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Model problem

Second order elliptic PDE on an open bounded Ω ⊂ Rd ,d = 1,2,3,
K = KT , K = K(x) bounded, strictly elliptic: λmin(x) ≥ λ0 > 0{
−∇ · K∇p = f , x ∈ Ω

p = 0, x ∈ ∂Ω
⇐⇒

Ap = f
X ,Y are Banach (Hilbert) spaces

A : X 7→ Y or A : X 7→ Y ′

Sobolev spaces Hm(Ω), m ≥ 0, (K ∈ C1(Ω̄), ∂Ω is C2 smooth)

−∇ · K∇︸ ︷︷ ︸
A

: Hm+2(Ω) ∩ H1
0 (Ω) 7→ Hm(Ω),m ≥ 0

a weaker notion .... (K = K(x) can be discontinuous, ∂Ω is
polygonal)

A : H1
0 (Ω) 7→ H−1(Ω)

Sobolev spaces W m,p, 1 ≤ p <∞, when K = K(x ,Θ) or is
degenerate (also for transient problems)
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Weak (variational) formulation and FE formulation

Use smooth q : q|∂Ω = 0, integrate by parts −∇ · K∇p = f ,
use p|∂Ω = 0 to get∫

Ω

K(x)∇p(x)∇q(x)dx =

∫
Ω

f (x)q(x)dx ,

Abstract setting

Define V := H1
0 (Ω),a(p,q) :=

∫
Ω

K∇p∇qdx , (f ,q) :=
∫
Ω

fqdx .

Find p ∈ V : a(p,q) = (f ,q),∀q ∈ V

Theory: ∃!p : continuously depending on the data f ,K,Ω.
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FE for the model elliptic problem

(D) PDE and b.c −∇ · K∇p = f ,p|∂Ω = 0

(V): weak form: a(p,q) = (f ,q),∀q ∈ V

Partition Ωh =
⋃

T∈T〈 T̄ ≈ Ω ⊂ Rd into elements T : segments
(1D) or triangles/quadrilaterals (2D), tetrahedra/prisms/bricks
(3D)

Define local polynomial basis (globally C0(Ω) only) of degree
k = 1,2, . . . for space V k

h (Ω)

(FE) Finite element solution:

find ph ∈ V k
h : a(ph,qh) = (f , vh),∀qh ∈ V k

h
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Error analysis

a(·, ·) continuous: a(p,q) ≤ C ‖ p ‖V‖ q ‖V

a(·, ·) elliptic: a(u,u) ≥ α0 ‖ u ‖2
V

Conforming FE: Vh ( V (nonconforming ≈ variational crimes)
Galerkin orthogonality a(p − ph, vh) = 0
Céa’s lemma ‖ p − ph ‖V≤ infqh∈Vh ‖ p − qh ‖V

Interpolation estimate(s) ‖ u − Ihu ‖V≤ Ch ‖ u ‖H2(Ω)

lead to ...

‖ p − ph ‖H1(Ω)≤ Ch‖ p ‖H2(Ω)

use of Aubin-Nitzche duality “trick” based on
‖ p ‖H2(Ω)≤‖ f ‖L2(Ω):

‖ p − ph ‖L2(Ω)≤ Ch2‖ p ‖H2(Ω)
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Finding ph: implementation

Use {φ1(x), . . . φNh(x)} as the (piecewise polynomial) basis for V k
h

Write ph =
∑

i piφi(x) and ph ≡ P = (pi)
Nh
i=1

(FE) Finite element solution ph ≡ P

a(ph,qh) = (f ,qh),∀qh ∈ V k
h ↔

∑
i

pia(φi , φj) = (f , φj),∀j

Note: the system AP = F has dimension Nh.

In practice the matrix entries Aij := a(φi , φj) =∫
Ω

K(x)∇φi(x)∇φj(x)dA =
∑

T

∫
T K(x)∇φi(x)∇φj(x)dA

are computed approximately using numerical integration
(quadrature): Aij ≈

∑
T (

∫
T K(x)∇φi(x)∇φj(x)dA)h
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Numerical implementation and solving a linear system

Discretize: define Ωh, choose V k
h

Assembly process with quadrature: compute for each T
the approximationZ

T
(K(x)∇φi(x)∇φj(x)dA)h :=

X
m

wmK(xm)∇φi(xm)∇φj(xm)

Add over all elements T adjacent to node j for each j
(cost is O(Nh))

Solve linear system (A is sparse spd)

AP = F
...this requires O(N r

h) computational time r=3 for full GE ... to ... r=1 for
Full Multigrid solvers,
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Mixed formulation: u = −K∇p, ∇ · u = f
W := L2(Ω) and V := H(div; Ω). Find Θ := (u,p) ∈ V×W

(K−1u,v) = (p,∇ · v)− < g,v · n >, ∀v ∈ V
(∇ · u,w) = (f ,w), ∀w ∈ W

Discrete mixed formulation

Wh ⊂ W , Vh ⊂ V are RT[0] spaces. Find Θh := (uh,ph)∈ Vh ×Wh:

(K−1uh,vh) = (ph,∇ · vh)− < gh,vh · n >∂Ω, ∀vh ∈ Vh,

(∇ · uh,wh) = (f ,wh), ∀wh ∈ Wh.

Error estimates: ‖ p − ph ‖L2(Ω)= O(h), ‖ u− uh ‖K = O(h)
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Discrete mixed RT[0] spaces ≡ cell-centered FD

Basis functions for RT[0] spaces [RavTho77]

uh ∈ Vh ⊂ V are piecewise linears × piecewise constants
ph ∈ Wh ⊂ W are piecewise constants

uh · n are continuous Equivalent to CCFD
(up to quadrature)

uh · t are NOT
continuous
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Reality of FE computations vs theory

For optimal convergence of numerical methods

‖ p − ph ‖L2(Ω)≤ Ch2‖ p ‖H2(Ω)

one needs (at least local) smoothness of the true solution p ... but in
practice

f ,Ω possibly not smooth
K not smooth: multiscale character
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What is K = K(x) like ?
K = KT (permeability, conductivity, mobility,...) is in general
anisotropic.Here we focus on two sources of difficulties:

two scales Kfast / Kslow = 10β , β ≥ 1 strong heterogeneity
periodic character of K no separation of scales ?
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Numerical simulation: periodic multiscale case

Assume K(x) = Kε(x) = K(x, x
ε )

To resolve the scales in K(x), we
need a grid with h << ε .. this
means solving AP = F with O(N r

h)
complexity and may be
prohibitively complex in R2,R3. a

aKeep in mind the big picture and
solving nonlinear transient problems
K = K(x, p,∇p)
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How not to solve with h

Some solutions and ideas when
using ε < H

use a special linear solver
technique (multigrid ?)
find effective K∗

H and solve
for p∗H ≈ p0

solve for p∗H ≈ p0 using
multiscale FE
if needed, recover
(reconstruct) next order
effects (correctors,
downscaling)
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Use multigrid/multilevel approaches
Homogenization based methods
Upscaling by averaging or pressure-based

Multigrid/multilevel methods

Well suited to handle large systems

AP = F

Standard multigrid not useful for problems with highly varying
coefficients:
Must use a special grid transfer operator (not bilinear)
Idea: construct an effective K using a special grid transfer
operator [Knapek, Moutlon, Dendy]
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Find effective K∗
H by homogenization

Homogenization formulas for K∗

K∗
jk =

1
|Ω0|

∫
Ω0

Kjk (y)(δjk + ∂kωj(y))dA

{
−∇ · K∇ωj(y) = ∇ · (Kej), y ∈ Ω0
ωj Ω0 − periodic

Analytical formulas and bounds2 available for special geometries
only
Finding K∗ numerically: for every TH , solve a local problem with
grid h for K∗

H(x)

exploit two-scale numerical FE approaches [Matache/Schwab]

2Wiener, Matheron, Cardwell, Parsons, Torquato, Rubinstein, Hashin, Shtrikman,
Dagan
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Find an effective K∗
H by upscaling

Examples of upscaled K∗
H using simple averaging:

Original field Kh with h ≈ 217x201, upscaled KH with H ≈ 34x26 by arithmetic, harmonic averaging, and renormalization [King]

(P)ressure based upscaling: solve

−∇ · Kε(x)∇w = 0, y ∈ TH

w |∂TH = ?

Then get K∗
H |TH by matching fluxes with 〈∇w〉.

Boundary conditions: Dirichlet (prevents
crossflow) or periodic.
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Comparison of upscaling methods
Given Kh, h ≈ 34x26...

Heterogeneous case
Kh ∈ [1.9, 242.2]

Fracture cell
Kh(x) ∈ {1, 1e − 2}

Fracture cell
Kh(x) ∈ {1, 1e − 4}

... compute effective KH , H ≈ 1x1
method heterogeneous fracture 1e-2 fracture 1e-4

(A)rithmetic 89.5002 0.6436 0.6400
(H)armonic 79.3953 0.0273 0.000273
(R)enormalization (6x) 78.6652 0.4799 0.4703
(P)ressure based 86.5225, 81.5955 0.455825 0.446895

Remark: note unreliable results of methods (A), (H) for
fracture cells and non-isotropy arising in (P) method.
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MsFEM
Heterogeneous multiscale FEM
Variational and subgrid multiscale FEM
Mortar methods

MsFEM

Idea: solve on scale H

incorporate ε-scale of Kε(x) into basis functions [Babuska,
Osborn’83], [Hou, Wu’97-],[Efendiev, Hou, Wu, ’00]

Given original test functions
{φ1(x), . . . φNH (x)}...
solve local problem on TH

−∇K ε(x)∇ψi = 0, y ∈ TH

ψi |∂TH = φi

Use ψi to construct basis for VH .
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MsFEM and oversampling

MsFEM: solve on TH

−∇K ε(x)∇ψT
i = 0, y ∈ TH

ψi |∂TH = φi

Use ψi to construct basis for VH .
Oversampling MsFEM: solve on SH

−∇K ε(x)∇ψS
i = 0,

ψi |∂S = φi
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Analysis of MsFEM (periodic K)

Error estimates [Hou, Wu’97-],[Efendiev, Hou, Wu, ’00]:

‖ p − pH ‖L2(Ω) ≤ C(H2 +
ε

H
)

‖ p − pH ‖H1(Ω) ≤ C(H + ε+

√
ε

H
)

Difficulties:
Resonance effect partially removed by oversampling.
Efficiency ... still solving on every TH ...
Applied in practice to non-periodic problems
Extensions to nonlinear and transient cases [Efendiev,Pankov]

Also [Chen’05, Chen, Hou’02], for mixed FE methods.
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Heterogeneous multiscale FEM

Idea: [E, Engquist’02], [Ming, Yue’03, E, Ming, Zhnag’04]

Solve with H, incorporate ε-scale of Kε(x) at quadrature points.

Z
T
(K(x)∇φi (x)∇φj (x)dA)h :=

X
m

wmK(xm)∇φi (xm)∇φj (xm)

≈
X

m

wmKε
ij (xm)∇φ̂i (xm)∇φ̂j (xm)

Need to capture variation in Kε(x): solve
for φ̂

−∇ · Kε(x)∇φ̂ = 0, x ∈ Tδ

φ̂− φ periodic on Tδ
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Heterogeneous multiscale FEM: analysis

Analysis: (periodic Kε(x))

‖ p − pH ‖L2Ω≤ C
(

H2 +

{
O(ε), δ = ε
O(δ + ε

δ ), δ > ε

)
Special error estimates for random K.

Computational cost: smaller than
using h, competitive with MsFEM.
Extensions to nonlinear cases
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Variational and subgrid multiscale FEM

Idea of Bubbles:
provide enrichment of FE spaces [Hughes] used to stabilize
convection-diffusion problems, CFD, or elasticity FE formulations, to
resolve nonpolynomial behavior such as: boundary layers, numerical
Green’s functions

usual FE basis
functions

basis functions plus
bubbles

Write ph = p̄ + p′

Subgrid methods for mixed FE methods [Arbogast, Keenan, Minkoff’,
Arbogast’00]

Idea: write ph = pH + δp, same for velocity variables.
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Subgrid upscaling

Write ph = pH + δp, vh = vH + δv
Decouple coarse problems by the
closure assumptions: no flow for δv
on the coarse boundaries ∂TH .
Use higher order FE for velocity vH
(BDDF) and lower order (RT) for δv .
Use numerical Green’s functions to
precompute for influence of coarse
on fine scale.

Error estimates and experiments for H
h fixed

‖ p − pH ‖L2(Ω)= O(H), ‖ v− vH ‖L2(Ω)= O(H2)

Recent extensions by [Aarnes et al] of Mixed MsFEM and Subgrid
methods
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Mortar based methods

Complete decoupling of problems on TH :
they are connected by mortars on interfaces
optimal convergence: a-priori analysis
[ACWY’00] and a-posteriori analysis [P05],
[APWY’07] available
mortar upscaling [PWY02]
Computational savings achieved when
efficient interface solvers are available
No reconstruction necessary: solution at
grid h available
Automatic implementation of transient
nonlinear problems
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Example: adaptive mortar modeling [P05]

Figure: Left: Ω = Ω1 ∪ Ω2 ∪ Γ . Right: solution Θh ≡ ph, no mortars
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Results: mortars for single phase flow in porous media

Solution Θh ≡ ph
(no mortars)

nm = 1

nm = 5

nm = 15

Solution Θ̃h = p̃h (with mortars). Right: ηΓ,∗
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Flow coupled to transport F(Θ) = 0 with Θ = (u, p, c)

Flow

u = −K∇p, ∇ · u = 0

Diffusive-dispersive transport

φ
∂c
∂t

+ ∇ · (uc − D(u)∇c) = 0

Definitions

D(u) := diffusion + dispersion

:= dmol I + |u|(dlongE(u) + dtransv (I − E(u))).

E(u) =
1
|u|2

ui uj

D(u) ≈ dmol I + dlong |u|E(u)
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Reconstruction and downscaling

Flow coupled to transport

u = −K∇p, ∇ · u = 0

φ
∂c
∂t

+ ∇ · (uc − D(u)∇c) = 0

Need accurate fine scale uh !
... have to reconstruct uh from uH

Ideas
[Oden, Vemaganti]: use the coarse solution pH as boundary
conditions for the local problem solved for ph

global-local upscaling [Durlofsky, Chen, Gerritsen]
use global information [Efendiev’06,’07]
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Small/large contrast diffusive-dispersive transport
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Multi-phase flow problems, phases α = w , n

∂

∂t
φSαρα −∇ · Kλα∇Pα = qα, (1)

Pn − Pw = Pc(Sw ) (2)
Sn + Sw ≡ 1 (3)

Well–posedness results and character of solutions

degenerate parabolic/elliptic + parabolic/hyperbolic
[altdibene,Arbogast,ChenI]

Handling transient nonlinearities
use upscaled K; how to handle λα, Pc ? [Durlofsky et al,Trykozko and Zijl]

if heterogeneity is ≈ periodic, use homogenization [Arbogast97,Bourgeat,BourKozMik95]
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Example: mortar upscaling for multi-phase flow
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Example: mortar adaptivity [P05]
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Recap

Elliptic problems with multiscale coefficients lead to large linear
systems
Multiscale FE aim to reduce computational complexity
Not all are applicable and/or perform equally well when applied
to transient coupled nonlinear problems
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