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Review: finite element method(s) for elliptic problems
Variational approach (conforming FE) and discretization
Variational approach (mixed FE) and discretization
FE for multiscale problems: issues

Model problem

Second order elliptic PDE on an open bounded Q c R?,d = 1,2, 3,

K = KT, K = K(x) bounded, strictly elliptic: Amin(X) > Ao > 0

Ap=f
<= X, Y are Banach (Hilbert) spaces

{ ~-V-KVp=1f, xecQ
A X—YorA: X—Y

p=0, xe€0Q

@ Sobolev spaces H™(Q), m > 0, (K € C'(Q), 99 is C? smooth)

~V-KV: H™2(Q)nH{(Q) — H™(Q),m>0
N——
A
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Review: finite element method(s) for elliptic problems
Variational approach (conforming FE) and discretization
Variational approach (mixed FE) and discretization
FE for multiscale problems: issues

Model problem

Second order elliptic PDE on an open bounded Q c R?,d = 1,2, 3,

K = KT, K = K(x) bounded, strictly elliptic: Amin(X) > Ao > 0

Ap=f
<= X, Y are Banach (Hilbert) spaces

{ ~-V-KVp=1f, xecQ
A X—YorA: X—Y

p=0, xe€0Q

@ Sobolev spaces H™(Q), m > 0, (K € C'(Q), 99 is C? smooth)
~V-KV: H™2(Q)nH{(Q) — H™(Q),m>0
——
A

@ a weaker notion .... (K = K(x) can be discontinuous, 02 is

polygonal)
A:HNQ) — HTY(Q)

@ Sobolev spaces W™P, 1 < p < oo, when K = K(x,©) oris
degenerate (also for transient problems)
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Review: finite element method(s) for elliptic problems
Variational approach (conforming FE) and discretization
Variational approach (mixed FE) and discretization
FE for multiscale problems: issues

Weak (variational) formulation and FE formulation

Use smooth q : glaq = 0, integrate by parts —V - KVp = f,
use plasq = 0 to get

| KGovpvarex = [ foaradk.
Q Q

Abstract setting

Define V := H}(Q), a(p, q) := |, KVpVadx, (f,q) := [, fqadx.
Findp e V: a(p,q) = (f,q),vqe V

Theory: 3!p : continuously depending on the data f, K, €.
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Review: finite element method(s) for elliptic problems
Variational approach (conforming FE) and discretization
Variational approach (mixed FE) and discretization
FE for multiscale problems: issues

FE for the model elliptic problem

(D) PDE and b.c —V - KVp = £, ploq = 0

(V): weak form: a(p, q) = (f,q),Vg e V

o Partition Qy = Urcr, T ~ Q c RYinto elements T: segments
(1D) or triangles/quadrilaterals (2D), tetrahedra/prisms/bricks
(3D)

b

A A0 &K

@ Define local polynomial basis (globally C°(Q2) only) of degree
k=1,2,...for space V}(Q)

(FE) Finite element solution:

find py € V£ a(pn, gn) = (f, V), Van € V£
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Review: finite element method(s) for elliptic problem:
Effe effi
vey of Multiscal

Variational approach (conforming FE) and discretization
Variational approach (mixed FE) and discretization
FE for multiscale problems: issues

Er
Non-elliptic and/or r

Error analysis

a(-,-) continuous: a(p,q) < C || p vl q llv

a(-, ) elliptic: a(u,u) > ag || u |3

Conforming FE: V}, C V (nonconforming ~ variational crimes)
Galerkin orthogonality a(p — pp, vi) =0

Céa'slemma || p— pp [lv< infgev, [ P—an llv

Interpolation estimate(s) || u — Iyt [|[v< Ch || U ||1z(q)

lead to ...

| o= pnllH )< Chll P [lHe(e)
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Review: finite element method(s) for elliptic problems
Variational approach (conforming FE) and discretization
Variational approach (mixed FE) and discretization
FE for multiscale problems: issues

Error analysis

® a(-,-) continuous: a(p,q) < C | p Il q v
@ a(-,-) elliptic: a(u,u) > ag || U |3

@ Conforming FE: V}, C V (nonconforming ~ variational crimes)
@ Galerkin orthogonality a(p — pp, v4) = 0

o Géa'slemma | p—px [lv<infgcv, | P— g [lv

@ Interpolation estimate(s) || u — lhu |[v< Ch || U ||pe(q)

lead to ...

| o= pnllH )< Chll P [lHe(e)

@ use of Aubin-Nitzche duality “trick” based on
| o l[re@)<Il fllz(q):

| PP llizy < CHPI P ey ]
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Review: finite element method(s) for elliptic problems
Variational approach (conforming FE) and discretization
Variational approach (mixed FE) and discretization
FE for multiscale problems: issues

Finding pp: implementation

Use {¢1(X),...on,(X)} as the (piecewise polynomial) basis for V¥
Write py = 32, pigh(x) and p, = P = ()™,

(FE) Finite element solution p, = P

a(pn, qn) = (£, qn),¥qn € VK pra(qbf, ;) = (£, ;),Vj

Note: the system AP = F has dimension Nj.
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Review: finite element method(s) for elliptic problems
Variational approach (conforming FE) and discretization
Variational approach (mixed FE) and discretization
FE for multiscale problems: issues

Finding pp: implementation

Use {¢1(X),...on,(X)} as the (piecewise polynomial) basis for V¥
Write py = 32, pigh(x) and p, = P = ()™,

(FE) Finite element solution p, = P

a(pn, gn) = (f,qn),van € Vh N ZP: (¢i, #5) = (f, 97), V]

Note: the system AP = F has dimension Nj.

In practice the matrix entries A; := a(c‘),, qﬁ,)

Jo KX)Vi(x)V;(x)dA = 31 [ K(X)Vi(X)V;(x)dA

are computed approximately using numerical integration
(quadrature): Aj ~ > (7 K(X)Vi(X)V;(X)dA)x
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Review: finite element method(s) for elliptic problems
Effective aled coefficients Variational approach (conforming FE) and discretization
Survey of Multis E metho elliptic probl Variational approach (mixed FE) and discretization
Non-elliptic and/or nonlinear problern FE for multiscale problems: issues
Recap and references

Numerical implementation and solving a linear system

@ Discretize: define Qj, choose V

@ Assembly process with quadrature: compute for each T
the approximation

/T(K(X)V¢1(X)V¢/(X)dA)h =D WaK(Xm)Vi(Xm)Ve;(Xm) |4 &

Add over all elements T adjacent to node j for each j *F
(cost is O(Np)) —=

AP=f

@ Solve linear system (A is sparse spd) ‘ /

...this requires O(N},) computational time r=3 for full GE ... to ... r=1 for
Full Multigrid solvers,
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Review: finite element method(s) for elliptic problems
Variational approach (conforming FE) and discretization
Variational approach (mixed FE) and discretization
FE for multiscale problems: issues

Mixed formulation: u = —KVp, V-u=f

W = [2(Q) and V := H(div; Q). Find © .= (u,p) € V x W
(K-'u,v) = (p,V-V)—<g,v-n> WeV
(V-uw) = (fLw), Ywe W

Wn c W, V, C V are RTq spaces. Find ©, := (up, pp)€ Vi x Wh:

(K 'up,vn) = (Pn,V - Vh)— < Gn,Vh N >p0, YW, € Vp,
(V - Up, Wh) = (f7 W/-,)7 Ywp € Wh.
Error estimates: || p — px [l 2= O(h), ||u—up |[k= O(h) J
[ ]
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Review: finite element method(s) for elliptic problems
Variational approach (conforming FE) and discretization
Variational approach (mixed FE) and discretization
FE for multiscale problems: issues

Discrete mixed RT|q spaces = cell-centered FD

Basis functions for RTjo; spaces

u, € V, C V are piecewise linears x piecewise constants
pn € W, C W are piecewise constants

Equivalentto CCFD | [(IBELCLCH
(up to quadrature) J continuous

ex o ex o
® pressure " = s s = = S |he,
g L ] ® [ ]
X x-velocity 1 @ pressure HE
3 HE
. [ ] il
X y-veloeity . : :, ; * d * e i § °
x X X% |
o x oy 0 [ *| @ x
° L B
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Review: finite element method(s) for elliptic problems
Variational approach (conforming FE) and discretization
Variational approach (mixed FE) and discretization
FE for multiscale problems: issues

Reality of FE computations vs theory

For optimal convergence of numerical methods

| PP llizy < CHPI P ey )

one needs (at least local) smoothness of the true solution p ... but in
practice

@ f,Q possibly not smooth
@ K not smooth: multiscale character
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Review: finite element method(s) for elliptic problems
Variational approach (conforming FE) and discretization
Variational approach (mixed FE) and discretization
FE for multiscale problems: issues

What is K = K(x) like ?

K = KT (permeability, conductivity, mobility,...) is in general
anisotropic.Here we focus on two sources of difficulties:

Permeabilities

02 04 06 08

two scales Kig: / Ksiow = 102, 5 > 1 strong heterogeneity
periodic character of K no separation of scales-?
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Review: finite element method(s) for elliptic problems

Effective and upscaled coefficients Variational approach (conforming FE) and discretization
Survey of Multiscale FE methods for elliptic problems Variational approach (mixed FE) and discretization
Non-elliptic and/or nonlinear problems FE for multiscale problems: issues

Recap and references

Numerical simulation: periodic multiscale case

— K(x l) pemeabies
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Review: finite element method(s) for elliptic problems
Variational approach (conforming FE) and discretization
Variational approach (mixed FE) and discretization
FE for multiscale problems: issues

Numerical simulation: periodic multiscale case

Assume K(x) = K*(x) = K(x, %) ‘amm
T0 résolve the scales in K(x), we
i need a grid with h << ¢ .. this
e means solving AP = F with O(NJ)
complexity and may be
" prohibitively complex in R2, R3. 2

aKeep in mind the big picture and
solving nonlinear transient problems
K =K(x,p,Vp)
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Review: finite element method(s) for elliptic problems

Effective and upscaled coefficients Variational approach (conforming FE) and discretization
Survey of Multiscale FE methods for elliptic problems Variational approach (mixed FE) and discretization
Non-elliptic and/or nonlinear problems FE for multiscale problems: issues

Recap and references

How not to solve with h

t h
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Review: finite element method(s) for elliptic problems

How not to solve with h

Variational approach (conforming FE) and discretization
Variational approach (mixed FE) and discretization
FE for multiscale problems: issues

t h

Matgorzata Peszynska

Some solutions and ideas when
usinge < H

@ use a special linear solver
technique (multigrid ?)

o find effective K*; and solve
for p*yy ~ p°

@ solve for p*,, ~ p° using
multiscale FE

@ if needed, recover
(reconstruct) next order

effects (correctors,
downscaling)
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Effective and upscaled coefficients Use multigrid/multilevel approaches

Homogenization based methods
Upscaling by averaging or pressure-based

Multigrid/multilevel methods

Well suited to handle large systems

AP — F

@ Standard multigrid not useful for problems with highly varying
coefficients:

@ Must use a special grid transfer operator (not bilinear)

@ |dea: construct an effective K using a special grid transfer
operator [Knapek, Moutlon, Dendy]
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Effective and upscaled coefficients Use multigrid/multilevel approaches
Homogenization based methods
Upscaling by averaging or pressure-based

Find effective K*;; by homogenization

@ Homogenization formulas for K*

1
Ky = — / Kie(¥) (0 + ey (y))dA
1| Ja,

-V -KVuwi(y) =V-(Kej), yeQ
wj Qo — periodic
@ Analytical formulas and bounds? available for special geometries
only

@ Finding K* numerically: for every Ty, solve a local problem with
grid h for K*(x)

) [Matache/Schwab]

2Wiener, Matheron, Cardwell, Parsons, Torquato, Rubinstein, Hashin, Shtrikman,
Dagan
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nent method(s) for ellip

Effective and upscaled coefficients Use multigrid/multilevel approaches
FE methods for elliptic Homogenization based methods
Non-elliptic and/or nonlin Upscaling by averaging or pressure-based

Recap and references

Find effective K*;; by homogenization

@ Homogenization formulas for K*

]
10| Ja,

-V -KVuwi(y) =V-(Kej), yeQ
wj Qo — periodic

" ik Kik(Y) (0 + Okw;j(y))dA-

@ Analytical formulas and bounds? available for special geometries
only

@ Finding K* numerically: for every Ty, solve a local problem with
grid h for K*(x)

@ exploit two-scale numerical FE approaches [Matache/Schwab]

2Wiener, Matheron, Cardwell, Parsons, Torquato, Rubinstein, Hashin, Shtrikman,
Dagan
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Review: finite element method(s) for elliptic problems

Effective and upscaled coefficients Use multigrid/multilevel approaches
Survey of Multiscale FE methods for elliptic problems Homogenization based methods
Non-elliptic and/or nonlinear problems Upscaling by averaging or pressure-based

Recap and references

Find an effective K*y by upscaling

Examples of upscaled K*;; using simple averaging:

Original field Kp, with h ~ 217x201, upscaled Ky with H ~ 34x26 by arithmetic, harmonic averaging, and renormalization /King]

(P)ressure based upscaling: solve

-V -KX)Vw =0, ye Ty
=7

WIBTH

Then get K*4| 7, by matching fluxes with (Vw).
Boundary conditions: Dirichlet (prevents
crossflow) or periodic.
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Effective and upscaled coefficients Use multigrid/multilevel approaches
Homogenization based methods
Upscaling by averaging or pressure-based

Comparison of upscaling methods

Given K, h ~ 34x26...

Heterogeneous case Fracture cell Fracture cell
Kp € [1.9,242.2] Kp(x) € {1,1e — 2} Kp(x) € {1,1e — 4}

i
Hg ;
T

i
T

. compute effective Ky, H ~ 1x1

method heterogeneous fracture 1e-2  fracture 1e-4
(A)rithmetic 89.5002 0.6436 0.6400
(H)armonic 79.3953 0.0273 0.000273
(R)enormalization (6x)  78.6652 0.4799 0.4703
(P)ressure based 86.5225, 81.5955  0.455825 0.446895
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Survey of Multiscale FE methods for elliptic problems

MsFEM

MsFEM

Heterogeneous multiscale FEM
Variational and subgrid multiscale FEM
Mortar methods

Idea: solve on scale H

incorporate e-scale of K¢(x) into basis functions [Babuska,
Osborn’83], [Hou, Wu’97-],[Efendiev, Hou, Wu, '00]

Given original test functions

{61(%), - . S, (%)}

solve local problem on Ty

~VKX)V; =0, ye Ty
YiloT, = di

Use 1; to construct basis for V.

Matgorzata Peszynska
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Review: finite element method(s) for elliptic problems
Effective and upscaled coefficients

Survey of Multiscale FE methods for elliptic problems
Non-elliptic and/or nonlinear problems

Recap and references

MsFEM and oversampling

MsFEM

Heterogeneous multiscale FEM
Variational and subgrid multiscale FEM
Mortar methods

MsFEM: solve on Ty

—VKX)Vy] =0, ye Ty
Yilot, = @i

Use 1 to construct basis for V.
Oversampling MsFEM: solve on Sy

~VK (x)Vyf =0,
Yilos = i

Malgorzata Peszyriska

G
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MsFEM

Heterogeneous multiscale FEM
Variational and subgrid multiscale FEM
Mortar methods

Analysis of MSFEM (periodic K)

Survey of Multiscale FE methods for elliptic problems

Error estimates | :

2, €
C(H +H)

C(H+6+\/g)

@ Resonance effect partially removed by oversampling.

@ Efficiency ... still solving on every Ty ...

@ Applied in practice to non-periodic problems

@ Extensions to nonlinear and transient cases [Efendiev,Pankov]

IA

| o —PH ||L2(n)

IA

| P~ PH llH (@)

Also [Chen’05, Chen, Hou'02], for mixed FE methods.
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Review: finite element me
Effect

Survey of Multiscale FE methods for elliptic problems
Non-elliptic and/or nonlinear problems

Recap and references

c problems
led coefficients

Heterogeneous multiscale FEM

MsFEM

Heterogeneous multiscale FEM
Variational and subgrid multiscale FEM
Mortar methods

Solve with H, incorporate e-scale of K¢(x) at quadrature points.

/T(K(X)V(15,’(X)V<zj,'(x)dA);7 = Z WinK(Xm)V ¢i(Xm)V ¢ (Xm)

Need to capture variation in K¢(x): solve
for ¢

~V-KX)V$ =0, xeT;
d—¢ periodic on Ts

il

BL

~ Z WmK;(xm)an(Xm)V@A/(xm)

i I

$ &
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MsFEM

Heterogeneous multiscale FEM
Variational and subgrid multiscale FEM
Mortar methods

Heterogeneous multiscale FEM: analysis

Survey of Multiscale FE methods for elliptic problems

@ Analysis: (periodic K¢(x))

2 O(E), d=c¢
||p_pH ||LZQ§C(H +{ O((S—f-%), 5> ¢

@ Special error estimates for random K.

@ Computational cost: smaller than
using h, competitive with MsFEM.

@ Extensions to nonlinear cases
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MsFEM

Heterogeneous multiscale FEM
Variational and subgrid multiscale FEM
Mortar methods

Variational and subgrid multiscale FEM

Survey of Multiscale FE methods for elliptic problems

Idea of Bubbles:

provide enrichment of FE spaces [Hughes] used to stabilize
convection-diffusion problems, CFD, or elasticity FE formulations, to
resolve nonpolynomial behavior such as: boundary layers, numerical
Green’s functions

/ XX\

usual FE basis Lif
functions

Write pp, = p+ p’

basis functions plus
bubbles

Subgrid methods for mixed FE methods

Idea: write py, = py + 0p, same for velocity variables.
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MsFEM

Heterogeneous multiscale FEM
Variational and subgrid multiscale FEM
Mortar methods

Survey of Multiscale FE methods for elliptic problems

Subgrid upscaling

@ Write pp, = py + 6p, Vy = Vg + oV
@ Decouple coarse problems by the

closure assumptions: no flow for jv
on the coarse boundaries 0 Ty.

@ Use higher order FE for velocity vy
(BDDF) and lower order (RT) for dv.

@ Use numerical Green'’s functions to
precompute for influence of coarse
on fine scale.

Error estimates and experiments for £ fixed
| = P llz@= OH), || V=V |z@)= O(H?)

Recent extensions by [Aarnes et al] of Mixed MsFEM and Subgrid
methods
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MsFEM

Heterogeneous multiscale FEM
Variational and subgrid multiscale FEM
Mortar methods

Survey of Multiscale FE methods for elliptic problems

Mortar based methods

@ Complete decoupling of problems on Ty:
they are connected by mortars on interfaces

@ optimal convergence: a-priori analysis
[ACWY 00] and a-posteriori analysis [P05],
[APWY’07] available

@ mortar upscaling [PWY02]

@ Computational savings achieved when
efficient interface solvers are available

@ No reconstruction necessary: solution at
grid h available

@ Automatic implementation of transient
nonlinear problems
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Review: finite element method(s) for elliptic problems
Effective and upscaled coefficients

Survey of Multiscale FE methods for elliptic problems
Non-elliptic and/or nonlinear problems

Recap and references

Example: adaptive mortar modeling [F05]

MsFEM

Heterogeneous multiscale FEM
Variational and subgrid multiscale FEM
Mortar methods

PRES
439.908
498.221
400 P
433.158
491471
489.783
488.096
3 486408
300 48472
483.033
481345
479658
Pl m| 47797
2 { !‘ 476.283
N200 D
1 2
100
0 Al Lil
200 400 600 800
Yy
Figure: Left: | Q = Q4 U Q2 U T |. Right: solution ©4 = p, no mortars
=] = = E = A20N €4
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Review: finite element method(s) for elliptic problems
Effective and upscaled coefficients

Survey of Multiscale FE methods for elliptic problems
Non-elliptic and/or nonlinear problems

Recap and references

Results: mortars for single phase flow in

MsFEM

Heterogeneous multiscale FEM
Variational and subgrid multiscale FEM
Mortar methods

nm:1

Solution ©4 = py
(no mortars)

Solution © = py, (with mortars). Right: 7r .

[m] = = =

A2 N Ge
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Reconstruction and downscaling
Double-porosity approaches for parabolic problems

Non-elliptic and/or nonlinear problems Methods of moments, pseudo-functions for transport problems

Flow coupled to transport 7(©) = 0 with © = (u, p, ¢)

u=-Kvp, V.u=0

Diffusive-dispersive transport

ac
ot

+ V:(uc—D(u)Ve)=0

Definitions
D(u) := diffusion + dispersion
ol + U] (dongE(U) + Grransy (I — E()))-
1
E(U) = WU,’U]
D(u) =~  dmol + diong|u|E(u)
”
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Reconstruction and downscaling
Double-porosity approaches for parabolic problems
Non-elliptic and/or nonlinear problems Methods of moments, pseudo-functions for transport problems

Reconstruction and downscaling

Flow coupled to transport

— + V-(uc—D(u)Ve)=0

Need accurate fine scale uy, !
... have to reconstruct uy, from uy

@ [Oden, Vemaganti]: use the coarse solution py as boundary
conditions for the local problem solved for py,

@ global-local upscaling [Durlofsky, Chen, Gerritsen]
@ use global information [Efendiev’06,07]
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Review: finite element method(s) for elliptic problems

Effective and upscaled coefficients Reconstruction and downscaling
Survey of Multiscale FE methods for elliptic problems Double-porosity approaches for parabolic problems
Non-elliptic and/or nonlinear problems Methods of moments, pseudo-functions for transport problems

Recap and references

Small/large contrast diffusive-dispersive transport
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Reconstruction and downscaling
Double-porosity approaches for parabolic problems
Non-elliptic and/or nonlinear problems Methods of moments, pseudo-functions for transport problems

Multi-phase flow problems, phases a = w, n

%(bsapa -V K)\aVPa = (Qa, (1)
Pr— Py = P(Sw) (2)
Sh+ Sy =1 )

Well-posedness results and character of solutions

degenerate parabolic/elliptic + parabolic/hyperbolic
[altdibene,Arbogast, Chenl]

| A\

Handling transient nonlinearities

@ use upscaled K; how to handle A, P, ? [Durlofsky et al, Trykozko and Zifl]
@ if heterogeneity is ~ periodic, use homogenization [Arbogast97,Bourgeat, BourKozMik95]

\
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Review: finite element method(s) for elliptic probler
Effective and upscaled coefficier

Survey of Multiscale FE methods for elliptic probler
Non-elliptic and/or nonlinear problems

Recap and refere S5

Reconstruction and downscaling
Double-porosity approaches for parabolic problems
Methods of moments, pseudo-functions for transport problems

Example: mortar upscaling for multi-phase flow

1 block

4 blks,1x1 mort. tol=0.1

H case (large correlation)  H case (large correlation)

B[ v 4 blks, Ix1 mortars, ol= 0 v 4blks, 1x1 mottars, o
o 4blks, 1 mortrs, tol-q.1 ——— 4 blks, 1x1 mortar, fok-0pO1

Case H (large correlation)

41

door
‘ ) s
4 blks,1x5 mort.,| %
d £
Case H (large correlation), different mortar grids Different ttortar grids Vary interface tolerance
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Review: finite element method(s) for elliptic problems

Effective and upscaled coefficients Reconstruction and downscaling
Survey of Multiscale FE methods for elliptic problems Double-porosity approaches for parabolic problems
Non-elliptic and/or nonlinear problems Methods of moments, pseudo-functions for transport problems

Recap and references

Example: mortar adaptivity [P05]

H case (large correlation) ADAPTED

351 20 ——y— 4blks, 1x1 mortars, tol=0.1 6
S O A4blks, 1x5 mortars, tol=0.1
‘(e)rtgmal ——@—— 4 blks, 1x12 mortars, tol=0.1
—=—— 1 blk, no mortars
—B— 4 blks, adapted mortars (1x1+1x3), tol
4

Case H (large correlation)

Jump In fluxes (oll
‘Water/oil ratio

Oil production rate

adapted

9 iy =
Different mort&Pigrids

750

500 7000
= time [days]

S
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Recap and references

Recap

@ Elliptic problems with multiscale coefficients lead to large linear
systems

@ Multiscale FE aim to reduce computational complexity

@ Not all are applicable and/or perform equally well when applied
to transient coupled nonlinear problems
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