos National Laboratory
rized and compared in Table | and Fig. 10. Perhaps surprig;

ingly, the Bardinae model is identified in Table | of com- or its continued hospitality.

parisons as preserving more features of the CC solutions for
the NS equation than any of the other models. The model ha@PPENDIX: VERIFICATION OF THE BARDINA MODEL

the salient features that it decreases the growth rate for high  The work in Sec. VV B relied on approximating the period

wave numbers as is expected of LES models without altering i (t) correctly. As a check of this approximation, we use

the underlying physics, that is, it does not alter the criticalihe quasiperiodic extension of Floquet theory as demon-

angle of stability. Bardinar is a new model, whose analyti- strated in Ref. 32. We use the incompressibility condition Eq.

cal properties, for example, will be considered in detail else{g) to eliminate a variable, say, and rewrite the system in

where. Eq. (63) asd,a, =Ba, , wherea, =(a; a,)'. By using the

Cambonet al*® examined from a statistical viewpoint prifer transformation

the effects of a specific model on elliptic instability, hyper- dt) o at)

bolic instability, and the stability of Taylor—Green vortices. ~ au(t)=€%sinc(t)], ax(t)=e""cogc(t)], (A1)

Our work complements their work in presenting a combina-we rewrite the ODE in the new variableét) andd(t). The

tion analytic and numerical results for a variety of turbulencequantities

models whose regularization is based on Helmholtz-

inversion filtering. See Geurts and Hathfor an extension

of other classes of filters of this regularization approach for

turbulence modeling. called the growth rate and winding number, respectively, can
be reliabilty simulated numerically by long time computa-
tions (say t=1000). The growth raté is equivalent to the

1r Lyapunov growth rate generated by Floquet theory. We com-

I pute these quantities on a coarse grid to verify that the Flo-

quet theory analysis given above is accurate. Although the

period ofk may be only approximate, a numerical investiga-

tion using Floquet theory requires significantly less comput-

ing time than the present quasiperiodic theory.

We thank A. Lifschitz-Lipton for sparking our original

I=lim[d(t)/t], W=lim lim[c(t)], (A2)
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