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1. Why this paper?

Lately lattice QCD has enjoyed considerable success. 18 #80HPQCD, MILC, and Fermi-
lab Lattice Collaborations found that calculations basedvionte Carlo simulations agreed with
experiment at the 1-3% level for a wide variety of physicalmfities [L]. During the next two years
the same techniques were used to predict the shape &f theklv semileptonic form factor]2],
the mass of th&. meson [[B], and the decay constants of EhandDs mesons[[4]. Each of these
results was subsequently confirmed by experimental measuts [b]. Lattice QCD was also used
to determine the strong couplireg [B]. These results have made a strong impression in the fields
of particle physics and nuclear physics, and a long-standaim of lattice gauge theorists is now
generally accepted: the combination of numerical simoitefff] and chiral perturbation theor}] [8]
is a sound way to solve gauge theories, such as QCD.

The key to this development was the incorporation of 2+1 flaedsea quarks with thHastest
technique, “improved staggered fermions with the Asqtaat[P]. Unsurprisingly for compu-
tational science, the fastest technique has some unresttieeretical questions hanging over it.
This state of affairs presents a great opportunity. It igggncommon sense to reproduce the results
of Refs. [1,[R.[B[K[]6] with theoretically cleaner treatnseat sea quarks. Such methods require
more computation, so one can argue (persuasively) to dewote computer resources to lattice
QCD than in the past. At the same time, there is a strong nimtivéand obligation) to understand
theoretically how, where, and why staggered fermions worksll.

The crux of the unresolved issues is the fermion doublindplero. Staggered fermions cope
with the problem partially, reducing the number of speciesifsixteen (in four space-time dimen-
sions) to four. The empirically successful results citeovaall use ensembles generated and made
publicly available by the MILC Collaboratiorj [[LO]. To redaithe number of fermion species (per
flavor) from four to one, gauge fields in these ensembles lrevpdrtition function[[71]

2= [0 7 L9t (Pragt my)| e (LY

whereSyaygeis the action for the gluon@stagis the (improved) staggered discretization of the Dirac
operator, and the subscript 4 on the determinant emphdbeemderlying number of species. The
question, then, is whethédet (B, + mg)]Y/* is legitimate.

This so-called “rooting procedure” is controversial. €stseem to accept that Eq. (1.1) is
valid in perturbation theory, where internal fermion loaoe simply multiplied by%l. Several
interested and disinterested parties are investigatimgpeoturbative aspects, sometimes finding
undesirable features though not, to my knowledge, fatalfladwn apparent exception is the work
of Michael Creutz[[12], 13, 14, L5], including these Procegsli{1§], which does claim that rooting
fails. Although these papers have already been ref(itéd fi&organizers of Lattice 2007 invited
me to respond to Creutz’s claims “on behalf of the staggepetheunity.” My charge is to “increase
the confidence of thevider lattice community in the rooting procedurdtalics added).

The organizers also asked me to comment on the relevancticé Igauge theory to CERN's
Large Hadron Collider (LHC). This request and the need teciatte new critiques have shaped
the organization of this talk. Sectiph 2 is an essay presegiiie view that the LHC era will require
fast lattice calculations and, thus, a broader understandf validity of the rooting procedure.
Sectiond 3 anfl] 4 disentangle the main issues. Even withotingy staggered fermions bring
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in complications, which are reviewed in s€dt. 3, focusingaamew quantum number “taste” that
characterizes the remaining species doubling. Furtherneeen with full SU(#4;) taste symmetry,
rooting has its peculiarities, which may be unfamiliar babwld not be controversial; they are
explained in sect[]4. These two strands are then broughthiege sect[]5 to discuss rooted
staggered fermions. It is then possible to refute REFS. IR [14,[16[T6] relatively tersely, in
sect[p. Sectiof] 7 covers some new developments, and]sdfdr8asummary and perspective.

2. Thelatticecommunity inthe LHC era

To represent the “staggered community” before the “widtickecommunity” it helps to think
about who belongs to each of them. The wider lattice commgiihply consists of those who
attend conferences on lattice field theory and submit aésprirthe hep-lat section of the arXiv. The
staggered community includes not only those who generaie Ensembles of SU(3) gauge fields
with rooted, staggered sea quarks, but also those (like mese them. The staggered community
also reaches beyond hep-lat. Many physicists without myphrése in lattice gauge theory have a
stake in the validity of the rooting procedure. For examgle,Heavy Flavor Averaging Group 18]
and similar enterprises use lattice QCD results to help thederstand whether non-Standard
phenomena contribute ®-meson decays. It is therefore useful to take the staggenesncinity
to be everyone who thinks the validity of staggered fermisngorthy of study.

The organizers’ charge implies that there may be some in terdattice community who
do not see themselves as part of the staggered community,asveefined here. That would be
unfortunate. Despite the “controversial” nature of Eqljlthe arguments against it are difficult to
pin down, because they are not documented in the scientdraiure. Mike Creutz is to be com-
mended for writing up his critique, making it possible toideovhether his qualms are correct. On
the other hand, some members of the lattice community se@mefer sniping from the sidelines.
They may hope that increases in computer resources will nfiekeontroversy moot, by allowing
other methods for sea quarks to catch up. The status of ottiioats is surveyed in Ref§.]19], and
one may judge for oneself. My reading is that other methods hat caught up, partly because
algorithms for the staggered sea are not standing [sfjll [20]

Future calculations are more salient than past efforts,isaiorth looking ahead to the LHC
era. The focus of the LHC’s physics program will be on thedeate! where we expect to find the
agents of electroweak symmetry breaking. They may be diyamypled and, if so, the need for
numerical lattice gauge theory will skyrocket. A lot will béstake, and the fastest way to elucidate
the physics will prevail. Even if physics at the terascalweskly-coupled or, worse, boring, a need
will remain for precision and accuracy ifx, fz1/Bg, etc In addition, searches for non-Standard
particles will profit from good calculations of moments ofrjoa densities, especially the gluon
density, so that signal and background cross sections cealtidated.

In summary, whether for QCD or for other gauge theories, #stekt correct technique for
simulating the fermion sea will remain a key tool during thd@ era. New researchers, young
and old, may turn to lattice gauge theory, and they will expgleat we established experts have
understood whether rooted staggered fermions are validptorFor this reason | think the whole

1Using the term “terascale” for the teraelectronvolt enesggles was inspired by terascaie ( teraflop/s and
terabyte) computing (J.D. Lykken, private communication)
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lattice community should engage in an open-minded sciemtébate, and skeptics should submit
their criticisms of rooted staggered fermions to the heXiv.

3. Staggered fermions without rooting

Most of the complexity of rooted staggered quarks has ngttordo with the rooting proce-
dure. Instead, it stems from the way spacetime and flaverdiginmetries of four (or%) Dirac
fermions emerge in the continuum limit. The aim of this sattitherefore, is to give a brief review
of the definitions and symmetries of staggered fermions heil tonnection with the continuum
limit. Most of this is not rigorouslyproven but it is fair to say that it isestablished principally
because numerical simulations shore up the theoretictlrpic

The simplest discretization of fermions replaces Diraosgaciant derivative with a nearest-
neighbor interaction. The resulting “naive” action is

Shaive= 38" 5 Y(X)yu [Uu () Y(x+ fia) — U (x— f1a) Y(x— fia)] +mpa®* S YY), (3.1)
bl X

where each sit& possesses Grassmann variabigsand \?"O,, with i and a the color and spinor
indices. This action is invariant under color 3, lattice translations, and hypercubic rotations.
With n¢ flavors there is a Y(n¢) x Ua(ns) chiral flavor symmetry, softly broken by the masses.

The naive action also possesses a remarkable SU(4) “dgublimmetry” [21L], with fifteen
x-dependent (anti-Hermitian) generat@(x):

Bu(¥) = yuys(=1)™,  Bs(x) =iyse(x), Bu(X)Bs(x), Bu(x)Bv(x) (1 <V), 3.2)

wheren = x/a, andg(x) = (—1)M ™ s+ The naive fermion field transforms as

Y(x) - e B 0Y(x),  Y(x) — Y(x)e @B, (3.3)

The physical interpretation becomes clear in momentumespaonsider, for example, a doubling
transformation generated tBy,: Y(p) — coswY(p) + sinwy,Y(p+ 11/a). In general, the
doubling symmetries relate all 16 corner’/a of the Brillouin zone, up to a shuffling of the Dirac
index. (See Eqs[ (3]16)=(3]20), below, for a complete fishe 4-vectorsr”.)

The physical consequence of the doubling symmetry (in fouedsions) is that a single naive
fermion field Y corresponds to 16 species of fermion. The extra speciesvatent in vacuum
polarization, leading t@, = 3N. — 416n; in the running of the gauge couplinf]21]. The axial
anomaly receives contributions from all 16 species, in titéepn [21]

(0,0,0,0) (11,0,0,0) (m,1,0,0) (mt,17,71,0) (T, 71,77, 1M)
;Q((HA):{ 1 - 4 + 6 — 4 + 1 |2A=0 (3.4)

where a typical™ hovers over the integer multiplicity of the species fromttiad of corner. The

total anomaly vanishes because with the naive action therflanglet axial symmetry hJ(1) is

exact. Because the anomaly is wrong, naive fermions do eat $& be what one wants for QCD.
The doubling symmetries can be rendexeddependent via a change of variablpg [22]:

Y(X) = Q)X(X), Y(X)=X(XQ 1(x), QX = AR TAS VALV (3.5)



Staggered fermions: why not! Andreas S. Kronfeld

Rewriting the naive action in the new fermion fields, X!, one finds

Shave=32° 3 X(X)1u(X) [Up ()X (x+ 1a) — U} (x— fra)X (x— )] + moa I X(xX(x), (3.6)
X X

where the signg (x) have replaced the Dirac matrices via
Q1 (X)yQ(x+ fla) = (—1)Ze<u" =: ny(x). (3.7)

Equation [3J6) can also be obtained by diagonalizing a malxammmuting subgroup of the dou-
bling symmetry [2B].

In Eq. (3.6) the transformed spinor index is sterile, so thmber of degrees of freedom can
be reduced four-fold, yielding

Stag= 38" Y X()Nu(¥) [Up(0X (x+ f1a) —Uf(x— fra)x (x— fia) | + moa* § X(x)x(x), (3.8)
X X

wherey' is a fermion fieldwithouta spinor index. A Hamiltonian formalism with one-component
fermions and sign factors instead of Dirac spinors and wesgrivas introduced by Susskirld][24],
extending work in 1+1 dimensions by Banks, Kogut, and Sussf@3]. Because of the ubiquitous
factors(—1)" the Euclidean formulation witBsagand X' is called “staggered fermions.”

The projection from the bigk}, to the little x' removes the SU(4) doubling symmetry, al-
beit in a not-so-straightforward way. All other symmetresxcept color and the vector flavor
symmetries—becomedependent[[34, 26]. For example, consider translations

¢ o) YO0 =YX fa) = X(x) = Cu(X)yuX (x+[1a) (3.9)
B YOO - Y(x+ 1) = X(X) = Qu(OX(x+ fra)y, '
where
Zu(X) = Q1 (0Q(x+ fra)y, = (—1)Zo>u", (3.10)

Because of the Dirac matrix ifi (3.9), we see that the prajadiiom X/, to x' does not commute
with lattice translational symmetry. On the other hand, @a@® combination of translations and
B transformations calleghiftsdoes survive the projection:
Y(x) = —iByBsY(x+fla) = X(X) — {u(X)x (x+ fia)
Sut{ Y(x) — —iY(x+f1a)ByBs = X(X) — {u(x)X(x+ a) , (3.11)
Uy (X) — Uy (x+ fia), Vv

and X, transforms just likey. Similarly, rotations, spatial inversion, and charge agagion be-
come entangled with this residue of the doubling symmef#&g27,[2B[2P[ 30, 31].

Here we shall focus on issues related to the species corftstédggered fermions. Acting on
the fermion fields, the shifts anti-commutg,S, = —S,S, (v # u), from which it follows that
the residue of the doubling symmetry is a discrete Clifforoug I'4. Because shifts translate the
gauge field, a singl€ 4 symmetry arises for any;. Shift symmetry has two kinds of irreducible
representations (irreps)fermionicandbosonie—with representation matrices, respectively,

DUN(S)) = &ue™?, (3.12)
D(S,) = e, (3.13)
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where the physical momentum ranges opgre (—71/2a, 11/2a]. The fermionic representation is
4-dimensional, labeled by an index 1,2,3,4, and the, are 4x 4 matrices obeying the Clifford
algebra,{&,;,&,} = 28,y. The sixteen 1-dimensional bosonic irreps are labeled &ytnersA
of the Brillouin zone and the pre-factors are sigsf,s,: é™. The indext and the labeA denote a
guantum number that, nowadays, is callaste

A colored particle’s taste, just like its momentum, is madeplicated by SUY.) color gauge
symmetry. It is enough, however, to consider color singleteh as the mixed-action bilinear,
which arises, for example, in heavy-light physitg [32]. Let

H (%) = Wa (0T 05 Qa ()X (X), (3.14)

where the matriX2 reappears, now with the first index interpreted as a Diraexnbut the second
index interpreted as taste inddx|[$3] 34]. Here the figidpresents a Wilson or Ginsparg-Wilson
anti-fermion, so its spinor index has the conventional rm@anUnder shift symmetry (as one can
easily verify), the meson fielblt(r) transforms as

SutH (0 = [EuleH (x4 fra), &=y, (3.15)

so Eq. [3.75) gives an explicit realization of Efy. (3.12).dénrotations and spatial inversidm(r)
transforms as a scalar, vector, or tensic, dictated byl", up to a change of taste. Baryons with
three staggered quarks also have fermionic tasiq [27, 35].

Staggered-staggered mesons have bosonicAagtetations imply degeneracies in an almost
obvious way, leading to multiplets

| - € {(0,0,0,0)}, (3.16)
V : € {(1,0,0,0), (0, 1,0,0), (0,0, 17,0); (0,0,0, 1) }, (3.17)
T : e {(mm0,0),(m0,m0), (0, m0);(m0,0,m),(0,7,0,7m),(0,0,71, M)}, (3.18)
A : 1 e {(0,m,m, ), (1,0, 1, 1), (71, 11,0, 17); (77, 71, 77,0) } , (3.19)
P: e {(mmmmn)}. (3.20)

These multiplets are called the taste-singJéhe vector tast¥, the tensor tast€, the axial vector
tasteA, and the pseudoscalar tagte Another hadron with bosonic taste is a heavy-light baryon
consisting of two staggered light quarks and a Fermilab oQRR heavy quark{[36].

The staggered action, E{. (8.8), inherits softly brokendbérwise exact chiral symmetries,

X(X) R eeaTae(x)X(X)7 X(X) N )?(X)eeaTae(X)7 (3.21)

whereT2" = —T2_ With n; flavors, this is simply the W(n¢) symmetry manifest in Eq[(3.1),
madex-dependent via Eqd. (3.5). Thus, one has axial currents seutipscalar densities

AB(X) = 31" (0E() [X(x+ Da)Ul ()T2X () — XUy () T2 (x+Da)],  (3.22)
PE(x) = e(X)X(X)T?x(x), (3.23)
2Strictly speaking, the degeneracies are among irreps sfthenetry group of the transfer matrix, which entails cu-

bic rotations, not hypercubic rotatioﬁl 30]. Thusteﬂavithnf =0, Tneed not be degenerate; hence the semicolons
in Egs. (3.17)4(3:19). In practice they turn out to be nedegenerate [10].
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satisfying PCAC relationg [B7] (for equal renormalized geEn)°

a S AR (X) — AR (x— Da)] = 2mRE(X) +2a e (x)tr T=. (3.24)

It is tempting to say that the axial anomaly does not appe&qin(3.2}#) owing to Eq[(34), with
each contribution at quarter strength. It is better, howeweenote that it is not expected, because
the symmetry [(3.21) is exact. The axial anomaly is also uretts Under shiftsA%? and P8
transform as
S {Aéz(x) T OORA Ry, (3.25)
p(X) — (=1)™Ps(x+ f1a)

S0 one sees that these bilinears raoetaste singlets, rather they transform under the (non-sipgl
P irrep. This non-singlet character 82 and P provides a clue that the new quantum number
taste plays a key role in the physics that emerges in therzamt limit.

The change of variablef (B.5) followed by the projectiomfig), to x' reduces the number of
species from 16 to 4. The action can be rewritten using phijgisuggestive fields

Yo (y BZQat U y+nxXy+1), Ja) =33 Xy+0Qa(NU(y+ry), (3.26)
r

wherey labels hypercubes of sizé 2r, equivalently, sites on a coarser lattice of spading 2a,

r runs over the hypercube, abdy,y+r) is parallel transport along some chosen path fgoto
y+r. As in Eq. (3.14), the indices andt are interpreted as Dirac and taste indices. Suppressing
the gauge field, the action is then rewritten [B3, 34]

4

Sstag = b3zzl¢_’t )Vu [k (y + fib) — wt(y—ﬁlb)Hrrbb“;_ G (Y) gk (y)

4
S S BONelEEEbe [y D)+ ly— )~ 20k ). (3.27)

which looks like a lattice field theory of four Dirac fermignsith a Wilson-like term to alleviate
doublers. For perturbative gauge fields this appearandinces to hold. For example, the beta-
function starts wittBo = 4N — 24n; [R3], and the exadt4 part of the shift symmetry ensures that
mass renormalization is taste-independgnt[[26, 38].

The central conjecture of (unrooted) staggered fermiorikatsthe picture of four (or i)
Dirac fermions holds non-perturbatively. | say “conjeetuto mathematicians because it is not
proven rigorously (and | could say the same about all fortraria of lattice fermions), and to
physicists because the coupling to gauge fields is basedeoon#-component action, Eq. (3.8).
Consequently the spacetime and flavor-like symmetriesraemgled, so it is not especially trans-
parent how SO(4) rotational symmetry and\84h; ) x SUa (4n¢) x Uy (1) flavor-taste chiral sym-
metry emerge in the continuum limit.

To get an idea of the complications (seeg, Refs. [26[30] for details), let us consider some
important cases. The hypercubic rotations (denoted)3\¢ embedded

SWj C [SO(4) x SO(4)]diag C SO(4) x SUy(4) C SO(4) x SUy (4n¢) (3.28)

3In the flavor singlet tT2 = 0, but the last term vanishes in a average over a hyperculit§ssmimportant.
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into the diagonal subgroup of the Euclidean group and a flavmlet subgroup of the Sid4n;)
group. The Clifford group abstracted from the shifts andabaor flavor symmetries are embedded

M4 x SUy(n) C SUy(4ns) (3.29)
in the vector flavor-taste symmetries. The axial flavor symnie®are embedded
Ua(ns) C SUa(4n¢) (3.30)

in the flavor-taste non-singlet axial symmetries. For sBcthe embedding[ (3.80) along with
Egs. [3.2R){(3.25) are key. The exact chiral symmetriesnatdaste singlets. Therefore, they
cannot have anything to do with anomalies, gauge-field tapolzero modes of the Dirac operator,
or their consequences, such as 't Hooft vertices.

If the emerging picture is correct, staggered fermions rpassess a bilinear corresponding in
the continuum limit to the flavor- and taste-singlet axialrent. Analogously to the case of Wilson
fermions, this is not a Noether current, but the explicitairg is superficially of ordea. The
anomalous current extends over a whole hypercule[23, 37]:

MK =2 5 AR+ C)NXHb)R2(x+ b)ns(x+ b)na(x+b) |

X(x+c+ fra)u ] (x+c)U (x+ ¢, x+ b) x (x+ b)

— X(X+b)U (x+b,x+c)Uy(x+c)x(x+c+ fra)], (3.31)

whered = (1+ 2+ 3+4)a, U(x+b,x+c) is the average of parallel transport over paths from
X+ b to x+ ¢, and the sum is over all 4-dimensional diagonals of the toyer atx. Under shift
symmetryAl“ is a taste singlet, as is the corresponding pseudoscalsitylen

R0 =g 3 MDA DIIS(HBlac DTX BTG bx X (0). (3:32)
+c=
Al' andR satisfy a PCAC relation[37] with the anomaly of four Diraerféons [28]. Compared
to Eq. (3.2¢) a complication is the need for renormalizafd4i, but this is analogous to the renor-
malization of Ward-Takahashi identities of Wilson fernmson
If staggered fermions do indeed provide a{}species version of QCD, then general features
of the hadron spectrum should provide clear numerical exiee The chiral symmetries, and the
standard line of reasoning for spontaneously broken symymetply that the pseudoscalar meson
masses should behave (with degenerate quark mages

M = 2MyB+aAs + U300, (3.33)
wherea=0,..., n% —1labels flavor and € {P,A,T,V, 1} labels taste. The dynamical quantit®s
Aﬁ/ 4 andu are of order\, the characteristic dynamical scale of the gauge fields.ekhet (taste-

nonsinglet) chiral symmetries of Eq. (3.21) im@ly = 0. The ‘n’-n° splitting” parameteu? can

be generated only for the flavoand taste-singlet meson. This pattern is shown ¢er= 2) in
Fig.[}. It is consistent with extensive numerical simulasidn the quenched approximation, as
well as with 2 and 2+1 flavors of (rooted, staggered) sea gufifk [3P], including the scaling of
the pseudoscalar splitting8A; [EQ].
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The approach to the continuum limit can be clarified with tivedretical tools, the Symanzik
effective field theory[[9[ 41] and chiral perturbation the¢xPT) [41,[42[4B[ 44]. In the Symanzik
local effective Lagrangian (LE), dimension-four interactions have SO(4) rotational syetrsn
and, by design, Sl4n¢) x SUa(4ny) flavor-taste chiral symmetry, softly broken by mass terms.
Dimension-six four-quark operators break these down tog @4 x SUy(ns) x Ua(ng), as
indicated by the embeddingf (3.28)—(3.3D)| [F1, [42, 43]. drtipular, some of these operators
are invariant only under the, taste symmetry, not a full SU(4). They are variously callestd-
breaking or taste-exchange interactions. TheA Bnalysis clarifies why smearing strategies re-
duce the strength of taste-symmetry breaking [45]. If sssts, smeared actions should yield
smaller splittingsA;. They do [4]. They also improve the scaling of theneson mass and the
static potential[[47].

The splittings and other effects of broken taste symmety@rcourse, a complication. They
lead to multi-parameter fitting procedures, for examplehef pseudoscalar decay constaft$ [48].
Another example is ther1T threshold, which splits into fiveg -7 thresholdsg € {P, A, T,V,1}.

In last year’s plenary talk on this subjeft][49], the needclamplicating fitting was one reason to
deem lattice QCD with rooted staggered quarks “ugly.” Mahthe complications come not from
rooting but from the intricate symmetry structure and thardefor statistically sound fits. Fitting is
nicely illustrated byf; and fx. The staggered data start so close to the experimentat teatjust
about any chiral extrapolation would agree with experimbut statistically good fits are obtained
only when staggeregPT is used [[§0]. Thus, these fits provide further evidence steggered
(valence) fermions do indeed simulates 4lavors of quark.

To study how these properties of staggered fermions redagauge-field topology, one must
consider the eigenvalues of the staggered Dirac operabtereXact (non-singlet) chiral symmetries
imply that eigenvalues come in complex conjugate patiid; + mp, with orthonormal eigenvectors
fi(x) ande(x) fi(x). In a gauge field with a non-zero topological chaf@ethe continuum Dirac

needs confirmation U

/\2

| —
| = — [
P —— —

| |
|=1 =0

o

Figure 1: Pseudoscalar spectrum for 2 flavors of staggered fermio®, §mecies in all. The isovector
multiplets (withlz = +1, 0, —1) each consist of sixteen states, split by lattice artfaétorderA*a? into
submultiplets with 1, 4, 6, 4, and 1 states (for, respectjigleps of tastd, V, T, A, andP). The isosinglet
multiplet is similar, except that the taste-sindlsplits from the others by continuum-QCD effects (as usual).
This n’-like state suffers from noisy correlators, and numerieahdare consistent with this picture without
being definitive [3p].
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operator has.. zero modes of chirality-1, satisfying the index theorem. — n_ = nsQ, whereng

is the total number of species. With lattice staggered fensiithe zero modes are no longer exact.
Nevertheless, if staggered fermions do indeed yield foarkg) then several features must emerge
dynamically [5]L]. First, low-lying eigenvalues must classin quartets. Second, some (pairs of)
eigenvalues should be near-zero modes Witk A%a. Third, the chirality of the corresponding
eigenvectors should be closetd, in a way that satisfies the index theorem. Finally, in thiégefin
volume € regime, the distributions of eigenvalues should agree exbectations from random
matrix theory [5R].

Early numerical work was inconclusivg 53], but with impealstaggered actions, quartets
of eigenvalues clearly emerge in numerical simulatigny.[#4 particular, if the gauge field has
topological charge, then the eigenvalue spectrum contains quartets of the gaste-singlet,
Eq. (3.3R)) chirality, such that the index theorem is sa&tisf54]. Even with smearing, early
comparisons of random matrix theory suggested that stagdermions are topology blind [55].
Equation [[3.33) implies two regimes of intereisi [56, 57wiwer,

eregime: A >L1> mg, VE, (3.34)
¢ regime :mg_p > L1 > mp. (3.35)

In thee regime all “pions” are pseudo-Goldstone bosons, wheretheisi regime most of them are
very massive particles. In theregime staggered fermions should and do behave like a 4espec
theory [57]; in theg’ regime they should nof [F6] and do nt][55].

In summary, naive fermions appear to be problematic, becdugsanomaly is not generated.
Analysis of the unexpected doubling symmetries rescuefotineulation, however, yielding stag-
gered fermions. Spacetime and flavor-like symmetries beamtangled, making the interpretation
as Dirac fermions less transparent. But now not only arethetehiral symmetries non-singlets
under a flavor-like quantum number called taste, but alsmamalous taste-singlet axial current
can be found. On this basis, the emergencengfldirac fermions is theoretically plausible. Owing
to a wealth of results examining the nonperturbative cdrdad structure, it is also fair to say that
the validity of (unrooted) staggered fermions has beerbksked numerically.

4. Rooting with full SU(4) taste symmetry

The previous section reviewed some aspects of staggeradofes, focusing on how four
species emerge in the continuum limit. Before discussingthér the fourth-root procedure can
reduce these four species to one, | would like to pres&@ddankeralgorithm. The aim is to sepa-
rate some potentially confusing aspects of rooting, frab@tomplications of staggered fermions’
taste-exchange interactions.

Suppose that an algorithm designer with a good imaginatod @ wicked sense of humor)
found a way to speed up “your favorite lattice fermions” bystituting

det,(D+m) = {det,[(D+ m) ® 14} /%, (4.1)

thereby introducing four “tastes.” Here dé$ a determinant fons flavors, with 1 taste per flavor;
det; is for n¢ flavors, but 4 tastes per flavor. If the determinant is realpositive, this step does not
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change the Monte Carlo weight at all, because the right-lsatelis just a clever trick to calculate
the left-hand side. Of course, the trick fails if the leftadaside is not realg.g, for nonzero
chemical potential[[§8]), or if it can be negatived, m < 0).

To probe the dynamics of this system, first introduce sou(d&glg) for scalar and pseu-
doscalar meson operatarsi T2y, —iP T2y ) in the original theory:

Z[9%,38) = / 9% {det(D+m+ I+ Jsys) | 4.2)
- /902/ {det[(D+ m+ I+ Jsys) @ L] 1V/4, 4.3)

where2% is the gauge-field measure (includiag®), and the number of “replicas¥, will be

useful below. Tha 2 are flavor matrices (witf® =i1/,/2ny), andJs) = —iJE”‘S)Ta.

Spontaneous symmetry breaking is revealed by looking dt¢lgendre effective action

(O — 7[3, JsJem BRI+ () , (4.4)
J5=J5 (0,1
whereJs) (o, ) are defined implicitly, so that they create prescribed fiéttfs ri°):
1 0z 1 0z
Ga(x) i ) (X) i (45)
Z aJa(X) J(5):J<5)(U,7T) Z a‘]Sa(X) J(5):J<5)(U,7T)

The mass matrices far? and i1 are obtained from second derivativeslofIn the case at hand,
they are constrained by symmetry—invariance of the fernaiotion is expressed in Eqq. (4.2)
and [4.B) as the invariance of the determinants under a ehafrigasis. One findg [b9]

0T cab 9T
debnd -0 46
doagdg¢c UWJJF J030TEC oo ) (4.6)
9T cdb 0T b
ATRITC ouro + Wd e . [0 mass and anomaly terms  (4.7)

where the vacuum fieldss, ) are those in the absence of sourdgs* If one assumes that all
vacuum fields vanish except the flavor-singlet sca[%;rthen one obtains a constraint

o°r

YIS 0 mass and anomaly terms (4.8)

0Oo,70

and no constraint 082l /da2da®. Equation [4]8) is the basis for formulae such as Eq. [338).
course, the dynamical assumption th@t;ﬁ 0 has not been proven mathematically but has been
established numerically with various types of lattice fenmns.

Equation [4.8) apparently has more symmetry than [Ed. (4304n;) x SU(4n;) instead of
SU(n¢) x SU(n¢). | will call the extended symmetry phantomsymmetry, because it is a figment
of an algorithm designer’s imagination. One can study theadyical consequences of the phantom
symmetry by promoting the sources to taste-nonsingfefks [17

Z[3A, 98] = / P {dety[(D+m) @ 14+ I+ Isys| /4, (4.9)

4Instead of fixing)s) in Eq. @) to get prescribed fields, simply §gj = 0 on the right-hand side to gétip, ).
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where the flavor-taste generator ind&row runs from 0 tq4n¢)? — 1. One finds the same pattern
of spontaneous symmetry breaking as in Efis] (4.6}-(4.a)ling to mass relations likg¢ (4.8) also
for the taste nonsinglet phantom pseudoscalars. In alte thee (4n¢)? — 1 pseudo-Goldstone
bosons, instead ofjusE —1, and one taste- and flavor-singlgtlike meson.

But what should one make of the phantoms? The equivalendeedfmo formulations,[(4]2)
and (4.B), shows that phantoms do not exist. The symmetiysisauggests they do. (A numerical
simulation of your favorite rooted fermions could look atenonsinglet correlators to decide and
would probably find them.) The conundrum is easily resol¥¢dd phantoms violate unitarity and
cancel each other out in correlators that are obliviousstetfL }]. The lack of unitarity, particularly
when constrained by symmetry, is not a concern and, in faéanniliar in gauge theorie§ J60].

The Gedankeralgorithm helps establish a foundation for some questieme&rning rooted
staggered fermions. First, we see what kinds of correlamEgphysical. For bosonic taste, these
are taste singlets and anything related to taste singletsytmynetry?> For fermionic taste, one
needs single-taste correlato[s][49]. It is possible to waosunphysicalcorrelators, which could
lead to confusion or mistakes. Another use of Efjs] (4.2) Br®) (s to set a criterion for proving
staggered fermionmcorrect Any argument that would also kill theéedankeralgorithm simply
does not pertain to the issues at hand. An example is the frabfp+ m)¥/4 is non-local [B]L],
which does not prove thdtlety(P+ m)]*/# cannot be obtained from a path integral with a local
action [62]. Attempts to disprove staggered fermions masti$ on features not shared with the
Gedankeralgorithm, namely the violations of perfect SU(4) taste Byetry. Finally, note that the
details of the phantom sector dependMin For N, € Z, the rooted formulation of Eq[ (4.3) is
identical to a manifestly sound quantum field theory. On tieohand, Eqs[(4.2) anfl (#.3) show
that irrational choices, lik&l; = 1, are simply irrational.

5. Rooting with staggered fermions

We are now ready to discuss rooted staggered fermions, viditie Ansatzthat quarks can
be simulated with Eq[(1.1), using any of several availatgerithms [63,[2D]. An initial set of
arguments in favor are as follows. First, Hg.|1.1) resemBle. [4.p), especially when one looks
at thewstagdefined via Eq.[(3:27); the four-taste determinant has Staé#@-violating parts that are
suppressed superficially by powers of the lattice spaciego&d, perturbative renormalizatidn][26,
B8] and the nonperturbative features discussed at the esettfB support the picture of unrooted
staggered fermions as a QCD-like theory, in which violadioh SU(4) taste symmetry vanish in
the continuum limit. Finally, having thus achieved & 4 block structure, the fourth root is as
straightforward as in sedi. 4.

Implicit in this line of reasoning is the assumption that doatinuum limit and rooting com-
mute. We shall come back to this below. First, however, | wdikle to consider objections that
hold even if these arguments are all correct. In particlilstipulate for now that SU ) flavor-
taste symmetry emerges in the continuum limit, citing thiel@vce presented at the end of sfct. 3.

In the context of rooting most of the SU(d) symmetry is a phantom symmetry. As such one
should ask whether a phantom sector of particles is seemiencal simulation. (They are, in the
scalar propagator, see below.) If so, they violate unjtakitoreover, at non-zero lattice spacing the

5For example, one may use the taBterep for pseudoscalar mesons, the tasterep for vector mesonstc
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symmetry is smaller than SUt4), as exhibited in[(3.29) and (3]30). Consequently, the {umas
are not degenerate, so they will not cancel identically ipsital correlators. Fortunately, sefft. 4
shows in general (if sketchy) terms that the rooted dynamioside a safe house for phantoms,
when (as stipulated above) they become degenerate in thimwam limit. Then the phantom
sector is benign, even if it is not unitary, because the ditioe becomes perfect.

The ramifications of non-degenerate phantoms are still tggome cases perhaps even scary.
A useful and illuminating tool ifPT adapted for the case at hand: rooted, staggered chitat-per
bation theory (R§PT) [64]. This extension of partially quenchg&®T encodes thl, dependence,
so it is sensitive to the dynamics of the sea. As mentioneddh[$, the fit to pseudoscalar meson
masses and decay constants provides clear evidence thdeduaription works. To isolate the sen-
sitivity of the numerical data to the sea quarks, MILC nowdtriits in which the number of replicas
floats. At this conference Bernard reportgd [65] (in his tiota N, = 4n,)

2N, =n, = 0.28(2)(3), (5.1)

in striking agreement with the expectatiofdl Further evidence comes from heavy-light decay
constants. Continuum partially quencheBT blatantly fails to describe the numerical d4tg [66],
while RSYPT yields a statistically sound fif][4]. The topological segiibility is also better-
described with RgPT than with continuunyPT [67].

The pseudoscalar mesons just mentioned are low-lyingsstaié higher mass particles must
be considered too. Correlators, for example those of glisglcantain not only the single hadron of
interest but also two-phantom-particle states. It can lmecbard to determine the single-particle
mass, but these correlators are still interesting, bectheséwo-particle contribution probes the
sea [6B]. Correlators of taste-singlet scalar mesons toman; pairs,§ = PAT,V, and 1
andn;g consist of a valence and a sea quark. These); bubbles can be described wigPT,
analogously to the quenched scalar correldidr [69]. Thelesbweights depend dN,. ForN; < 4
some weights are negative, as one expects when unitaritgleged. Once all thresholds become
degenerate, the bubbles always add up to the correct taialp@risons of numerical data with the
RSxPT formulae confirm this picturg [{0], supporting the cotmess of the rooted sea. A similar
story holds in the case of a mixed action with a rooted sea angparg-Wilson valence quarks;
the numerical data are again well described by mixed-agtien [[71].

In summary, the violations of unitarity are a serious oljgrtand can be a practical obsta-
cle. The numerical data suggest, however, that these gfiactuding their influence on the error
budget, can be managed with RST. Furthermore, the analysis of sd¢t. 4 reveals a safe House
phantoms, not only for pseudoscalar mesons, but also fer btdrons.

A distinct, but related, issue is the locality of rooted gtagd fermions. Critics of the rooting
procedure have long suspected non-local behali¢r [72}obuty knowledge the concern is that a
Lagrangian of the forny(D+ m)l/"'w is non-local [6]L]. Because this line of attack would kill the
manifestly correctGedankeralgorithm, this concern is a red herring. There is, howeargther
kind of non-local behavior. Suppose one writes

dets(Pyag ) = [det Py +m)] T (5.2)

where the first factor on the right-hand side is manifestlf4gdymmetric. The remaining factor
cannot represent a set of local interactions for the gaulie Because the left-hand side generates
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a spectrum with taste splittings, and the SU(4)-symmettemiinant does nof [[73]. It is certainly
accurate to call this a non-locality, but | am not sure hounilinating it is. Before taking the fourth

root, the non-locality is particle-like. After taking theurth root on both sides of Eq[ (b.2), it
strikes me as plausible that the non-localityTdf* does not ruin cluster decomposition, it may
become local in the continuum limik [[74], and it certainlyrist the non-locality of a propagator

(D+m)~1Y/4, Thus, it is not the non-locality that critics seem to havenind.

To be confident that the continuum limit is correct, it woulel Helpful if one could establish
a Symanzik LEZ, not with an Ansatz based on symmetries, but through a dienvérom the
underlying lattice field theory. The Symanzik structure vaent at the tree level, and it seems
to be accepted without controversy at all orders in pertiohaheory. (It is not, however, proven
at the level needed to prove Reisz's theoremp [75]. An inamorfirst step has been to extend the
power-counting theorem to staggered fermidn$ [76].) Inrtaémming paper, Bernard, Golterman,
and Shamir (BGS) show a new way to do so. For a short versidgnmitre details than | can give
here, see Golterman'’s talk at this confererjcé [77].

The new work of BGS is based on Shamir’s block-spin renowatitn group[[78], which was
covered thoroughly in Sharpe’s reviejv[49] last year. Afteslocking steps, Shamir arrives at a
blocked staggered operator

(P+m)n® 14+ aln (5.3)

with a SU(4)-symmetric parffd+ m), ® 14 and a taste-breaking defek. The blocked quantities
live on a lattice with spacing™a, and in the continuum limih — o, a — 0, a. = 2"a fixed.
A power-law divergence in, is expected to baz?, implying that the combinationd,, vanishes
in the continuum limit.

The blocked determinant resembles Hq.](4.9), with soureeogrovidead,, and 2% the
complicated measure for the gauge field in Ref] [78]. BGS ldgvan expansion in the underlying
spacinga with the aid of some bookkeeping devices. The determinagtigralized to be

{dets[(P+m)n® 14+ taldn]}™

dety[(D+ M), @ 14+ aly| ¥ — {det[(D+ m),|}"s , 5.4
whereNs need not equal; = 4n;, andt need not equal 1. Sources for valence fermions are
exp{ 7 [(D+m)n® Lu+vad] "1 }. (5.5)

where, again, for bookkeepingneed not equal 1. Post-analysis, one mayNset N;,t =v= 1.

Expressiong[(5]4) anfl (5.5) can be expandedaimdyv, justified by the small quantitgA,. The
double-expansion can then be reverse-engineered to ey dlde Lee-Sharpe LE for staggered
fermions [41l]. Each bookkeeping parameter brings an adgantPossible nonperturbative non-
polynomial dependence of the L& on Ns is kept, because other factors are expandedaimdv.
The expansion it ensures that, to any order @ the dependence am is polynomial, so analyti-
cal continuation from an integer tg/4 is allowed. The expansion inshows that valence quarks
control the symmetries and the field content of theZFwhich do not depend on,. Pending
confirmation of the assumptions built into the blockipg [#8], these are a strong results.

This analysis underscores the importance of checking noatigrthatA, scales in such a way
as to justify the expansions. There are several pieces déewe to suggest it does. Exhibit A
is all experience with anomalous dimensions in QCD. Extbis all experience with the pseu-
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doscalar spectrum as taste-breaking of valence fermioreslisced [46[ J0]; heuristically this is
like reducingv without reducinga. Lastly, Exhibit C is a pilot investigation a, itself [[79].

A lack of scaling ofaA, would Kill rooted staggered fermions, because then we wbeltbft
with a non-unitary, non-local theory, even in the continuiimit. It is therefore worth stating how
the evidence given above could be misleading. The pilosinyation [79] is not yet definitive. The
pseudoscalar splittings probe only four of the plethoraastdé-exchange effects generatedMyy
Finally, it could be that rooting and the continuum limit daticommute, in a way so profound that
the rooted determinant itself generatgs anomalously large anomalous dimensipr] [49]. Such
“self-inconsistency” is possible, but highly implausible

6. Explicit refutation of Refs. [f3, I3, fl4, [,

With the preceding sections’ outline of rooted staggereatkgias a basis for discussion, | can
now address Mike Creutz’s specific criticisms, which beloersummarized islanted font Many
of my counterarguments are the same as in the original tefotfi{].

6.1 Order of limits

Rooted staggered fermions require a “peculiar” order ofténa — 0 with m fixed, followed by
m— 0 [[2,[I3,[I}]. The required order is especially peculiar wite flavor [IB].

For two or more flavors, this criticism is misguided. Compsiteave a finite memory, so
one takes the continuum limig — 0, at fixed spatial volume, 3. But there is no spontaneous
symmetry breaking in a finite volume. To select a finite-vodumacuum close to the infinite-
volume spontaneously-broken vacuum, explicit symmetgaking is needed. For this general
reason, one should keep=~ 0 while taking the continuum limit, then take— o, and lasim — 0.

Also, the continuum limit must be carefully specified whegreexact symmetries imply pseudo-
Goldstone bosong [B0]. Suppose there are two kinds of feticith masses?a’ = kZ, mia? =
32, and consider an unconventional family of continuum limks= mgal*P, £ = Aal~P. Then
m2 = mg\, m3 = A2a2P, so if p > 0 thenrt's correlation length diverges while’'s does not. This
is a different universality class than the standard @gne,0. Staggered fermions (without rooting)
are subtler still, because the would-frdike particles, except the one with tagte have a mass
mga® = kZ 4 3% mg = mgA +A*a? *P. For p > 1/2, the continuum limit strands these at the
cutoff, reminiscent of the’ regime.

With one flavor there is no spontaneous symmetry breaking-tetvest-lying pseudoscalar
is ann’-like meson. In this case, the above considerations no tomgely. But every numerical
lattice QCD calculation has unphysically large quark masteallow the algorithms to run faster,
so | do not consider the order of limits to be a serious csiticeven with one flavor.

6.2 Mutilated quark-mass dependence

Rooted staggered fermions yield the same system-foras form; therefore, the small-mass
behavior is a function af?, which we know is wrong in specific cas¢s|[[2, [[3, 14].

Odd powers of the quark mass stem from zero modéds @éfs is obvious from Eq.[(4] 1), the
rooting procedure turns into (m*)¥/4 = |m|. This defect of the algorithm has nothing to do with
staggered fermion§ IL7].
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It is instructive to examine how odd powers arise when onenkas-zero modes; ~ A%a, as
with staggered fermions. Two pairs with eigenvatigiA\a, i = 1,2 arise [5H], so
1/4 1/4 N*a?

[dem(mstang m)] O [(cN*a? + P) (BA*a? + ) | M iml |14 1(ct+ cg)w (6.1)
when the limits are taken in the correct order. If one takedithits in the wrong order, then the
determinant is indeed a function of. It is correct to consider this the wrong theory, but it is
incorrect to assert that the numerical work takes the limthie wrong order. The applicability of
Eq. (6.1) has been demonstrated clearly in the SchwingeehiB]. It is also possible to follow
them dependence of observables down umti- A3a? < A%ausing RPT [B3], well beyond the
regime where the approximation in Efj. {6.1) applies.

6.3 Cancdlation of non-unitary contributions

The cancellations among taste multiplets seem contrjvadI3,[1}].

TheGedankeralgorithm of sectf]4 shows that phantoms cancel each ottematically in the
absence of taste-exchange processds [17]. Thus, if theiStiefect scales so that one can treat
it as a perturbation, it is not reasonable to call the caatefi contrived. The scalar propagator
provides a good numerical test, for two reasons. First, thiglis of the non-unitary contributions
depend (inyPT) onN; in an illuminating way, which could be checked numericallighr{(some)
new simulations wittN, = 1,2, 3,4. Second, the cancellation of the phantom modes deperafs on
which is being monitored as part of ongoing simulatigng [70]

6.4 Rank of chiral symmetry

The rank {.e., number of diagonal generators) of the chiral symmetry sngr13[IH].

With four tastes the rank is indeed larger. But tBedankeralgorithm shows that this is not
a feature of staggered fermions per se, but of the rootingeghare itself. It provides a clear ex-
planation of why thephysicalsector is the taste-singlet sector. The other particleplaatoms.
In particular the extra neutral pseudoscalars cancel ethehn out, perfectly in th€&edankeralgo-
rithm and (on the basis of numerical results) to orafewith rooted staggered fermions.

6.5 Anomalies

The conventional axial anomaly cancdld [[L2,[13, 14].

This claim is simply wrong. The tast@-axial current suffers no anomaly, as desired, because
it is off-diagonal in taste. The conventionstggeredanomaly appears in the taste-singlet PCAC
relation, as explained in the discussion of Eis. (3.31) B®Rj. It comes with the right strength,
because rooting multiplies the 4-species anomaly withahtof%,r appropriate for one species.

6.6 Topology

Rooted staggered quarks implement topology incorrecgabise quartets must break up at the
boundary of topological sectors 12 15]. Rooting agesaover positive and negative chirality
modes, so the index theorem cannot be satisffigd [13].

Studies of the eigenvalues reveal a quartet structureidivgy quartets of near-zero modpg [54].
As the gauge field transits from one topological sector tdtaTpthis structure must indeed be dis-

16



Staggered fermions: why not! Andreas S. Kronfeld

rupted. But gauge fields near the boundary of topologicabseshould have a large gluon action
and are, hence, suppressed. If not, it is a drawback of tlenglation and has nothing to do with
staggered fermions. It would be interesting to monitor thih smooth gauge fields. It would
bode well for rooting if the quartets rearrange themselegsdiy, similarly to the way a lattice
approximant taQ does.

The assertion about positive and negative chirality isefalRef. [5F] shows that near-zero
modes appear in quartets of the same tastgletchirality, Eq. [3.3R). The confusion may stem,
as in secf 65, from contemplating tateurrents and densities. But tafeshirality vanishes for
all modes, including near-zero modes; fiT(x)s(x) fi(x) = 0, because ifi(x) is an eigenvector of
eigenvalugA; +m, thene(x) fi(x) is the eigenvector of-iA; +m, and they are orthogonal. Hence,
many statements about chirality in Refs][[3, [I3,[I#[Ip até]simply ill-conceived.

6.7 't Hooft vertices

't Hooft vertices generate contributions to correlationdtions that diverge in the chiral limit as a
power ofm~1 I3, [Z6].

Only a full analysis of 't Hooft vertices can refute this as®®, because no explicit equations
are given in Refs[[14, 16]. Here | shall examine tfidike meson with one quark flavor, which
should [15[16] expose the problem. The taste-singlet atoa consists of two terms

C(X7y) = tr[G(Xay)U5G(y7 X)U5]7 (62)
D(va) = tr[G(va)US] tr[G(yay)US]v (63)

where the trace is over color, aklf abbreviates the sign factors, link matrices, and tramsiati
indicated in Eq.[(3.32). The quark propaga®iix,y) = (X (X)X (Y))x.x- The right way to combine
C(x,y) andD(x,y) is

(n')n"(y)) = (~2C(x%,Y) + 15D ¥)) (6.4)
where the sign arises from Fermi statistics. The weighasid - are crucial and follow immedi-
ately from Egs. [(4]2) and (4.3).

't Hooft vertices arise from (near) zero modes. At first glayguch gauge fields are suppressed
by small eigenvalues from the determinant. For rooted steghfermions the determinant factor is
that given in Eq.[(6]1). In a correlation function, howetbese factors can be cancelled by small
eigenvalues in the denominator, coming from fermion prapars.

Let us consider th€ = 1 sector for simplicity. Numerical simulatioh [54] tells trere are four
near-zero modes, which we shall lal€l, 2. Inserting an eigenvector-eigenvalue representation
of the fermion propagators, the disconnected contribution

1 1 4\?
D(X,y) = — = £ (x)Us fi(x : f1(y)Us f; +...~<—> , 6.5
(xy) izgﬂv\wm ' ()Us fi( )j:j;ﬂv\wm j YUsfi(y) - (6.5)
isolating the most singular parts ms— 0 (with A < m). Similarly, the connected correlator is
_ 1 1 . 1 .
CY) =3 i am i Vs i = T Vs i(y): (6.6)

5]

Within a quartet, it is plausible to assurmié(x)usfj(x) ~ O(a), i # ], because each eigenvector
should have a different taste. Then,
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Cxy) = < ! >2fT(x)u fi(x) £.1 (y)Us fi (y) + i (6.7)
’y_':giz A +m i 5T i WUsTily)+... 2 .

When combining the two pieces according to £q.|(6.4), nowdargoehavior appears as— 0 (af-
tera— 0). Thus, modulo one easy-to-check assumption, Creu®slabout the 't Hooft vertex
do not hold up in this, the simplest, example. Similarly, thdooft vertex of thephysicaleight-
fermion operator discussed in Ref.][16] is not singular, vRermi statistics and orthogonality in
taste is taken into accourjt [83].

6.8 Summary

The criticisms of Refs[[12, 18, 1}#,]15] 16] are based on tsoeeces of confusion. Difficulties
with mass dependence, the rank of the flavor-taste symneaeidythe way that phantoms cancel
are explained by th&edankeralgorithm of sect[]4. This approach also illuminates thentbar
of confusing the exact taste-nonsinglet chirality with doaventional taste-singlet chirality, which
connects correctly to topology and 't Hooft vertices. Hinat is easy to draw incorrect conclusions
by choosing the incorrect order of limits (obdurately fogim — O beforea — 0). The correct
order is not “absurd”[[]d, 14], but necessary whether or tagjgered fermions are employed.

7. New developments

There are two noteworthy methodological developments ipraved actions for staggered
fermions. One is a new discretization reducing taste-exghanteractions, while maintaining
O(a?) improvement. The other is the completion of the fulbGd?) corrections to the gluon action.
Either or both could be incorporated into future simulasiof sea quarks.

7.1 Highly improved staggered quarks

Although the Asqgtad action has much smaller taste-charefiiegts than the original staggered
action, it would be better to reduce them further. The Asgtetibn is obtained from the standard
staggered action, Ed. (B.8), in two steps, as follows. Birstared links are constructed,

o sym a2
p#U

where/\,, is a covariant nearest-neighbor second derivative, angriyauct is symmetrized over
all possible orderings of the directions orthogonalitdt yields bent staples of length 3, 5, and 7;
substitutingV for U in Eq. (3.8) yields the FAT7 action. The smearing is desigfedand is
successful at, reducing the size of taste-exchange itiemac It does not achieve Symanzik im-
provement, however. This is achieved by adding two impramnterms to the FAT7 action, the
Naik [B4] term and the Lepage terrf] [9], to obtain thequared (Asq) action and, with tadpole-
improved couplings, the Asqtad action.

A new action [8p] extends the philosophy behind the FAT7 asdtAd actions, introducing
W, = Fy% #,U,, where the operato?/ brings the smeareW-links back into U(3), thereby
reducing ultraviolet fluctuations, including taste-chiagginteractions[[§6]. UsindV in Eq. (3-8)
and generalizing the Naik and Lepage terms yields the highproved staggered quark (HISQ)
action [8F]. A numerical implementatiof [[87] is only aroutweb times slower than Asqtad.
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The first results from the HISQ action shed light on the issofesect.[b. Referencé [85]
calculates in perturbation theory the size of the four-Ruateractions in the Symanzik L# for
both Asgtad and HISQ, finding the latter's to be an order of mitage smaller. Referencg [85]
also computes theZAE splittings of Eq. [3.33), finding them to be half as large WittSQ. In the
language of[(5]4) and ($.5), the HISQ action reduces theofittes (valence) Shamir defestad,,
by methodological means, and yields a valence spectrurerdoghat of the continuum limit.

7.2 ns dependence of the gauge action

The MILC ensembles[]0] use the ord#r-improved gauge actior] [B8]. The pure-gauge
one-loop matching of this action has been available for g kime [89]. Using these improved
couplings, as MILC does, removes errors formally of omlgh.a? but notasnsa?. Earlier this year,
Hao et al. completed the fermion loop calculation with Asqtad fernsid@0]. They find that the
fermion loop has the opposite sign from the gluon+ghostdoéorns = 3 they change the sign of
the radiative correction to the coupling of the rectanglé sduce greatly the radiative correction
to the twisted parallelogram. They recommend putting thiesalts into future simulations and
note that the size of the effects is what is needed to explagemed scaling violation$ [91]. The
MILC Collaboration plans to use this result in future sintidas [92].

8. Conclusions

Staggered fermions are fast, but not easy. After triviatizthe spinor index of the naive
fermion field, the projection to one component entangleoflaymmetries with spacetime sym-
metries, and the remaining species doubling is reflected neva flavor-like quantum number,
taste. The exact flavor and taste symmetries are expectethrge to (softly broken) SiJ(4n¢) x
SUa (4n¢), a mechanism that has been established by numerical siomgdat

When the fourth root is taken, staggered fermions have lbatlittle symmetry (discretization
effects break SY(4n;) x SUa(4n;)) and too much (the target symmetry isgds) x SUa(N¢)).
Confusion stemming from too much symmetry can be avoidedheaedankeralgorithm dis-
cussed in secf] 4. It explains why rooted theories have &&yarticles, in particular pseudo-
Goldstone bosons, and why the extra symmetry protects galysingle-taste) correlators. Most
of the criticisms of Refs[[17, 13, [1,]16] 16] can be refuteith whis framework [Ij7[ §3].

Valid criticisms of rooted staggered fermions should foonshe difference between staggered
fermions and the continuum, namely on the interactionshitesk the full SWY (4n¢) x SUa(4n¢)
taste-flavor symmetry. The most glaring issue is the viohatf unitarity. With the full symmetry
such violations cancel identically (for physical correla). Without the full symmetry they do not
cancel, but rooted staggered chiral perturbation theo8x @RI offers a way to describe them. Fits
to pseudoscalar masses and decay constants (light andligdetyyand studies of the two-particle
contribution to the scalar propagator, give evidence tl&¢MRT works. It not only guides the chiral
extrapolation but also provides a framework for estimathgyassociated uncertainty.

Refutation of specific criticisms, here and in Refs] [L7,, &Rles not prove that rooted, stag-
gered fermions are valid. It is remarkable, however, thanaoy numerical tests have shored up
the theoretical framework, when any one of them could have garong. Of special interest here
is the interplay of chirality and topology. The analysis bfrality in Refs. [12,[13[ 14] 14, 16] is
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wrong, because it discusses a taste-nonsinglet chiral gyrprinat has nothing to do with topol-
ogy. The conventional staggered taste-singlet chiralitg@s with the index theorem, in the same
way any two lattice definitions of topological charge do.

More tests can and should be carried out. A comprehensidy sfithe scaling of the Shamir
defect, al,, should help decide whether all taste breaking interastiamish in the continuum
limit. For self-consistency, this study should be done vathooted staggered sea. Tests of the
sea, such as the scaling of the two-particle contributiortagte-singlet correlators, would bolster
confidence in RBPT. Most of Creutz’s discussion of 't Hooft vertices can biaited with the setup
in sect.[#, but it does bring out the need to check numericaligther the members of near-zero
mode quartets are all of different taste.

Much of our structural, and not to mention practical, unterding of rooted, staggered
fermions depends on R®T. It is based on plausible argumerits] [64], with one resierva An
original justification foryPT is that it gives the most general description of partinteractions,
consistent with unitarity[J93]. What happens when uniyaidt lost? Can a non-unitaryPT de-
scribe a non-unitary gauge theory? Is, for example, clidg#geomposition enougl [94]? This is a
basic concern wherever partially quenchdell is used. With other formulations of lattice fermions
one could, if necessary, avoid it. With staggered fermibssems essential.

A friend of mine, who expects that Ed. ({L.1) is not valid, sty the burden of proof is on
the staggered community. He is correct, of course, but oalfydorrect. A “proof” is unlikely to
be mathematically rigorous. Instead, as in all of latticaggatheory, methods will be validated, or
not, with a combination of theoretical framework and numersimulation. It does not make much
sense for proponents to prove to themselves that their meth@ acceptable. Skeptics need to be
engaged, examine the theoretical and numerical evidenfaan of rooted staggered fermions,
think about the issues clearly, and state where the shoimgsntie. In other words, their job now
is to be like Mike. Think it through and write it up!
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