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The Craik–Criminale class of exact solutions is examined for a nonlinear-reactive fluids theory that
includes a family of turbulence closure models. These may be formally regarded as either large eddy
simulation or Reynolds-averaged Navier–Stokes models of turbulence. All of the turbulence closure
models in the class under investigation preserve the existence of elliptic instability, although they
shift its angle of critical stability as a function of the rotation rateV of the coordinate system, the
wave numberb of the Kelvin wave, and the model parametera, the turbulence correlation length.
Elliptic instability allows a comparison among the properties of these models. It is emphasized that
the physical mechanism for this instability is not wave–wave interaction, but rather wave,
mean-flow interaction as governed by the choice of a model’s nonlinearity. ©2004 American
Institute of Physics.@DOI: 10.1063/1.1638750#
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I. INTRODUCTION

The fully nonlinear ‘‘elliptic instability’’ rapidly gener-
ates three-dimensional flows in regions of two-dimension
elliptical flowlines, e.g., in an elliptical vortex column, o
vortex tube. This instability is triggered when it becom
possible for a wave packet propagating in three dimens
to draw energy from an elliptical column of mean vorticit
The mechanism for elliptic instability is a parametric res
nance in the wave, mean-flow interactions. The instability
fundamentally three-dimensional, and its average maxim
growth rate is proportional to the mean strain rate, or equ
lently, the eccentricity of the elliptical flowlines. The mech
nism for elliptic instability is the same as that for critic
layer absorption.1 Laboratory experiments and numeric
modeling show that elliptic instability quickly breaks dow
the elliptical vortex columns by producing complicate
flows, which themselves break down into small-scale dis
der. As a result, elliptic instability is a natural candidate
studying mechanisms involved in the onset and dynamic
turbulence, in which the intermittent stretching of vortex fil
ments by rapid three-dimensional fluctuations is a fundam
tal process.

Thus, elliptic instability is the nonlinear mechanism b
which vorticity creates three-dimensional instabilities
swirling two-dimensional flows. In the classic paradigm, e

a!Electronic mail: bfabi@mail.smu.edu
b!Electronic mail: dholm@lanl.gov
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ergy in an elliptic columnar vortex is transferred to a trav
ing Kelvin wave whose wave vector is fully three
dimensional. A detailed review of elliptic instability can b
found in Ref. 2. The topic was first investigated by Lo
Kelvin3 in 1887 for a circular vortex column and then wa
generalized to elliptical vortex columns almost a centu
later by Bayly.4 Both investigations considered the stabili
of a traveling wave for the equations of motionlinearized
about the rotating column of fluid. The groundbreaking wo
of Craik and Criminale5 showed that the sum of a rotatin
column of fluid and a traveling Kelvin wave together wi
any number of its harmonics is anexact solutionto the non-
linear Navier–Stokes~NS! equations. These exact nonline
solutions are called Craik–Criminale~CC! solutions.

The CC class of exact NS solutions provides a mean
analyzing the three-dimensional nonlinear dynamics of el
tic instability. These exact solutions show that elliptic ins
bility is generated by wave, mean-flow interaction via t
nonlinear term in the NS equations. Thus, elliptic instabil
is a fundamental nonlinear mechanism in the dynamics
turbulence. It seems reasonable to compare computati
models of turbulence in the light of whether they realistica
incorporate the effects of elliptic instability. In this paper, w
extend the literature of the CC flows by considering the
liptic instabilities allowed by a nonlinear-reactive~as op-
posed to nonlinear-dissipative! fluid theory that includes a
new class of one-point turbulence closure models wh
derivation by Lagrangian averaging alters the nonlinearity
© 2004 American Institute of Physics
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the NS equations. This class of models was identified ea
and studied analytically and numerically in a series of
pers; see Refs. 6 and 7 and references therein. The que
that we shall investigate here is, ‘‘How do these nonline
reactive turbulence closure models deal with elliptic insta
ity?’’ The answer to this question for each turbulence mo
in this class allows us to compare the models according
how their exact nonlinear solutions describe, or alter,
fundamental NS elliptic instability. Formally, the mathema
cal analysis we present applies equally well to turbule
closure models derived by either the RANS~Reynolds-
averaged Navier–Stokes! approach or LES~large eddy simu-
lations!.

The CC class of solutions have recently been revis
by the present authors.8 It was shown that the CC class o
exact solutions persists for the Lagrangian-averaged Nav
Stokes-alpha~LANS-a! model, a new closure model for in
compressible turbulence that was introduced in Refs. 9
10. This paper investigates the CC solutions of the LANSa
model in detail together with the effects of rotation and e
tends the CC analysis for several other constitutive mod
for turbulence closure in a class of nonlinear-reactive flui

Nonlinear exact CC solutions of the NS equations: The
CC class of nonlinear exact solutions decomposes both
velocity and pressure into the sum of two terms, asu5u0

1u1 andp5p01p1 . Here the base flow$u0 ,p0% is anexact
solution to the equations of motion in an unbounded phys
domain linear in the spatial coordinate. Consequently, in
CC solutions, both of the pairs$u0 ,p0% and$u,p% are exact
solutions to the nonlinear equations. While the base flow
the CC decomposition is an exact solution, the disturba
$u1 ,p1% by itself is, in general, only a solution of the equ
tions linearized about the base flow$u0 ,p0%.

The CC solutions consider the disturbance$u1 ,p1% in
the form of a traveling wave,

u15R$ma~ t !eic%,
~1!

p15R$ imp11~ t !eic1m2p12~ t !e2ic%,

where the amplitudea(t) depends only on time and th
phasec(x,t)5bk(t)•x1d(t) is linear in the spatial coordi
nate. The phase shiftd(t) may also be regarded as arisin
from a time-dependent shift of the origin of coordinates. T
scaling parametersm and b are chosen so the initial cond
tions may be normalized asuk(0)u51 and ua(0)u51. The
parameterb can be viewed as the product of the wave nu
ber and the relative scale of lengths between the base
and the Kelvin wave. The base flow is linear in the spa
coordinates,u05S(t)•x1U(t), whereS"x5Si j xj is the ac-
tion of the matrixS(t) on the vectorx5@x1 ,x2 ,x3#T from
the left andU(t) is the instantaneous velocity at the origi
The construction method is one in which the Kelvin wa
does not alter the evolution of the base flow. The clas
problem of elliptic instability is found in this class of solu
tions,

S5S 0 211g 0

11g 0 0

0 0 0
D , U50. ~2!
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Here, the base flow in this case is a rigidly rotating colum
of fluid whose flowlines are ellipses with eccentricityg. The
extreme values are circles (g50) and simple shear flows
(g→12).

Outline: We begin by reviewing the classic CC solution
for the NS equations in Sec. II. In particular, we shall revie
the case of elliptic instability. Section III examines this cla
of solutions and elliptic instability for certain turbulence cl
sure models, regarded as ‘‘constitutive laws’’ for nonline
reactive fluids that include the LANS-a model. In Sec. IV,
we perform a detailed examination of the CC class of ex
solutions and elliptic instability in the LANS-a model. We
then examine the class of CC solutions in full generality
each of the other turbulence closure models in Sec. V.
summarize our results in Sec. VI. Overall, we conclude t
the study of exact nonlinear CC solutions for these mod
defines sharp distinctions among them. For example, the
solutions for these models provide detailed comparisons
their principal critical angles of instability and maximum
growth rates, as functions of their parameters. The CC s
tions for these models also determine to what extent e
model preserves the fundamental attributes of the elliptic
stability for NS. Thus, elliptic instability analysis allows
fully nonlinear comparison of turbulence closure models
the basis of the specific and fundamental physical mec
nism of their wave, mean-flow interaction, rather than on
basis of tensor transformation properties, or other gene
ties.

II. REVIEW OF CC SOLUTIONS OF THE
NAVIER–STOKES EQUATIONS

We begin with a review of the classic CC results for t
NS equations

] tu1u"“u1¹p12V3u2nDu5F, ~3!

in which preservation of incompressibility, divu50, deter-
mines the pressure,p. Here, F represents the sum of a
external body forces. Clearly,u05S(t)•x1U(t), together
with the pressurep0(x,t)5x•Q(t)•x1p(t)x is a solution in
an unbounded domain. The matrixS(t) is a time dependen
matrix with zero trace such that

dtSi j 1SimSm j12e imkVmSk j5Mi j . ~4!

Here,dt denotes full time derivative, andM (t) is a symmet-
ric matrix defined asMi j 52] i] jP, where

P52Ex
F•dx1p0~x,t !1~dtU1S•U12V3U!•x. ~5!

A typical solution approach is to choose a matrixS(t) for
which the left-hand side of Eq.~4! is symmetric. Then, the
corresponding pressurep0(x,t) is determineda posterioriby
Eq. ~5!. We may nondimensionalize the NS equations
using the variablesx85x/ l , t85uvut, u5u/uvu l , V8
5V/uvu, wherel is a typical length scale andv5curlu0 is
the vorticity of the flowu0 . After dropping primes from the
notation, Eq.~3! reappears in nondimensional form withn
replaced byn/uvu. Furthermore, in nondimensional form,V is
now interpreted as a signed inverse Rossby number.
P license or copyright, see http://pof.aip.org/pof/copyright.jsp



,
ng

l
r

y

iz
N
va
n
r

se

us

s
o

s-

r

ic

ns.

e-

s

-

ty

t

om-

re

all
n is
pa-
the

the
.

855Phys. Fluids, Vol. 16, No. 4, April 2004 Craik–Criminale solutions
equations for the amplitudea and the phasec are obtained
upon making the CC substitutionu5u01u1 and p5p0

1p1 into Eq. ~3!, whereu1 andp1 are given in Eq.~1! and
by collecting on terms linear and constant inx, respectively,

] t~k"x!1k"S"x50, ~6!

da

dt
1 i ~dtd1bk"U!a1S T

•a1P3a1Evuku2a2bp11k50,

~7!

p1250, ~8!

a"k50. ~9!

Here, P5curlu012V is the total vorticity of the system
that is, the vorticity of the base flow, plus that of the rotati
coordinate system, andEv5nb2/uvu is the vorticity-based
Ekman number. Note that we have used the identity curu0

3a5(S2S T)•a for reasons we explain below. The transve
sality condition in Eq.~9! arises from the incompressibilit
condition. This transversality is why the termu1•“u1 qua-
dratic in the disturbance velocity vanishes. We emphas
that CC solutions are exact, nonlinear solutions of the
equations because the nonlinear wave–wave interaction
ishes exactly. This transversality condition fails when o
tries to add two Kelvin waves where the phases are not
tionally related. Without loss of generality, we may choo
the kinematic phase relation,dtd1bk"U50, whereU(t) de-
notes the coordinate-independent contribution ofu0 . By do-
ing this, the termd(t) exactly balances the instantaneo
velocity of the base flow at the origin,U(t). Then, we see
from Eq. ~7! that we can assume thata(t) is a real-valued
function. The equation for the wave vectork(t) obtained
from the phase equation~6! is the transport equation,

dk

dt
1S T

•k50. ~10!

Since dk/dt1S T
•k is the total time derivative ofk in a

Galilean frame moving with the base flowu0 , we see that
the wave vectork is frozen into the base flow. Equation~7!
states that the evolution of the real amplitudea in this frame
undergoes rotation by the total vorticity of the base flow, a
decays exponentially with viscosity. In fact, the change
variables

a5ãexpS 2EvE
0

t

uk~ t̂ !u2 d t̂D ~11!

will transform away viscosity from the problem. The pre
sure termp11 can be expressed in terms ofa andk by taking
the dot product of Eq.~7! with k and recalling thata"k is an
integral of motion. Consequently, one finds the pressure
lation,

bp115
a•~S1S T!•k1P3a"k

uku2
. ~12!

Thus, Eq.~7! can be expressed as

da

dt
5N~ t !•a, ~13!
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whereN is a 333 matrix which may have some parametr
dependence, as well. Earlier, we noted that bothu0 and the
sum u01u1 are exact solutions to the nonlinear equatio
However, the disturbance velocityu1 by itself is, in general,
only a solution to Eq.~3! linearized aboutu0 . As an impor-
tant exception, in a rotating coordinate system (VÞ0), the
velocity u1 by itself is also an exact solution, since this sc
nario corresponds tou05R•x in a nonrotating frame, where
R is rigid body rotation about thez axis; cf. Ref. 12. The
specific problem of elliptic instability in the NS equation
using the base flowu05S"x as in Eq.~2! was first investi-
gated by Bayly4 for V50, by Craik11 for VÞ0, and later by
others.12–17 Equation~10! for the wave vectork(t) has an
analytical solution for all elliptical eccentricitiesg, namely

k5@sinu cos~x~ t !!,k sinu sin~x~ t !!,cosu#T, ~14!

wherek25(12g)/(11g), x(t)5tA12g2, andu is the po-
lar anglek makes with the axis of rotation. For circular flow
lines, g50, Eq. ~7! for the wave amplitudea also has an
analytical solution: a5c1a1(t)1c2a2(t)1c3a3(t), where
c1 ,c2 ,c3 , are constants and

a1~ t !5cos~j~ t !1f!k'11sin~j~ t !1f!k'2 , ~15!

a2~ t !5sin~j~ t !1f!k'12cos~j~ t !1f!k'2 , ~16!

a3~ t !5ez . ~17!

Also, k'15@cosu cos(x(t)),cosu sin(x(t)),2sinu#T, k'2

5@sin(x(t)),2cos(x(t)),0#T, j(t)52t(11V)cosu, and f is
an arbitrary phase. For elliptical flowlines with eccentrici
g, the solution to Eq.~7! for the CC wave amplitudea must
be determined numerically. Because the wave vectork is
periodic, Eq. ~13! for the amplitudea satisfies a Floque
problem.18 Thus, integration of Eq.~13! over one period ofk
will determine the Lyapunov growth rate ofa, if any such
growth occurs. These growth rates are determined by c
puting the eigenvaluesr i of the monodromy matrixP(tp),
whereP(0)5diag$1,1,1%,

dP
dt

5N•P, ~18!

andtp is the period ofN; in this case,tp52p/A12g2, the
period ofk. Once computed, the Lyapunov growth rates a
given bysg5maxi@ln(R$r i%)#/tp . The growth rates for the
Euler equations are shown in Fig. 1 forV50. We see from
this figure that the amplitudea has an exponential growth
rate for certain orientations of the wave vector and for
nonzero eccentricities. We emphasize that the CC solutio
an exact solution to the nonlinear NS equations for all
rameter values. A CC solution is said to be unstable, if
magnitude of its amplitudea is unbounded ast→`.

CC solutions of NS for circular flowlines: The circular
caseg50 can be treated analytically. One may construct
monodromy matrix explicitly from the solutions in Eqs
~15!–~17!. For the initial conditionP(0)5diag$1,1,1%, we
find the monodromy matrix,
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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P~tp!

5S cos~j~2p!! cosu sin~j~2p!! 0

2sin~j~2p!!/cosu cos~j~2p!! 0

tanu~12cos~j~2p!!! 2sinu sin~j~2p!! 1
D .

~19!

The eigenvalues arer1,25exp(6ij(2p)), r351, and we con-
clude that traveling waves in circular NS flows are stab
The parameter values for critical stability, that is, the para
eter values at which exponentially growing amplitudes w
appear for nonzero values ofg, occur when ur i u51, i
51,2,3, or equivalently,j(2p)5mp, wherem is any inte-
ger. As argued by Bayly,4 the evenness ofbp11k as a func-
tion of k in Eq. ~7! implies that the eigenvalues of the mon
dromy matrix, if real and unequal, must be positive. Th
eliminates the odd choices ofm. The casem50 cannot be
analyzed using Floquet theory since the equations are
longer periodic. Therefore, the critical stability points a
determined byj(2p)52np, or equivalently,

cosu56
n

2~V11!
, n51,2,3,... . ~20!

The critical angle of cosu51/2 for V50 is seen in Fig. 1.
Since ucosuu<1, it follows from Eq. ~20! that no critical
stability points exist for2 1

2,V11, 1
2. Computation of the

unstable region on an extremely fine grid yields fingers
V.0 and V,22. These fingers have growth rates abo
five or six orders of magnitude smaller than in the princip
region. Figure 2 shows one such simulation for the Eu
equations. The fingers were first discussed by Miyazak19

We are certain that the fingers are not numerical artifa
since they are not randomly distributed in the parame
plane. Rather, they follow specific paths. We claim that th
fingers correspond to solutions of Eq.~20! for n.1. The
fingers are numerically resolvable forV.0 and V,22.

FIG. 1. Parameter plane for elliptic instability in NS equations forV50.
For g50, the Kelvin wave is periodic in time with periodp/cosu; for
values ofg, cosu which fall into the white region forg.0, the Kelvin wave
is quasiperiodic, that is, the periods ofa andk are incommensurate; for the
remaining region, the Kelvin wave has an exponentially growing amplitu
The maximum growth rate is 0.36 at cosu50.29 andg50.81.
Downloaded 06 Feb 2004 to 129.119.144.59. Redistribution subject to AI
.
-
l

no

r
t
l
r

s,
r
e

This claim is contrary to previous thought.2,4,8,15We empha-
size that these fingers are physically insignificant in the
equations. However, they will be of importance in th
LANS-a model discussed in the next section. Finally, o
can determine the average value of the growth rate, to le
ing order ing!1, as in Ref. 15 by computing

s̄g[
1

j~2p!
E

0

j(2p) 1

uau2

d

dt S 1

2
uau2Ddt

5
9

16
g3

~312V!2

9~11V!2 1O~g2!. ~21!

III. CC SOLUTIONS FOR ROTATING
NONLINEAR-REACTIVE FLUIDS

A. Navier–Stokes nonlinear-reactive models

The turbulence closure models may be expressed as
of partial differential equations for the divergenceless vel
ity of the fluid, u(x,t),

du

dt
2nTDu1¹p12V3u1div s50 ~22!

with “"u50. Hered/dt5] t1u"“ is the material time de-
rivative following the resolved flow velocity, or mean veloc
ity, u, and nT is the eddy viscosity. The nonlinear stre
tensor s we shall consider is a recent extension of t
subgrid-stress tensor for turbulence that was introduced
Speziale20 to account for Reynolds-stress relaxation effe
and the response to rotational strain rates in turbulence
the following reactive closure model for the Reynolds stre
we introduce a parametera which will later be defined as a

.
FIG. 2. Instability domain forEv50, V51.0 computed on an extremel
fine grid aimed at capturing the predicted fingers. The white backgro
represents regions for whichsg,10210. The principal finger emanates from
cosu51/@2(11V)#, the second finger clearly emanates from cou
52/@2(11V)#, and the third finger appears to emanate from cou
53/@2(11V)#. The remaining few points seen correspond to the fourth a
fifth fingers.
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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turbulence correlation length. One obtains the model in
duced by Speziale20 for Reynolds-averaged Navier–Stok
~RANS! modeling of turbulence based on nonlinear con
tutive relations, by setting the parametera2→0,

1

C0,2 s i j 5
21

u0
~12a2D!ei j 1C1eikek j

1C2~eikvk j2v ikek j!1C3v ikvk j

1C4~] tei j 1uk]kei j !. ~23!

As usual, one sums over repeated indices. The tensorei j

andv i j with i , j 51,2,3 are, respectively, the mean strain r
and mean vorticity,

ei j 5
1
2 ~uj ,i1ui , j !5 1

2 ~¹uT1¹u! i j ,
~24!

v i j 5
1
2 ~uj ,i2ui , j !5 1

2 ~¹uT2¹u! i j .

Suppressing indices, we may rewrite the symme
Reynolds-stress tensor~23! as

s

C0,2 52~12a2D!
e

u0
1C1e21C2~e•v2v•e!

1C3v21C4

de

dt
. ~25!

The parametersCm , m51, . . . ,4, in Eq.~25! are four di-
mensionless constants that model nonlinear (C1 ,C3 ,C3) and
reactive (C4) effects in turbulence,u0 is a dissipation time
scale, andC0,2 anda2 are squares of length scales. In t
linear, nonreactive limit,Cm→0, m51, . . . ,4, one recovers
the hyperviscosity model of turbulence fora2Þ0. This, in
turn, becomes the usual eddy viscosity model by also set
a2→0. When bothC450 anda250, the stress tensor in Eq
~25! takes the forms i j 5Ai jkl uk,l of an ‘‘anisotropic eddy-
viscosity model’’~whereAi jkl depends algebraically on th
mean-velocity gradients!. WhenC4Þ0 anda250, Eq. ~25!
reduces to the Speziale model, which represents a clas
nonlinear-reactive models, which have wave-numb
independent damping instead of ordinary Navier–Stokes
cosity. For example, setting (C1 ,C2 ,C3)5 (C4/2) (0,1,0)
with a250 in Eq. ~25! yields the stress tensor for secon
grade fluids.21 Thus, both the nonlinear-reactive constituti
models of Rivlin–Erickson,22 Noll–Truesdell23 and the
RANS turbulence closure models of Speziale20 may be re-
covered by settinga250 in Eq.~25!. The analogies betwee
the mean turbulent flow of a Newtonian fluid and the lamin
flow of a non-Newtonian fluid have been a perennial sub
of discussion at least since Rivlin.24 One recurring topic in
this discussion has been the question of material frame in
ference~MFI!, defined as form invariance of the Reynold
stress divergence under arbitrary time-dependent rotat
and translations of the reference frame. In turbulence, MF
applied modulo the Coriolis force, so that rotation ent
solely through the total mean vorticity tensor,W̄i j 5v i j

12e i jkVk. The application of MFI restricts the allowabl
form of the Reynolds-stress tensors for RANS turbulen
models in Eq.~25! by requiringC25C4/2 andC350. The
remaining parameterC1 is left unrestricted by MFI, becaus
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the strain-rate tensore is invariant under the MFI transfor
mations. In the present work, we shall consider bothC4Þ0
anda2Þ0 in the reactive stress tensor~25!. In this case, we
emphasize that the parametera2Þ0 corresponds to ordinary
eddy viscosity, not hyperviscosity. Later, we shall obtain
simplification by relating C4Þ0 and a2Þ0 as a2

5C0,2C4/2. It is immaterial for the motion equation~22!
whether one uses the symmetric stress tensor,s, or its devia-
toric ~traceless! component,s2 1

3Id tr(s), since the differ-
ence merely adjusts the pressure,p, which is determined by
preservation of the divergence-free condition, divu50. The
mass density has been set equal to unity.

We may summarize this discussion of the nonlinear,
active and dissipative RANS turbulence closure models r
resented by Eq.~22! with Reynolds-stress tensor~25!, by
distinguishing the following subcases.

~1! Navier–Stokes:C050.
~2! Isotropic eddy viscosity:Cm50 anda250.
~3! Anisotropic eddy viscosity:C1 ,C2 ,C3Þ0, C450 and

a250.
~4! Isotropic eddy hyperviscosity:Cm50 anda2Þ0.
~5! Anisotropic eddy viscosity, isotropic hyperviscosit

C1 ,C2 ,C3Þ0, C450 anda2Þ0.
~6! Speziale:20 CmÞ0 anda250 ~reactive and damped, no

actually viscous!.
~7! Present work:CmÞ0 anda2Þ0 ~reactive, damped and

viscous,not hyperviscous!.

As we have discussed, MFI of the Reynolds-stress ten
~25! would require certain restrictions among the parame
Cm . However, to make the analysis that follows of th
Craik–Criminale solutions of Eq.~22! as broad as possible
we shall leave the parametersCm free and unrestricted.

B. Recasting the Navier–Stokes nonlinear-reactive
models

To facilitate the Craik–Criminale analysis in the ne
section, we shall recast the stress tensor in Eq.~25! in terms
of the mean velocity gradient. We begin by rewriting E
~25! equivalently as

s

C0,2 1~12a2D!
e

u0

2C4

de

dt

5C1e21C2~e•v2v•e!1C3v2

5S C1

4
1

C3

4
D¹uT

•¹uT1S C1

4
1

C2

2
2

C3

4
D¹u•¹uT

1S C1

4
1

C3

4
D¹u•¹u1S C1

4
2

C2

2
2

C3

4
D¹uT

•¹u.

~26!

Computing divergences and using divu50 yields the fol-
lowing three useful identities:

div 2e5Du, div~¹uT
•¹uT!5¹ 1

2tr~¹u•¹u!, ~27!

and
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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div 2
de

dt

52D
du

dt
1divS ¹u•¹u1

1

2
¹u•¹uT2

1

2
¹uT

•¹uD .

~28!

Hence, the divergence div(¹uT
•¹uT) may be absorbed into

the pressure gradient. The other divergence terms ari
from divs are not gradients, and they may be rearranged
an equivalent version of the motion equation~22! for
nonlinear-reactive fluids in a rotating frame as

S 12C0,2
C4

2
D D du

dt
5S nT1

C0,2

2u0
~12a2D! DDu2¹p

22V3u2C0,2 div t, ~29!

with div u50 and stress divergence,

div t5div~b1¹u•¹u1b2¹u•¹uT1b3¹uT
•¹u!. ~30!

In components, this stress divergence relation is expresse

~div t! i5] jt i j 5] j~b1ui ,kuk, j1b2ui ,kuj ,k1b3uk,iuk, j !.
~31!

After absorbing div(¹uT
•¹uT) into the pressure gradient, th

resulting stress tensort is no longer symmetric. However
one fewer constant is needed in specifying this version of
nonlinear-reactive fluid model. The relations between c
stantsbn , n51,2,3, in Eq.~30! andCm , m51,2,3,4, in Eq.
~23! are given by

b15
C1

4
1

C3

4
1

C4

2
, C152b11b21b32C4 ,

b25
C1

4
1

C2

2
2

C3

4
1

C4

4
, C25b22b32

1

2
C4 ,

b35
C1

4
2

C2

2
2

C3

4
2

C4

4
, C352b12b22b32C4 .

~32!

C. Outlook: CC solutions for nonlinear-reactive fluid
motion

In what follows, we shall analyze exact nonlinear C
solutions of Eq.~29! for incompressible nonlinear-reactiv
fluid motion with stress tensor in Eq.~30!. For this, we shall
choose three special cases of the coefficientsCm , m
51, . . . ,4, in stress tensor~25!, or equivalently, the coeffi-
cientsbi , i 51,2,3, in stress tensor~30!, subject to the rela-
tion

a25C0,2C4/2, ~33!

which unifies the Helmholtz operations in Eq.~29!. These
three choices are, as follows, all with¹•u50 and definition
v[(12a2D)u.

~1! LANS-a model: (C1 ,C2 ,C3)5 (C4/2) (0,1,0) and
(b1 ,b2 ,b3)5 (C4/2) (1,1,21) expressed as
Downloaded 06 Feb 2004 to 129.119.144.59. Redistribution subject to AI
ng
to

as

e
-

]v

]t
1~u•¹!v1~¹u!T

•v12V3u

1¹S p2
1

2
uuu22

1

2
a2u¹uu2D5nDv. ~34!

Leray-a model: (C1 ,C2 ,C3)5 (C4/2) (1,0,21) and
(b1 ,b2 ,b3)5 (C4/2) (1,1,0) expressed as
]v

]t
1~u•¹!v1¹p5nDv. ~35!

Clark-a model: (C1 ,C2 ,C3)5 (C4/2) (21,0,23) and
(b1 ,b2 ,b3)5 (C4/2) (0,1,0) expressed as

~12a2D!S]u

]t
1u•¹u2nDuD1¹p

52a2 div~¹u•¹uT!. ~36!

As a fourth choice, we shall alter the Leray-a model into
the Bardina-a model, as
]v

]t
1~u•¹!u1¹p5nDv. ~37!

These four special cases are chosen for their analy
regularity. The LANS-a model, the Clark-a model and the
Bardina-a model~the first, third, and fourth choices! all pro-
vide analytical control of theL2 norm of the velocity gradi-
ent, i¹ui . This may be verified by taking the scalar produ
of the velocityu with each of these equations and integrati
over the volume of flow, to find the energetics for homog
neous boundary conditions,

d

dt E 1

2
uuu21

1

2
a2u¹uu2 d3x

52nE u¹uu2d3x2nE a2uDuu2 d3x. ~38!

This energy equation illustrates the reactive feature of th
four models. The second term in the integrand on the l
hand side is the reactive term: kinetic energy~the first term!
may be converted into enstrophy~the second term!, not just
into heat~the viscous terms on the right-hand side!. Simi-
larly, the Leray-a model controls theL2 norm of the Laplac-
ian of velocity,iDui , as shown by taking its scalar produ
with the other velocity,v. Thus, these models are reactive,
well as dissipative, and their energetic exchanges involveL2

norms of velocity derivatives. Consequently, their solutio
possess greater analytical regularity than solutions of the
equations. We shall analyze the CC solutions for these f
special choices among the nonlinear-reactive fluids as ca
date turbulence models. The fourth model~Bardina-a! does
not quite fit into the nonlinear-reactive stress tensor scen
of the first three models. Instead, the Bardina-a model arises
naturally in the context of filtered NS equations for lar
eddy simulations. The interpretations ofsolutions of LES
and RANS models are usually considered to be differe
However, from the viewpoint of formal analysis of constit
tive relations and elliptic instability, one cannot distingui
between LES and RANS equations. Therefore, with an ap
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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ogy for our abuse of notation, and since the velocityu may
be regarded as a filtered version of velocityv ~filtered by
inversion of the Helmholtz operator!, we shall regard the
four alpha models above as either RANS or LES mod
Because only the first of these four models satisfies the c
ditions of MFI, we shall only consider this one, the LANS-a
model, in a rotating frame.

IV. ROTATING CC SOLUTIONS OF THE LANS- a
MODEL

We shall explain the CC solutions of the LANS-a model
in full detail. The LANS-a model was derived by averagin
over fluctuations along particle trajectories in Hamilton
variational principal for the Euler equations, then using Ta
lor’s hypothesis for frozen-in fluctuations as a nonlinear t
bulence closure in the framework of the Euler–Poinc´
variational theory, before finally adding Navier–Stokes v
cosity. See Ref. 7 and references therein for more details
subsequent developments. The LANS-a model closure equa
tions for incompressible turbulence consist of the nonline
reactive fluid equations~29! and~30!, subject to the relation
a25C0,2C4/2 and coefficients (b1 ,b2 ,b3)5 (C4/2) (1,1,
21). The LANS-a equations can be expressed equivalen
as in Eq.~34!,

]v

]t
1~u•¹!v1~¹u!T

•v12V3u

1¹S p2
1

2
uuu22

1

2
a2u¹uu2D5nDv1F, ~39!

with ¹•u50 andv5(12a2D)u. Here,n is a turbulent eddy
viscosity. Thus, the motion equation for the LANS-a model
contains two velocitiesu andv. The transport velocity,u, is
smoother than the transported velocity,v, by the inversion of
the Helmholtz operator, (12a2D).

In constructing CC solutions to the LANS-a equations
~39!, we again focus on base flows in the linear for
u05S(t)•x1U(t) only. In this case, v05u0 and the
LANS-a CC equations for pressure and amplitude cor
sponding to the NS CC Eqs.~8! and ~7! are given by

p122~Y21!uau250, ~40!

d~Ya!

dt
1 i ~dtd1bk"U!Ya1YS T

•a1P3a

2~b p̂112a2b2a"S"k!k52YEvuku2a. ~41!

Equations ~6! and ~9! for the CC solution properties o
frozen-in phase and transverse amplitude, respectively
main unchanged for the LANS-a model. Here, the LANS-a
CC variables are defined the same as for the classical NS
solutions, and the quantityY(t) is given by

Y~ t !511a2b2uk~ t !u2. ~42!

Without loss of generality, we may again set dd/dt1bk"U
50 for the kinematic phase condition, assume thata(t) is a
real-valued function, and obtain Eq.~10! for k(t). We may
also solve the pressure as before to obtain
Downloaded 06 Feb 2004 to 129.119.144.59. Redistribution subject to AI
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P̃5
1

uku2 $Yk•~S1S T!•a1P3a"k%, ~43!

whereP̃ is the coefficient ofk in Eq. ~41!. As in the NS case,
viscosity may be transformed out of the problem by cons
ering the same change of variables as in Eq.~11!. Note that
the termi (dtd1bk"U) was incorrectly placed in the eikona
equation~6! in Ref. 8. The difference, however, is trivial an
does not affect the results of that investigation.

Insight into the dynamics of the LANS-a CC problem
can be gained by examining Eq.~41! in the asymptotic re-
gimesG!1 andG@1, where for brevity of notation we in-
troduce G5Y21. We shall assume thatuku2 remains
bounded and never vanishes. In these extreme paramete
gimes, Eq.~41! becomes

da

dt
1S T

•a52Evuku2a2P3a1
1

uku2 ~k•~S1S T!•a

1P3a"k!k1GS P3a1
1

uku2 $2~k"S"k!a

2~P3a"k!k% D1O~G2!, G!1, ~44!

da

dt
1S T

•a52Evuku2a1
2

uku2 $~k"S"k!a

2~k•~S1S T!•a!k%1OS 1

G D , G@1.

~45!

These equations preserve the wave transversality cond
a"k50 to all orders. However, as we shall explain, ca
should be taken in interpreting these LANS-a CC equations
whenn.0, since the Ekman numberEv contains a factor of
b2. The parametera is interpreted as the nondimension
turbulence correlation length for Lagrangian fluid trajector
in the LANS-a model anda,1 is typically regarded as a
small, fixed number. In this case, the two limitsG!1 and
G@1 correspond to low and high wave numbers, resp
tively. The O(1) term in Eq.~44! for low wave numbers is
exactly Eq. ~7! for NS. This is not unexpected, sinc
LANS-a reduces to NS fora50. We see in Eq.~44! that the
amplitude a decays exponentially with viscosity, while
stretches with the base shear, and rotates with the vorticit
the undisturbed system. When the limitG!1 corresponds to
fixed a and lowb, the evolution is essentially inviscid. In th
opposite limit, for G@1, the terms of orderO(1/G), and
smaller, are independent ofEv . In this limit, the amplitude
to leading order still decays with viscosity and stretches w
the base shear as in the low wave-number case, but th
fects of rotation with the total vorticityP are higher order. In
particular, whenG@1 corresponds to fixeda andb→`, the
viscous term on the right-hand side of Eq.~45! is O(b2),
from which we conclude that the amplitude decays expon
tially with viscosity to leading order.
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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A. Inviscid LANS- a CC solutions

Circular inviscid LANS-a flowlines: For the LANS-a
model, when the flowlines are circular and the flow is inv
cid, theng50 andEv50. In this case, the elliptic instability
problem can again be solved analytically. Sinceuku51, the
quantity Y in Eq. ~42! becomes constant, which we deno
by Y0511a2b2. Equations~15!–~17! provide three lin-
early independent solutions to Eq.~41! when j(t)52t(1
1V)cosu/Y0. Once again, we may construct the mon
dromy matrix explicitly, and the eigenvalues are againr1,2

5exp$6ij(2p)%, r351. By the same arguments as befo
the critical stability points are now determined by

cosu56
nY0

2~11V!
, n51,2,3,... . ~46!

Sinceucosuu<1, it follows that there are no critical stabilit
points for

2 1
2 Y0,V11, 1

2 Y0 . ~47!

The average maximum growth rate for small values of
centricity g!1 may again be calculated as

s̄g5
~21Y0!2

16
g3

~21Y012V!2

~21Y0!2~11V!2 1O~g2!, ~48!

which is valid forY0<2 andV outside the range in Eq.~47!.
Elliptical LANS-a flowlines: For nonzero values of ec

centricity g, the solution to Eq.~41! for the LANS-a wave
amplitude must be simulated numerically. We find that
VÞ21 andY0.1, there exists a principal instability regio
in the (g,cosu) parameter plane; see Figs. 3 and 4. For n
zero eccentricityg, and forV satisfying Eq.~47!, we find a
band of eccentricities for which the amplitudea remains
bounded. Thus the flow is stable in this band. In particu
the entire (g,cosu) parameter plane is stable forV521.
For V outside the range in Eq.~47!, we also find a large
number of fingers which lie above~respectively, below! the
principal instability region for cosu.0 ~respectively, cosu
,0). The fingers are exactly those we saw in the NS eq
tions. However, forY0.1 these fingers become more si
nificant and their widths increase. The growth rates ass
ated with the fingers also increase. In fact, the maxim
growth rate over the entire parameter plane increases
maximum value ofs̄g5g at cosu51, i.e., at Y052(1
1V). As Y0 exceeds this threshhold, a stable band of
centricities appears and the maximum growth rate begin
decrease. See Fig. 3. Thus, the wave number at which
growth rate attains a maximum is not only a function of t
turbulence correlation length,a, but it also depends on th
inverse Rossby number,V. For the inviscid case, the resul
in the limits a2b2!1 and a2b2@1 are independent o
whethera is fixed andb→`, or vice versa.

Remark: We observed during numerical simulations th
the change of the instability domain for 0<a2b2,` with
V50 is extraordinarily similar to that for21<V<0 with
a2b250. In fact, the two different cases will have the sam
principal critical angle when
Downloaded 06 Feb 2004 to 129.119.144.59. Redistribution subject to AI
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V5
2a2b2

11a2b2 . ~49!

Although the two instability domains inV anda2b2 do not
overlap exactly, numerical simulations show that where th
do overlap, the difference in the growth rates is small.
particular, the relative difference of the individual maximu
growth rates, which occur at cosu51, g51 whena2b2>1
~or equivalently,21,V,2 1

2), is less that 1%. Since Eq
~49! can be rewritten asa2b252V/(11V), valid for 21

FIG. 3. Instability domains for CC solutions in LANS-a model for
Ev50, V55 and various values ofa2b2: ~a! 0.0, ~b! 2.5, ~c! 5.0, ~d! 7.5,
~e! 10.0,~f! 12.5,~g! 15, ~h! 17.5. The white background represents regio
for which sg,10210. As a2b2 increases, the angle of critical stability shift
according to Eq.~46!. The nonprincipal fingers correspond to critical angl
with n.1. The parametera2b2 shifts the angle of critical stability towards
cosu51 while increasing the maximum growth rate. Asa2b2 exceeds
112V ~f!, a stable band of eccentricities appears and the maximum gro
rate decreases.
P license or copyright, see http://pof.aip.org/pof/copyright.jsp



to

os
a

ve

e

cu-
or

for

the
ity
in

he
ng
e a
-
ty

h of
o-

od-
n

g.,
ize
eat-
C
sti-
nd

d
er-

n
ar
m

861Phys. Fluids, Vol. 16, No. 4, April 2004 Craik–Criminale solutions
<V<0, we conclude that the effect ofa in the LANS-a
model on elliptic instability is essentially equivalent
counter rotation of the coordinate system.

B. Viscous LANS- a CC solutions

Landman and Saffman13 extended Bayly’s elliptic insta-
bility analysis to add viscous effects. They found that visc
ity decreases the growth rate and introduces a high w
number cutoff in the (g,cosu) plane. ForY0.1 in the
LANS-a model, viscosity again introduces a high wa
number cutoff. However, for fixedEv , the LANS-a model
destabilizes some~but not all! of the eccentricities asY0

FIG. 4. Instability domain for CC solutions in LANS-a for Ev50.1,
V55 and various values ofa2b2 ~compare with Fig. 3!: ~a! 0.0, ~b! 2.5,
~c! 5.0, ~d! 7.5, ~e! 10.0, ~f! 12.5, ~g! 15.0, ~h! 17.5. The white background
represents regions for whichsg,10210. The results are similar to those i
Fig. 3 with a stable band of eccentricities introduced by viscosity. Of p
ticular interest is the introduction of an instability finger emanating fro
cosu51, g51 ~d! and merging with the principal finger~e!.
Downloaded 06 Feb 2004 to 129.119.144.59. Redistribution subject to AI
-
ve

511a2b2 increases from unity to two while shifting th
critical stability angle towards cosu51. Figure 5 shows the
neutral stability surface for the nonrotating case. In parti
lar, the entire (g,cosu) parameter plane can be stable f
fixed large values ofEv and Y051, then destabilize asY0

increases to two, and then stabilize again@Fig. 5~c!#. To em-
phasize the effects of fixeda and variousb as described by
the asymptotics, Fig. 6 shows a representative surface
various values ofn/uvu. Finally, in Fig. 7, we show the
growth rates maximized over the (cosu,g) plane.

Rotation intensifies the effects ofY0 , and viscosity
dampens out many of the insignificant fingers. In fact,
physically insignificant fingers are removed by viscos
from the contour plots, and we are left with only the ma
region. See Fig. 4.

V. CC SOLUTIONS IN FOUR TURBULENCE MODELS,
IN THE ABSENCE OF ROTATION

The field of large eddy simulation~LES! models is
driven by the desire to simulate reliably the motion of t
large scales in turbulent flow, without completely simulati
the smaller scales. A common approach is to introduc
filter operationL(•) and to examine the evolution of a fil
tered velocity fieldu which corresponds to an exact veloci
field v by the relationshipu5L(v). Introducing filtering
causes the effects of length scales smaller than the widt
the filter to become negligible. Focusing on nonrotating c
ordinate systems, the resulting LES equation foru is

] tu1u•¹u2nDu1¹ p̃2F̃2nDu52div t~u!, ~50!

where divu50. The variablesp̃ and F̃ are the filtered pres-
sure and body forces, respectively, andt(u)5L(vv)2uu is
the LES closure for the stress tensor. Just as in RANS m
eling, the bulk of the work in LES modeling focuses o
deriving a form fort based on physical assumptions, e.
symmetry, material frame indifference, etc. We apolog
again for conflating these two approaches in a single tr
ment. However, from the viewpoint of formal analysis of C
solutions for nonlinear-reactive fluids, based on their con
tutive relations, one cannot distinguish between LES a
RANS.

A. LANS- a and other nonlinear-reactive-fluid models
of turbulence

As we discussed earlier, the LANS-a model in Eq.~39!
may be expressed as

~12a2D!~] tu1u•¹u2nDu!1¹p2F52a2 div t
~51!

together with divu50, where divt is the right-hand side of
Eq. ~30!. Comparing Eq.~51! with Eq. ~50!, we see that (1
2a2D)21 div t is equivalent to the divergence of a filtere
stress tensor, for which the filtering is performed by inv
sion of the Helmholtz operator (12a2D). We emphasize
that the filtering in Eq.~30! is not a modeling choice~as is
the norm in LES modeling!; rather, it is a reformulation of

-
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FIG. 5. Approximation of the neutral stability surface~i.e.,sg50.01) for CC solutions in LANS-a for V50, fixedb51.0, and various values ofEv : ~a! 0.1,
~b! 0.5, ~c! 1.0.
q

-

E

cti

us
all

an

ed
the LANS-a model. We shall search for CC solutions to E
~51! in full generality and will omit termsa posteriori to
investigate the various models.

CC solutions for the nonlinear-reactive fluids: Let us de-
fine u5u01u1 , p5p01p1 , whereu05S(t)•x1U(t) is an
exact solution to Eq.~51! andp0 is the corresponding pres
sure as before, and$u1 ,p1% are as in Eq.~1!. Again incom-
pressibility yields wave transversality, as expressed in
~9!. The resulting equations for the amplitudea, the phasec,
and the pressure terms are obtained as before by colle
on terms linear and constant inx:

p122b3a2b2uau2uku250, ~52!

] t~k"x!1k"S"x50, ~53!

Y
da

dt
1 iY~dtd1bU"k!a22ia2b2~~dtk1k"S!•k!a

1~Y2b1~Y21!!S"a2b3~Y21!S T
•a1Evuku2Ya

2~bp111b3a2b2~a"S"k!!k

5a2b2~b11b2!~k"S"k!a. ~54!
Downloaded 06 Feb 2004 to 129.119.144.59. Redistribution subject to AI
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Here, we are keeping track of the contributions of vario
terms in the stress tensor, thereby allowing us to examine
the models simultaneously. As in the NS case, we set dd/dt
1bk"U50. We take the gradient of Eq.~53! to obtain Eq.
~10! for the evolution ofk. Then the third term in Eq.~54!
vanishes exactly, and we assume thata(t) is a real-valued
function. Again, we remove the effects of viscosity by
integrating factor. Finally, we use the identity dY/dt
522a2b2k•S•k to obtain

d~Ya!

dt
1~Y2b1~Y21!!S"a2b3~Y21!S T

•a

1Evuku2Ya2 P̃k

5a2b2~b11b222!~k"S"k!a, ~55!

whereP̃ is the coefficient ofk in Eq. ~54!

1. LANS-a

The LANS-a model corresponds to (b1 ,b2 ,b3)5(1,1,
21) in Eqs.~52!–~54!. These are the equations we examin
in Sec. IV.
s.

FIG. 6. Approximation of the neutral stability surface~i.e., sg50.01) for CC solutions in LANS-a for V50, fixeda51.0, and various values ofn/uvu: ~a!
0.1, ~b! 0.5, ~c! 1.0. Notice that the flow behaves inviscidly fora2b2!1 and decays exponentially fast asa2b2 increases as predicted by the asymptotic
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 7. The maximum growth rates in LANS-a for
different values ofn/uvu and V50.0. In each picture,
the values ofn/uvu are, from top to bottom, 0, 0.1, 0.5
and 1.0.~a! corresponds to fixedb51.0 and variousa,
and ~b! to fixed a51.0 and variousb.
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2. Leray- a

Leray25 introduced a class of regularized NS equatio
which for Helmholtz-inversion filtering we call the Leray-a
model. These equations were introduced not as a turbule
closure model, but rather as a deformation of the NS eq
tions, for which Leray was able to show global existence a
uniqueness of solutions. The Leray-a model is similar to the
LANS-a model and may be written as

] tv1u•¹v1¹p5nDv, ~56!

with pressure determined by preservation of divu50 andv
5(12a2D)u. The Leray-a model corresponds to
(b1 ,b2 ,b3)5(1,1,0) in Eqs.~52!–~54!. The equations of
motion for the Leray-a CC solutions are Eqs.~9!, ~10!, and

p1250, ~57!

d~Ya!

dt
1S"a2bp11k1Evuku2Ya50. ~58!

The specific case of elliptic instability for the Leray-a
model is similar to the CC analysis for the NS equations. T
wave vectork is given in Eq.~14! with x(t)5tA12g2. For
g50, in the case of circular flowlines, the Leray-a solutions
for the wave amplitudea arise as in Eqs.~15!–~17!, except
with j(t)5t(11Y0)cosu/Y0. For elliptical flowlines with
nonzerog, we again may use Floquet theory.

Figure 8 shows the critical stability surface for ellipt
instability in the Leray-a model. The effects are drasticall
different from those of the LANS-a model. The angle of
critical stability shifts according to the formula cosu
5Y0 /(11Y0). Since this quantity is always less than unity
magnitude, no stable band of eccentricities ever appears.
thermore, the maximum growth rate has an average v
calculated as before ofs̄g5(112Y0)2g/$4Y0(11Y0)2% to
leading order ing!1 for all values ofa2b2. Thus, asa2b2

increases from zero, the maximum growth ratedecreasesas
a function ofa2b2. However, the parametera2b2 does not
introduce a stable band of eccentric Leray-a flows.

3. Helmholtz-filtered Clark- a model

The Helmholtz-filtered Clark-a model26–28 corresponds
to (b1 ,b2 ,b3)5(0,1,0) in Eqs.~52!–~54!. The resulting CC
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equations for the elliptic instability dynamics of the line
base flowu05S•x1U are Eqs.~8!, ~6!, ~9!, plus

Y
da

dt
1YS•a2bp11k1Evuku2Ya2a2b2~k"S"k!a50.

~59!

Note that the integrating factor

a~ t !5â~ t !expS E
0

t a2b2k~ t̂ !•S~ t̂ !•k~ t̂ !

Y~ t̂ !
d t̂D ~60!

will reduce the problem to that for the Euler equations. Th
the growth rate for the Clark-a model is modified by

sg,Clark5sg,Euler1
1

tp
E

0

tp a2b2k~ t̂ !•S~ t̂ !•k~ t̂ !

Y~ t̂ !
d t̂.

For the case of elliptic instability for whichS(t) is given in
Eq. ~2!, the wave vectork(t) is given in Eq.~10! and the

FIG. 8. Critical stability surface for elliptic instability in the Leray-a model
for 0<a2b2<10, Ev50. Again, Fig. 1 corresponds to the slicea2b250.
The critical angle shifts as predicted, though always touches the slicg
50.
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period is tp52p/A12g2, the above integral vanishes e
actly. Consequently, the Helmholtz-filtered Clark-a model
preserves exactly the NS elliptic instability.

B. Bardina- a model

The Bardina-a model29 is similar to those above, but i
does not arise as a choice in Eq.~30! for the stress tensor
The motion equation for the Bardina-a model is

] tv1u•¹u1¹p5nDv, ~61!

with pressure determined by preservation of divv50 and
v5(12a2D)u. This model still uses the inverse Helmhol
filter, albeit with a different stress tensor. As was the case
all previous models, the elliptical columnar flow is an exa
solution subject to the same conditions. We construct a
solution by adding the Kelvin traveling wave to the colum
and collecting on terms linear and constant inx. The result-
ing equations of motion for elliptic instability are Eqs.~8!,
~9!, plus

Y] t~k"x!1k"S"x50, ~62!

] t~Ya!1 ia~Y] td1bk"u!1S"a2p11k1nuku2Ya50.
~63!

The first observation is thatY does not factor out of the
equation for the wave vectork as it did before. This is due to
the fact that the model’s nonlinearity is of the formu•¹u,
and notu•¹v as in the previous models. This means th
upon taking the gradient of Eq.~62!, we obtain the following
nonlinearequation for the evolution ofk:

dk

dt
1

~¹u0!T"k

11a2b2uku2
50. ~64!

That is, the wave vectork(t) is no longer frozen into the
fluid. We shall analyze the specific case of elliptic instabili
Numerical simulations indicate that the components ofk are
periodic. Upon guessing a solution in the form of Eq.~14!,
we find thatx(t) is the solution to the transcendental equ
tion

S 11a2 cos2 u1
a2 sin2 u

11g
D x~ t !1

a2g sin2 u

2~11g!
sin~2x~ t !!

5tA12g2. ~65!

For the caseg50, we have thatx(t)5t/(11a2) exactly.
For small nonzero eccentricity of the flowlines,g!1, we
may neglect the nonlinear term inx(t) to find

x~ t !'
tA12g2

11a2 cos2 u1a2 sin2 u/~11g!
. ~66!

Although this choice ofx(t) is not an accurate approxima
tion, numerical simulations show that it is sufficient to det
mine the periodicity of the wave vectork for all parameter
regimes. Consequently, the wave amplitudea again satisfies
a Floquet problem, whose period is determined by Eq.~66!.
As before, we assume thata is a real-valued function upon
settingY dd/dt1bk"U50.
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Circular Bardina-a flowlines: The caseg50 for the
Bardina-a model can be simplified by considering a chan
of time variable tn5t/(11a2). In this new variable, the
equations recover exactly those for the classical Euler c
Thus, the angle of critical stability is again cosu51/2, and
the average maximum growth rate, under appropriate s
ings, is s̄g59g/$16Y0%. Thus, the effect of the Bardina
model on elliptic instability is toreducethe average maxi-
mum growth rate for all values ofa but not shift the angle of
critical stability. See Fig. 9.

VI. DISCUSSION

We have examined the CC class of exact nonlinear
lutions for several recently introduced turbulence clos
models that appear in the framework of nonlinear-react
fluid dynamics. We find that all these models preserve
existence of elliptic instability. This is a desired property
any turbulence model—it should at least preserve the cla
NS instabilities. We emphasize that elliptic instability is ge
erated by the nonlinear term in the NS equations, via pa
metric resonance mediated by vortex stretching. Thus,
choice of the nonlinearity plays a crucial role in elliptic in
stability. In the models we have examined here, the effec
the nonlinearity choice on the CC class of solutions de
mines the presence of the functionY(t) in the amplitude
equation ~54!. For example,Y appears linearly in the
Clark-a model and factors out of the equation, and thus
liptic instability is unaltered in this model. In contrast, th
presence ofY(t) in the Bardina-a model leads to a nonlinea
equation for the wave vectork. Since the term quadratic in
the disturbanceu1•¹ u1 vanishes as a result of transversali
a"k50, the instability is a result of wave-mean-flow intera
tion, rather than wave–wave interaction. Thus, elliptic ins
bility is complementary to the triad resonance mechanis
which results from nonlinear wave–wave interaction gen
ated by the quadratic disturbance term.

FIG. 9. Critical stability surface for elliptic instability in the Bardina-a
model for 0<a2b2<10, Ev50. Again, Fig. 1 corresponds to the slic
a2b250.
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Downloaded 06 Feb
TABLE I. All of the nonlinear-reactive-fluid models of turbulence preserve the classic CC solutions for
flows of the formu05S•x1U. The second column lists the angle of critical stability for the linear flows of
form in Eq.~2! for V50, where for brevityY0511a2b2. The third column lists the average maximum grow
rate to leading order in the eccentricityg. Note that in all the models, the values for NS are regained by set
a2b250.

Model Principal critical angle Maximum growth rate

NS cosu51/2 s̄g59g/16
LANS-a cosu5Y0/2 s̄g5(21Y0)2g/16
Leray-a cosu5Y0 /(Y011) s̄g5(2Y011)2g/(4Y0(Y011)2)
Clark-a cosu51/2 s̄g59g/16

Bardina-a cosu51/2 s̄g59g/(16Y0)
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Our main conclusion is that these models alter the
structure of the CC solutions. Detailed results for~i! the criti-
cal instability angle, and~ii ! the average maximum growt
rate for the various turbulence closure models are sum
rized and compared in Table I and Fig. 10. Perhaps surp
ingly, the Bardina-a model is identified in Table I of com
parisons as preserving more features of the CC solutions
the NS equation than any of the other models. The model
the salient features that it decreases the growth rate for
wave numbers as is expected of LES models without alte
the underlying physics, that is, it does not alter the criti
angle of stability. Bardina-a is a new model, whose analyt
cal properties, for example, will be considered in detail el
where.

Cambonet al.30 examined from a statistical viewpoin
the effects of a specific model on elliptic instability, hype
bolic instability, and the stability of Taylor–Green vortice
Our work complements their work in presenting a combin
tion analytic and numerical results for a variety of turbulen
models whose regularization is based on Helmho
inversion filtering. See Geurts and Holm31 for an extension
of other classes of filters of this regularization approach
turbulence modeling.

FIG. 10. The growth rates maximized over the (cosu,g) plane as functions
of a2b2 for Ev50. From top to bottom, the curves are for the LANSa
model, the NS equations and the Clark model~both are the flat line!, the
Leray-a model, and the Bardina-a model. The curves agree with the the
retical predictions. The curve for the LANS-a model will converge to zero
in the limit a2b2→`.
 2004 to 129.119.144.59. Redistribution subject to AI
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APPENDIX: VERIFICATION OF THE BARDINA MODEL

The work in Sec. V B relied on approximating the perio
of k(t) correctly. As a check of this approximation, we u
the quasiperiodic extension of Floquet theory as dem
strated in Ref. 32. We use the incompressibility condition E
~9! to eliminate a variable, saya3 , and rewrite the system in
Eq. ~63! as dta'5Ba' , wherea'5(a1 a2)T. By using the
Prüfer transformation

a1~ t !5ed(t) sin@c~ t !#, a2~ t !5ed(t) cos@c~ t !#, ~A1!

we rewrite the ODE in the new variablesc(t) andd(t). The
quantities

I 5 lim
t→`

@d~ t !/t#, W5 lim lim
t→`

@c~ t !#, ~A2!

called the growth rate and winding number, respectively,
be reliabilty simulated numerically by long time comput
tions ~say t51000). The growth rateI is equivalent to the
Lyapunov growth rate generated by Floquet theory. We co
pute these quantities on a coarse grid to verify that the F
quet theory analysis given above is accurate. Although
period ofk may be only approximate, a numerical investig
tion using Floquet theory requires significantly less comp
ing time than the present quasiperiodic theory.
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