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1. Why this paper?

Lately lattice QCD has enjoyed considerable success. In 2003 the HPQCD, MILC, and Fermi-
lab Lattice Collaborations found that calculations based on Monte Carlo simulations agreed with
experiment at the 1–3% level for a wide variety of physical quantities [1]. During the next two years
the same techniques were used to predict the shape of theD → Klν semileptonic form factor [2],
the mass of theBc meson [3], and the decay constants of theD andDs mesons [4]. Each of these
results was subsequently confirmed by experimental measurements [5]. Lattice QCD was also used
to determine the strong couplingαs [6]. These results have made a strong impression in the fields
of particle physics and nuclear physics, and a long-standing claim of lattice gauge theorists is now
generally accepted: the combination of numerical simulation [7] and chiral perturbation theory [8]
is a sound way to solve gauge theories, such as QCD.

The key to this development was the incorporation of 2+1 flavors of sea quarks with thefastest
technique, “improved staggered fermions with the Asqtad action” [9]. Unsurprisingly for compu-
tational science, the fastest technique has some unresolved theoretical questions hanging over it.
This state of affairs presents a great opportunity. It is simple common sense to reproduce the results
of Refs. [1, 2, 3, 4, 6] with theoretically cleaner treatments of sea quarks. Such methods require
more computation, so one can argue (persuasively) to devotemore computer resources to lattice
QCD than in the past. At the same time, there is a strong motivation (and obligation) to understand
theoretically how, where, and why staggered fermions work so well.

The crux of the unresolved issues is the fermion doubling problem. Staggered fermions cope
with the problem partially, reducing the number of species from sixteen (in four space-time dimen-
sions) to four. The empirically successful results cited above all use ensembles generated and made
publicly available by the MILC Collaboration [10]. To reduce the number of fermion species (per
flavor) from four to one, gauge fields in these ensembles have the partition function [11]

Z =
∫

DU ∏
q

[

det4
(

D/stag+mq

)]1/4
e−Sgauge, (1.1)

whereSgaugeis the action for the gluons,D/stagis the (improved) staggered discretization of the Dirac
operator, and the subscript 4 on the determinant emphasizesthe underlying number of species. The
question, then, is whether[det4(D/stag+mq)]

1/4 is legitimate.
This so-called “rooting procedure” is controversial. Critics seem to accept that Eq. (1.1) is

valid in perturbation theory, where internal fermion loopsare simply multiplied by1
4. Several

interested and disinterested parties are investigating non-perturbative aspects, sometimes finding
undesirable features though not, to my knowledge, fatal flaws. An apparent exception is the work
of Michael Creutz [12, 13, 14, 15], including these Proceedings [16], which does claim that rooting
fails. Although these papers have already been refuted [17], the organizers of Lattice 2007 invited
me to respond to Creutz’s claims “on behalf of the staggered community.” My charge is to “increase
the confidence of thewider lattice community in the rooting procedure” (italics added).

The organizers also asked me to comment on the relevance of lattice gauge theory to CERN’s
Large Hadron Collider (LHC). This request and the need to anticipate new critiques have shaped
the organization of this talk. Section 2 is an essay presenting the view that the LHC era will require
fast lattice calculations and, thus, a broader understanding of validity of the rooting procedure.
Sections 3 and 4 disentangle the main issues. Even without rooting, staggered fermions bring
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in complications, which are reviewed in sect. 3, focusing ona new quantum number “taste” that
characterizes the remaining species doubling. Furthermore, even with full SU(4nf ) taste symmetry,
rooting has its peculiarities, which may be unfamiliar but should not be controversial; they are
explained in sect. 4. These two strands are then brought together in sect. 5 to discuss rooted
staggered fermions. It is then possible to refute Refs. [12,13, 14, 15, 16] relatively tersely, in
sect. 6. Section 7 covers some new developments, and sect. 8 offers a summary and perspective.

2. The lattice community in the LHC era

To represent the “staggered community” before the “wider lattice community” it helps to think
about who belongs to each of them. The wider lattice community simply consists of those who
attend conferences on lattice field theory and submit e-prints to the hep-lat section of the arXiv. The
staggered community includes not only those who generate large ensembles of SU(3) gauge fields
with rooted, staggered sea quarks, but also those (like me) who use them. The staggered community
also reaches beyond hep-lat. Many physicists without much expertise in lattice gauge theory have a
stake in the validity of the rooting procedure. For example,the Heavy Flavor Averaging Group [18]
and similar enterprises use lattice QCD results to help themunderstand whether non-Standard
phenomena contribute toB-meson decays. It is therefore useful to take the staggered community
to be everyone who thinks the validity of staggered fermionsis worthy of study.

The organizers’ charge implies that there may be some in the wider lattice community who
do not see themselves as part of the staggered community, even as defined here. That would be
unfortunate. Despite the “controversial” nature of Eq. (1.1), the arguments against it are difficult to
pin down, because they are not documented in the scientific literature. Mike Creutz is to be com-
mended for writing up his critique, making it possible to decide whether his qualms are correct. On
the other hand, some members of the lattice community seem toprefer sniping from the sidelines.
They may hope that increases in computer resources will makethe controversy moot, by allowing
other methods for sea quarks to catch up. The status of other methods is surveyed in Refs. [19], and
one may judge for oneself. My reading is that other methods have not caught up, partly because
algorithms for the staggered sea are not standing still [20].

Future calculations are more salient than past efforts, so it is worth looking ahead to the LHC
era. The focus of the LHC’s physics program will be on the terascale,1 where we expect to find the
agents of electroweak symmetry breaking. They may be strongly coupled and, if so, the need for
numerical lattice gauge theory will skyrocket. A lot will beat stake, and the fastest way to elucidate
the physics will prevail. Even if physics at the terascale isweakly-coupled or, worse, boring, a need
will remain for precision and accuracy infK , fB

√
BB, etc. In addition, searches for non-Standard

particles will profit from good calculations of moments of parton densities, especially the gluon
density, so that signal and background cross sections can becalculated.

In summary, whether for QCD or for other gauge theories, the fastest correct technique for
simulating the fermion sea will remain a key tool during the LHC era. New researchers, young
and old, may turn to lattice gauge theory, and they will expect that we established experts have
understood whether rooted staggered fermions are valid, ornot. For this reason I think the whole

1Using the term “terascale” for the teraelectronvolt energyscales was inspired by terascale (i.e., teraflop/s and
terabyte) computing (J.D. Lykken, private communication).
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lattice community should engage in an open-minded scientific debate, and skeptics should submit
their criticisms of rooted staggered fermions to the hep-lat arXiv.

3. Staggered fermions without rooting

Most of the complexity of rooted staggered quarks has nothing to do with the rooting proce-
dure. Instead, it stems from the way spacetime and flavor-like symmetries of four (or 4nf ) Dirac
fermions emerge in the continuum limit. The aim of this section, therefore, is to give a brief review
of the definitions and symmetries of staggered fermions and their connection with the continuum
limit. Most of this is not rigorouslyproven, but it is fair to say that it isestablished, principally
because numerical simulations shore up the theoretical picture.

The simplest discretization of fermions replaces Dirac’s covariant derivative with a nearest-
neighbor interaction. The resulting “naïve” action is

Snaïve= 1
2a3∑

x,µ
ϒ̄(x)γµ

[

Uµ(x)ϒ(x+ µ̂a)−U†
µ(x− µ̂a)ϒ(x− µ̂a)

]

+m0a
4∑

x
ϒ̄(x)ϒ(x), (3.1)

where each sitex possesses Grassmann variablesϒi
α and ϒ̄i

α , with i andα the color and spinor
indices. This action is invariant under color SU(Nc), lattice translations, and hypercubic rotations.
With nf flavors there is a UV(nf )×UA(nf ) chiral flavor symmetry, softly broken by the masses.

The naïve action also possesses a remarkable SU(4) “doubling symmetry” [21], with fifteen
x-dependent (anti-Hermitian) generatorsBA(x):

Bµ(x) = γµγ5(−1)nµ , B5(x) = iγ5ε(x), Bµ(x)B5(x), Bµ(x)Bν(x) (µ < ν), (3.2)

wheren = x/a, andε(x) = (−1)n1+n2+n3+n4. The naïve fermion field transforms as

ϒ(x) 7→ eωABA(x)ϒ(x), ϒ̄(x) 7→ ϒ̄(x)e−ωABA(x). (3.3)

The physical interpretation becomes clear in momentum space. Consider, for example, a doubling
transformation generated byBµ : ϒ(p) 7→ cosω ϒ(p) + sinω γµγ5ϒ(p+ µ̂π/a). In general, the
doubling symmetries relate all 16 cornersπA/a of the Brillouin zone, up to a shuffling of the Dirac
index. (See Eqs. (3.16)–(3.20), below, for a complete list of the 4-vectorsπA.)

The physical consequence of the doubling symmetry (in four dimensions) is that a single naïve
fermion fieldϒ corresponds to 16 species of fermion. The extra species are evident in vacuum
polarization, leading toβ0 = 11

3 Nc− 2
316nf in the running of the gauge coupling [21]. The axial

anomaly receives contributions from all 16 species, in the pattern [21]

∑
A

A(πA) =

[

(0,0,0,0)

1 −
(π,0,0,0)

4 +
(π,π,0,0)

6 −
(π,π,π,0)

4 +
(π,π,π,π)

1

]

A = 0, (3.4)

where a typicalπA hovers over the integer multiplicity of the species from that kind of corner. The
total anomaly vanishes because with the naïve action the flavor-singlet axial symmetry UA(1) is
exact. Because the anomaly is wrong, naïve fermions do not seem to be what one wants for QCD.

The doubling symmetries can be renderedx-independent via a change of variables [22]:

ϒ(x) = Ω(x)X(x), ϒ̄(x) = X̄(x)Ω−1(x), Ω(x) = γn1
1 γn2

2 γn3
3 γn4

4 . (3.5)
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Rewriting the naïve action in the new fermion fieldsXi
α , X̄i

α , one finds

Snaïve= 1
2a3∑

x,µ
X̄(x)ηµ (x)

[

Uµ(x)X(x+ µ̂a)−U†
µ(x− µ̂a)X(x− µ̂a)

]

+m0a
4∑

x
X̄(x)X(x), (3.6)

where the signsηµ(x) have replaced the Dirac matrices via

Ω−1(x)γµ Ω(x± µ̂a) = (−1)∑ρ<µ nρ =: ηµ(x). (3.7)

Equation (3.6) can also be obtained by diagonalizing a maximal commuting subgroup of the dou-
bling symmetry [23].

In Eq. (3.6) the transformed spinor index is sterile, so the number of degrees of freedom can
be reduced four-fold, yielding

Sstag= 1
2a3∑

x,µ
χ̄(x)ηµ(x)

[

Uµ(x)χ(x+ µ̂a)−U†
µ(x− µ̂a)χ(x− µ̂a)

]

+m0a
4∑

x
χ̄(x)χ(x), (3.8)

whereχ i is a fermion fieldwithouta spinor index. A Hamiltonian formalism with one-component
fermions and sign factors instead of Dirac spinors and matrices was introduced by Susskind [24],
extending work in 1+1 dimensions by Banks, Kogut, and Susskind [25]. Because of the ubiquitous
factors(−1)nµ the Euclidean formulation withSstagandχ i is called “staggered fermions.”

The projection from the bigXi
α to the little χ i removes the SU(4) doubling symmetry, al-

beit in a not-so-straightforward way. All other symmetries—except color and the vector flavor
symmetries—becomex-dependent [24, 26]. For example, consider translations

tµ :

{

ϒ(x) 7→ ϒ(x+ µ̂a) ⇒ X(x) 7→ ζµ(x)γµ X(x+ µ̂a)

ϒ̄(x) 7→ ϒ̄(x+ µ̂a) ⇒ X̄(x) 7→ ζµ(x)X̄(x+ µ̂a)γµ
, (3.9)

where
ζµ(x) = Ω−1(x)Ω(x± µ̂a)γµ = (−1)∑σ>µ nσ . (3.10)

Because of the Dirac matrix in (3.9), we see that the projection from Xi
α to χ i does not commute

with lattice translational symmetry. On the other hand, a certain combination of translations and
B transformations calledshiftsdoes survive the projection:

Sµ :











ϒ(x) 7→ −iBµB5ϒ(x+ µ̂a) ⇒ χ(x) 7→ ζµ(x)χ(x+ µ̂a)

ϒ̄(x) 7→ −iϒ̄(x+ µ̂a)BµB5 ⇒ χ̄(x) 7→ ζµ(x)χ̄(x+ µ̂a)

Uν(x) 7→Uν(x+ µ̂a), ∀ν
, (3.11)

andXα transforms just likeχ . Similarly, rotations, spatial inversion, and charge conjugation be-
come entangled with this residue of the doubling symmetries[26, 27, 28, 29, 30, 31].

Here we shall focus on issues related to the species content of staggered fermions. Acting on
the fermion fields, the shifts anti-commute,SµSν = −SνSµ (ν 6= µ), from which it follows that
the residue of the doubling symmetry is a discrete Clifford group Γ4. Because shifts translate the
gauge field, a singleΓ4 symmetry arises for anynf . Shift symmetry has two kinds of irreducible
representations (irreps)—fermionicandbosonic—with representation matrices, respectively,

D
(−)(Sµ ) = ξµeipµ a, (3.12)

D
(+)(Sµ ) = sA

µeipµ a, (3.13)
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where the physical momentum ranges overpµ ∈ (−π/2a,π/2a]. The fermionic representation is
4-dimensional, labeled by an indext = 1,2,3,4, and theξµ are 4×4 matrices obeying the Clifford
algebra,{ξµ ,ξν} = 2δµν . The sixteen 1-dimensional bosonic irreps are labeled by the cornersA
of the Brillouin zone and the pre-factors are signs,sA

µ = eiπA
µ . The indext and the labelA denote a

quantum number that, nowadays, is calledtaste.
A colored particle’s taste, just like its momentum, is made complicated by SU(Nc) color gauge

symmetry. It is enough, however, to consider color singlets, such as the mixed-action bilinear,
which arises, for example, in heavy-light physics [32]. Let

H(Γ)
t (x) = Ψ̄α(x)Γαβ Ωβ t(x)χ(x), (3.14)

where the matrixΩ reappears, now with the first index interpreted as a Dirac index, but the second
index interpreted as taste index [33, 34]. Here the fieldΨ̄ represents a Wilson or Ginsparg-Wilson
anti-fermion, so its spinor index has the conventional meaning. Under shift symmetry (as one can
easily verify), the meson fieldH(Γ)

t transforms as

Sµ : H(Γ)
t (x) 7→ [ξµ ]tt ′H

(Γ)
t ′ (x+ µ̂a), ξµ = γT

µ , (3.15)

so Eq. (3.15) gives an explicit realization of Eq. (3.12). Under rotations and spatial inversionH(Γ)
t

transforms as a scalar, vector, or tensor,etc., dictated byΓ, up to a change of taste. Baryons with
three staggered quarks also have fermionic taste [27, 35].

Staggered-staggered mesons have bosonic tasteA. Rotations imply degeneracies in an almost
obvious way,2 leading to multiplets

I : πA ∈ {(0,0,0,0)}, (3.16)

V : πA ∈ {(π,0,0,0),(0,π,0,0),(0,0,π,0); (0,0,0,π)}, (3.17)

T : πA ∈ {(π,π,0,0),(π,0,π,0),(0,π,π ,0);(π,0,0,π),(0,π,0,π),(0,0,π,π)}, (3.18)

A : πA ∈ {(0,π,π,π),(π,0,π,π),(π,π,0,π);(π,π ,π,0)}, (3.19)

P : πA ∈ {(π,π,π,π)}. (3.20)

These multiplets are called the taste-singletI , the vector tasteV, the tensor tasteT, the axial vector
tasteA, and the pseudoscalar tasteP. Another hadron with bosonic taste is a heavy-light baryon
consisting of two staggered light quarks and a Fermilab or NRQCD heavy quark [36].

The staggered action, Eq. (3.8), inherits softly broken butotherwise exact chiral symmetries,

χ(x) 7→ eθ aTaε(x)χ(x), χ̄(x) 7→ χ̄(x)eθ aTaε(x), (3.21)

whereTa† = −Ta. With nf flavors, this is simply the UA(nf ) symmetry manifest in Eq. (3.1),
madex-dependent via Eqs. (3.5). Thus, one has axial currents and pseudoscalar densities

Aνa
P (x) = 1

2ην(x)ε(x)
[

χ̄(x+ ν̂a)U†
ν (x)Taχ(x)− χ̄(x)Uν(x)Taχ(x+ ν̂a)

]

, (3.22)

Pa
P(x) = ε(x)χ̄(x)Taχ(x), (3.23)

2Strictly speaking, the degeneracies are among irreps of thesymmetry group of the transfer matrix, which entails cu-
bic rotations, not hypercubic rotations [29, 30]. Thus, states withπA

4 = 0,π need not be degenerate; hence the semicolons
in Eqs. (3.17)–(3.19). In practice they turn out to be nearlydegenerate [10].
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satisfying PCAC relations [37] (for equal renormalized massesm)3

a−1∑
ν

[Aνa
P (x)−Aνa

P (x− ν̂a)] = 2mPa
P(x)+2a−4ε(x) trTa. (3.24)

It is tempting to say that the axial anomaly does not appear inEq. (3.24) owing to Eq. (3.4), with
each contribution at quarter strength. It is better, however, to note that it is not expected, because
the symmetry (3.21) is exact. The axial anomaly is also undesired. Under shiftsAνa

P and Pa
P

transform as

Sµ :

{

Aνa
P (x) 7→ (−1)nµ Aνa

P (x+ µ̂a)

Pa
P(x) 7→ (−1)nµ Pa

P(x+ µ̂a)
, ∀µ ,ν , (3.25)

so one sees that these bilinears arenot taste singlets, rather they transform under the (non-singlet)
P irrep. This non-singlet character ofAνa

P andPP provides a clue that the new quantum number
taste plays a key role in the physics that emerges in the continuum limit.

The change of variables (3.5) followed by the projection from Xi
α to χ i reduces the number of

species from 16 to 4. The action can be rewritten using physically suggestive fields

ψαt(y) = 1
8 ∑

r
Ωαt(r)U(y,y+ r)χ(y+ r), ψ̄αt(y) = 1

8 ∑
r

χ̄(y+ r)Ω†
tα(r)U(y+ r,y), (3.26)

wherey labels hypercubes of size 24 or, equivalently, sites on a coarser lattice of spacingb = 2a,
r runs over the hypercube, andU(y,y+ r) is parallel transport along some chosen path fromy to
y+ r. As in Eq. (3.14), the indicesα andt are interpreted as Dirac and taste indices. Suppressing
the gauge field, the action is then rewritten [33, 34]

Sstag = 1
2b3∑

y,µ

4

∑
t=1

ψ̄t(y)γµ [ψt(y+ µ̂b)−ψt(y− µ̂b)]+m0b4∑
y

4

∑
t=1

ψ̄t(y)ψt(y)

− 1
2b3∑

y,µ

4

∑
t,t ′=1

ψ̄t(y)γ5[ξ5ξµ ]tt ′ [ψt ′(y+ µ̂b)+ ψt ′(y− µ̂b)−2ψt ′(y)] , (3.27)

which looks like a lattice field theory of four Dirac fermions, with a Wilson-like term to alleviate
doublers. For perturbative gauge fields this appearance continues to hold. For example, the beta-
function starts withβ0 = 11

3 Nc− 2
34nf [23], and the exactΓ4 part of the shift symmetry ensures that

mass renormalization is taste-independent [26, 38].
The central conjecture of (unrooted) staggered fermions isthat the picture of four (or 4nf )

Dirac fermions holds non-perturbatively. I say “conjecture” to mathematicians because it is not
proven rigorously (and I could say the same about all formulations of lattice fermions), and to
physicists because the coupling to gauge fields is based on the one-component action, Eq. (3.8).
Consequently the spacetime and flavor-like symmetries are entangled, so it is not especially trans-
parent how SO(4) rotational symmetry and SUV(4nf )×SUA(4nf )×UV(1) flavor-taste chiral sym-
metry emerge in the continuum limit.

To get an idea of the complications (see,e.g., Refs. [26, 30] for details), let us consider some
important cases. The hypercubic rotations (denoted SW4) are embedded

SW4 ⊂ [SO(4)×SO(4)]diag⊂ SO(4)×SUV(4) ⊂ SO(4)×SUV(4nf ) (3.28)

3In the flavor singlet trTa 6= 0, but the last term vanishes in a average over a hypercube, soit is unimportant.
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into the diagonal subgroup of the Euclidean group and a flavor-singlet subgroup of the SUV(4nf )

group. The Clifford group abstracted from the shifts and thevector flavor symmetries are embedded

Γ4×SUV(nf ) ⊂ SUV(4nf ) (3.29)

in the vector flavor-taste symmetries. The axial flavor symmetries are embedded

UA(nf ) ⊂ SUA(4nf ) (3.30)

in the flavor-taste non-singlet axial symmetries. For sect.6, the embedding (3.30) along with
Eqs. (3.22)–(3.25) are key. The exact chiral symmetries arenot taste singlets. Therefore, they
cannot have anything to do with anomalies, gauge-field topology, zero modes of the Dirac operator,
or their consequences, such as ’t Hooft vertices.

If the emerging picture is correct, staggered fermions mustpossess a bilinear corresponding in
the continuum limit to the flavor- and taste-singlet axial current. Analogously to the case of Wilson
fermions, this is not a Noether current, but the explicit breaking is superficially of ordera. The
anomalous current extends over a whole hypercube [23, 37]:

Aµ
I (x) =

i
32 ∑

b+c=d

η µ(x+c)η1(x+b)η2(x+b)η3(x+b)η4(x+b)
[

χ̄(x+c+ µ̂a)U†
µ(x+c)Ū(x+c,x+b)χ(x+b)

− χ̄(x+b)Ū(x+b,x+c)Uµ(x+c)χ(x+c+ µ̂a)
]

, (3.31)

whered = (1̂+ 2̂+ 3̂+ 4̂)a, Ū(x+ b,x+ c) is the average of parallel transport over paths from
x+ b to x+ c, and the sum is over all 4-dimensional diagonals of the hypercube atx. Under shift
symmetryAµ

I is a taste singlet, as is the corresponding pseudoscalar density

PI(x) =
i

16 ∑
b+c=d

η1(x+b)η2(x+b)η3(x+b)η4(x+b)χ̄(x+b)Ū(x+b,x+c)χ(x+c). (3.32)

Aµ
I andPI satisfy a PCAC relation [37] with the anomaly of four Dirac fermions [23]. Compared

to Eq. (3.24) a complication is the need for renormalization[37], but this is analogous to the renor-
malization of Ward-Takahashi identities of Wilson fermions.

If staggered fermions do indeed provide a (4nf )-species version of QCD, then general features
of the hadron spectrum should provide clear numerical evidence. The chiral symmetries, and the
standard line of reasoning for spontaneously broken symmetry, imply that the pseudoscalar meson
masses should behave (with degenerate quark massesmq) as

m2
aξ = 2mqB+a2∆ξ + µ2δa0δξ I , (3.33)

wherea= 0, . . . ,n2
f −1 labels flavor andξ ∈ {P,A,T,V, I} labels taste. The dynamical quantitiesB,

∆1/4
ξ , andµ are of orderΛ, the characteristic dynamical scale of the gauge fields. Theexact (taste-

nonsinglet) chiral symmetries of Eq. (3.21) imply∆P = 0. The “η ′-π0 splitting” parameterµ2 can
be generated only for the flavor-and taste-singlet meson. This pattern is shown (fornf = 2) in
Fig. 1. It is consistent with extensive numerical simulations in the quenched approximation, as
well as with 2 and 2+1 flavors of (rooted, staggered) sea quarks [10, 39], including the scaling of
the pseudoscalar splittingsa2∆ξ [40].
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The approach to the continuum limit can be clarified with two theoretical tools, the Symanzik
effective field theory [9, 41] and chiral perturbation theory (χPT) [41, 42, 43, 44]. In the Symanzik
local effective Lagrangian (LEL ), dimension-four interactions have SO(4) rotational symmetry
and, by design, SUV(4nf )×SUA(4nf ) flavor-taste chiral symmetry, softly broken by mass terms.
Dimension-six four-quark operators break these down to SW4 and Γ4 ×SUV(nf )×UA(nf ), as
indicated by the embeddings (3.28)–(3.30) [41, 42, 43]. In particular, some of these operators
are invariant only under theΓ4 taste symmetry, not a full SU(4). They are variously called taste-
breaking or taste-exchange interactions. The LEL analysis clarifies why smearing strategies re-
duce the strength of taste-symmetry breaking [45]. If successful, smeared actions should yield
smaller splittings∆ξ . They do [46]. They also improve the scaling of theρ-meson mass and the
static potential [47].

The splittings and other effects of broken taste symmetry are, of course, a complication. They
lead to multi-parameter fitting procedures, for example of the pseudoscalar decay constants [48].
Another example is theπ-π threshold, which splits into fiveπξ -πξ thresholds,ξ ∈ {P,A,T,V, I}.
In last year’s plenary talk on this subject [49], the need forcomplicating fitting was one reason to
deem lattice QCD with rooted staggered quarks “ugly.” Many of the complications come not from
rooting but from the intricate symmetry structure and the desire for statistically sound fits. Fitting is
nicely illustrated byfπ and fK . The staggered data start so close to the experimental result that just
about any chiral extrapolation would agree with experiment, but statistically good fits are obtained
only when staggeredχPT is used [50]. Thus, these fits provide further evidence that staggered
(valence) fermions do indeed simulate 4nf flavors of quark.

To study how these properties of staggered fermions relate to gauge-field topology, one must
consider the eigenvalues of the staggered Dirac operator. The exact (non-singlet) chiral symmetries
imply that eigenvalues come in complex conjugate pairs,±iλi +m0, with orthonormal eigenvectors
fi(x) andε(x) fi(x). In a gauge field with a non-zero topological chargeQ, the continuum Dirac

I = 1 I = 0

P
A
T
V
I

m2
aξ

Λ4a2

Λ2

needs confirmation ➚

Figure 1: Pseudoscalar spectrum for 2 flavors of staggered fermion, so8 species in all. The isovector
multiplets (with I3 = +1, 0,−1) each consist of sixteen states, split by lattice artifacts of orderΛ4a2 into
submultiplets with 1, 4, 6, 4, and 1 states (for, respectively, irreps of tasteI , V, T, A, andP). The isosinglet
multiplet is similar, except that the taste-singletI splits from the others by continuum-QCD effects (as usual).
This η ′-like state suffers from noisy correlators, and numerical data are consistent with this picture without
being definitive [39].
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operator hasn± zero modes of chirality±1, satisfying the index theoremn+−n− = nsQ, wherens

is the total number of species. With lattice staggered fermions, the zero modes are no longer exact.
Nevertheless, if staggered fermions do indeed yield four quarks, then several features must emerge
dynamically [51]. First, low-lying eigenvalues must cluster in quartets. Second, some (pairs of)
eigenvalues should be near-zero modes withλi ∼ Λ2a. Third, the chirality of the corresponding
eigenvectors should be close to±1, in a way that satisfies the index theorem. Finally, in the finite-
volume ε regime, the distributions of eigenvalues should agree withexpectations from random
matrix theory [52].

Early numerical work was inconclusive [53], but with improved staggered actions, quartets
of eigenvalues clearly emerge in numerical simulations [54]. In particular, if the gauge field has
topological chargeQ, then the eigenvalue spectrum contains quartets of the same(taste-singlet,
Eq. (3.32)) chirality, such that the index theorem is satisfied [54]. Even with smearing, early
comparisons of random matrix theory suggested that staggered fermions are topology blind [55].
Equation (3.33) implies two regimes of interest [56, 57], however,

ε regime : Λ ≫ L−1 ≫ mξ , ∀ξ , (3.34)

ε ′ regime : mξ 6=P ≫ L−1 ≫ mP. (3.35)

In theε regime all “pions” are pseudo-Goldstone bosons, whereas intheε ′ regime most of them are
very massive particles. In theε regime staggered fermions should and do behave like a 4-species
theory [57]; in theε ′ regime they should not [56] and do not [55].

In summary, naïve fermions appear to be problematic, because the anomaly is not generated.
Analysis of the unexpected doubling symmetries rescues theformulation, however, yielding stag-
gered fermions. Spacetime and flavor-like symmetries become entangled, making the interpretation
as Dirac fermions less transparent. But now not only are the exact chiral symmetries non-singlets
under a flavor-like quantum number called taste, but also an anomalous taste-singlet axial current
can be found. On this basis, the emergence of 4nf Dirac fermions is theoretically plausible. Owing
to a wealth of results examining the nonperturbative content and structure, it is also fair to say that
the validity of (unrooted) staggered fermions has been established numerically.

4. Rooting with full SU(4) taste symmetry

The previous section reviewed some aspects of staggered fermions, focusing on how four
species emerge in the continuum limit. Before discussing whether the fourth-root procedure can
reduce these four species to one, I would like to present aGedankenalgorithm. The aim is to sepa-
rate some potentially confusing aspects of rooting, free ofthe complications of staggered fermions’
taste-exchange interactions.

Suppose that an algorithm designer with a good imagination (and a wicked sense of humor)
found a way to speed up “your favorite lattice fermions” by substituting

det1(D/+m) = {det4[(D/+m)⊗1114]}1/4 , (4.1)

thereby introducing four “tastes.” Here det1 is a determinant fornf flavors, with 1 taste per flavor;
det4 is for nf flavors, but 4 tastes per flavor. If the determinant is real andpositive, this step does not
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change the Monte Carlo weight at all, because the right-handside is just a clever trick to calculate
the left-hand side. Of course, the trick fails if the left-hand side is not real (e.g., for nonzero
chemical potential [58]), or if it can be negative (e.g., m< 0).

To probe the dynamics of this system, first introduce sources(Ja,Ja
5) for scalar and pseu-

doscalar meson operators(−iψ̄Taψ ,−iψ̄Taγ5ψ) in the original theory:

Z[Ja,Ja
5] =

∫

DU {det1(D/+m+J+J5γ5)}Nr (4.2)

=

∫

DU {det4[(D/+m+J+J5γ5)⊗1114]}Nr/4 , (4.3)

whereDU is the gauge-field measure (includinge−Sgauge), and the number of “replicas”Nr will be
useful below. TheTa are flavor matrices (withT0 = i111/

√

2nf ), andJ(5) = −iJa
(5)T

a.
Spontaneous symmetry breaking is revealed by looking at theLegendre effective action

eΓ(σa,πa) = Z[J,J5]e
−∑x[J

a(x)σa(x)+Ja
5(x)πa(x)]

∣

∣

∣

J(5)=J(5)(σ ,π)
, (4.4)

whereJ(5)(σ ,π) are defined implicitly, so that they create prescribed fields(σa,πa):

σa(x) =
1
Z

∂Z
∂Ja(x)

∣

∣

∣

∣

J(5)=J(5)(σ ,π)

, πa(x) =
1
Z

∂Z
∂Ja

5(x)

∣

∣

∣

∣

J(5)=J(5)(σ ,π)

. (4.5)

The mass matrices forσa andπa are obtained from second derivatives ofΓ. In the case at hand,
they are constrained by symmetry—invariance of the fermionaction is expressed in Eqs. (4.2)
and (4.3) as the invariance of the determinants under a change of basis. One finds [59]

∂ 2Γ
∂σa∂σ c f cdbσd

∣

∣

∣

∣

σ0,π0

+
∂ 2Γ

∂σa∂πc f cdbπd

∣

∣

∣

∣

σ0,π0

= 0, (4.6)

∂ 2Γ
∂πa∂πcdcdbσd

∣

∣

∣

∣

σ0,π0

+
∂ 2Γ

∂πa∂σ cdcdbπd

∣

∣

∣

∣

σ0,π0

∝ mass and anomaly terms, (4.7)

where the vacuum fields(σ0,π0) are those in the absence of sourcesJ(5).
4 If one assumes that all

vacuum fields vanish except the flavor-singlet scalarσ0
0 , then one obtains a constraint

∂ 2Γ
∂πa∂πb

∣

∣

∣

∣

σ0,π0

∝ mass and anomaly terms, (4.8)

and no constraint on∂ 2Γ/∂σa∂σb. Equation (4.8) is the basis for formulae such as Eq. (3.33).Of
course, the dynamical assumption thatσ0

0 6= 0 has not been proven mathematically but has been
established numerically with various types of lattice fermions.

Equation (4.3) apparently has more symmetry than Eq. (4.2)—SU(4nf )×SU(4nf ) instead of
SU(nf )×SU(nf ). I will call the extended symmetry aphantomsymmetry, because it is a figment
of an algorithm designer’s imagination. One can study the dynamical consequences of the phantom
symmetry by promoting the sources to taste-nonsinglets [17]:

Z[JA,JA
5 ] =

∫

DU {det4[(D/+m)⊗1114 +J+J5γ5]}Nr/4 , (4.9)

4Instead of fixingJ(5) in Eq. (4.5) to get prescribed fields, simply setJ(5) = 0 on the right-hand side to get(σ0,π0).
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where the flavor-taste generator indexA now runs from 0 to(4nf )
2−1. One finds the same pattern

of spontaneous symmetry breaking as in Eqs. (4.6)–(4.7), leading to mass relations like (4.8) also
for the taste nonsinglet phantom pseudoscalars. In all, there are(4nf )

2 − 1 pseudo-Goldstone
bosons, instead of justn2

f −1, and one taste- and flavor-singletη ′-like meson.
But what should one make of the phantoms? The equivalence of the two formulations, (4.2)

and (4.3), shows that phantoms do not exist. The symmetry analysis suggests they do. (A numerical
simulation of your favorite rooted fermions could look at taste-nonsinglet correlators to decide and
would probably find them.) The conundrum is easily resolved if the phantoms violate unitarity and
cancel each other out in correlators that are oblivious to taste [17]. The lack of unitarity, particularly
when constrained by symmetry, is not a concern and, in fact, is familiar in gauge theories [60].

The Gedankenalgorithm helps establish a foundation for some questions concerning rooted
staggered fermions. First, we see what kinds of correlatorsare physical. For bosonic taste, these
are taste singlets and anything related to taste singlets bysymmetry.5 For fermionic taste, one
needs single-taste correlators [49]. It is possible to construct unphysicalcorrelators, which could
lead to confusion or mistakes. Another use of Eqs. (4.2) and (4.3) is to set a criterion for proving
staggered fermionsincorrect. Any argument that would also kill theGedankenalgorithm simply
does not pertain to the issues at hand. An example is the proofthat (D/+ m)1/4 is non-local [61],
which does not prove that[det4(D/ + m)]1/4 cannot be obtained from a path integral with a local
action [62]. Attempts to disprove staggered fermions must focus on features not shared with the
Gedankenalgorithm, namely the violations of perfect SU(4) taste symmetry. Finally, note that the
details of the phantom sector depend onNr . For Nr ∈ Z, the rooted formulation of Eq. (4.3) is
identical to a manifestly sound quantum field theory. On the other hand, Eqs. (4.2) and (4.3) show
that irrational choices, likeNr = π, are simply irrational.

5. Rooting with staggered fermions

We are now ready to discuss rooted staggered fermions, whichis theAnsatzthat quarks can
be simulated with Eq. (1.1), using any of several available algorithms [63, 20]. An initial set of
arguments in favor are as follows. First, Eq. (1.1) resembles Eq. (4.9), especially when one looks
at theD/stagdefined via Eq. (3.27); the four-taste determinant has SU(4)taste-violating parts that are
suppressed superficially by powers of the lattice spacing. Second, perturbative renormalization [26,
38] and the nonperturbative features discussed at the end ofsect. 3 support the picture of unrooted
staggered fermions as a QCD-like theory, in which violations of SU(4) taste symmetry vanish in
the continuum limit. Finally, having thus achieved a 4× 4 block structure, the fourth root is as
straightforward as in sect. 4.

Implicit in this line of reasoning is the assumption that thecontinuum limit and rooting com-
mute. We shall come back to this below. First, however, I would like to consider objections that
hold even if these arguments are all correct. In particular,I stipulate for now that SU(4nf ) flavor-
taste symmetry emerges in the continuum limit, citing the evidence presented at the end of sect. 3.

In the context of rooting most of the SU(4nf ) symmetry is a phantom symmetry. As such one
should ask whether a phantom sector of particles is seen in numerical simulation. (They are, in the
scalar propagator, see below.) If so, they violate unitarity. Moreover, at non-zero lattice spacing the

5For example, one may use the taste-P irrep for pseudoscalar mesons, the taste-V irrep for vector mesons,etc.
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symmetry is smaller than SU(4nf ), as exhibited in (3.29) and (3.30). Consequently, the phantoms
are not degenerate, so they will not cancel identically in physical correlators. Fortunately, sect. 4
shows in general (if sketchy) terms that the rooted dynamicsprovide a safe house for phantoms,
when (as stipulated above) they become degenerate in the continuum limit. Then the phantom
sector is benign, even if it is not unitary, because the cancellation becomes perfect.

The ramifications of non-degenerate phantoms are still ugly, in some cases perhaps even scary.
A useful and illuminating tool isχPT adapted for the case at hand: rooted, staggered chiral pertur-
bation theory (RSχPT) [64]. This extension of partially quenchedχPT encodes theNr dependence,
so it is sensitive to the dynamics of the sea. As mentioned in sect. 3, the fit to pseudoscalar meson
masses and decay constants provides clear evidence that this description works. To isolate the sen-
sitivity of the numerical data to the sea quarks, MILC now tries fits in which the number of replicas
floats. At this conference Bernard reported [65] (in his notation, Nr = 4nr )

1
4Nr = nr = 0.28(2)(3), (5.1)

in striking agreement with the expectation 1/4. Further evidence comes from heavy-light decay
constants. Continuum partially quenchedχPT blatantly fails to describe the numerical data [66],
while RSχPT yields a statistically sound fit [4]. The topological susceptibility is also better-
described with RSχPT than with continuumχPT [67].

The pseudoscalar mesons just mentioned are low-lying states, but higher mass particles must
be considered too. Correlators, for example those of glueballs, contain not only the single hadron of
interest but also two-phantom-particle states. It can become hard to determine the single-particle
mass, but these correlators are still interesting, becausethe two-particle contribution probes the
sea [68]. Correlators of taste-singlet scalar mesons contain πξ -ηξ pairs, ξ = P,A,T,V, andπξ
and ηξ consist of a valence and a sea quark. Theseπξ -ηξ bubbles can be described withχPT,
analogously to the quenched scalar correlator [69]. The bubbles’ weights depend onNr . ForNr < 4
some weights are negative, as one expects when unitarity is violated. Once all thresholds become
degenerate, the bubbles always add up to the correct total. Comparisons of numerical data with the
RSχPT formulae confirm this picture [70], supporting the correctness of the rooted sea. A similar
story holds in the case of a mixed action with a rooted sea and Ginsparg-Wilson valence quarks;
the numerical data are again well described by mixed-actionχPT [71].

In summary, the violations of unitarity are a serious objection and can be a practical obsta-
cle. The numerical data suggest, however, that these effects, including their influence on the error
budget, can be managed with RSχPT. Furthermore, the analysis of sect. 4 reveals a safe housefor
phantoms, not only for pseudoscalar mesons, but also for other hadrons.

A distinct, but related, issue is the locality of rooted staggered fermions. Critics of the rooting
procedure have long suspected non-local behavior [72], butto my knowledge the concern is that a
Lagrangian of the form̄ψ(D/+m)1/4ψ is non-local [61]. Because this line of attack would kill the
manifestly correctGedankenalgorithm, this concern is a red herring. There is, however,another
kind of non-local behavior. Suppose one writes

det4(D/stag+m) =
[

det1(D/SU(4) +m)
]4

T, (5.2)

where the first factor on the right-hand side is manifestly SU(4) symmetric. The remaining factorT
cannot represent a set of local interactions for the gauge field, because the left-hand side generates
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a spectrum with taste splittings, and the SU(4)-symmetric determinant does not [73]. It is certainly
accurate to call this a non-locality, but I am not sure how illuminating it is. Before taking the fourth
root, the non-locality is particle-like. After taking the fourth root on both sides of Eq. (5.2), it
strikes me as plausible that the non-locality ofT1/4 does not ruin cluster decomposition, it may
become local in the continuum limit [74], and it certainly isnot the non-locality of a propagator
(D/+m)−1/4. Thus, it is not the non-locality that critics seem to have inmind.

To be confident that the continuum limit is correct, it would be helpful if one could establish
a Symanzik LEL , not with an Ansatz based on symmetries, but through a derivation from the
underlying lattice field theory. The Symanzik structure is evident at the tree level, and it seems
to be accepted without controversy at all orders in perturbation theory. (It is not, however, proven
at the level needed to prove Reisz’s theorems [75]. An important first step has been to extend the
power-counting theorem to staggered fermions [76].) In a forthcoming paper, Bernard, Golterman,
and Shamir (BGS) show a new way to do so. For a short version with more details than I can give
here, see Golterman’s talk at this conference [77].

The new work of BGS is based on Shamir’s block-spin renormalization group [78], which was
covered thoroughly in Sharpe’s review [49] last year. Aftern blocking steps, Shamir arrives at a
blocked staggered operator

(D/+m)n⊗14 +a∆n (5.3)

with a SU(4)-symmetric part(D/+m)n⊗14 and a taste-breaking defect∆n. The blocked quantities
live on a lattice with spacing 2na, and in the continuum limitn → ∞, a → 0, ac = 2na fixed.
A power-law divergence in∆n is expected to bea−2

c , implying that the combinationa∆n vanishes
in the continuum limit.

The blocked determinant resembles Eq. (4.9), with sources set to providea∆n, andDU the
complicated measure for the gauge field in Ref. [78]. BGS develop an expansion in the underlying
spacinga with the aid of some bookkeeping devices. The determinant isgeneralized to be

{det4[(D/+m)n⊗14+a∆n]}nr →{det1[(D/+m)n]}Ns
{det4[(D/+m)n⊗14+ ta∆n]}nr

{det4[(D/+m)n⊗14]}nr
, (5.4)

whereNs need not equalNr = 4nr , andt need not equal 1. Sources for valence fermions are

exp
{

η̄ [(D/+m)n⊗14+va∆n]
−1η

}

, (5.5)

where, again, for bookkeepingv need not equal 1. Post-analysis, one may setNs = Nr , t = v = 1.
Expressions (5.4) and (5.5) can be expanded int andv, justified by the small quantitya∆n. The

double-expansion can then be reverse-engineered to reproduce the Lee-Sharpe LEL for staggered
fermions [41]. Each bookkeeping parameter brings an advantage. Possible nonperturbative non-
polynomial dependence of the LEL on Ns is kept, because other factors are expanded int andv.
The expansion int ensures that, to any order ina, the dependence onnr is polynomial, so analyti-
cal continuation from an integer to 1/4 is allowed. The expansion inv shows that valence quarks
control the symmetries and the field content of the LEL , which do not depend onnr . Pending
confirmation of the assumptions built into the blocking [78,49], these are a strong results.

This analysis underscores the importance of checking numerically that∆n scales in such a way
as to justify the expansions. There are several pieces of evidence to suggest it does. Exhibit A
is all experience with anomalous dimensions in QCD. ExhibitB is all experience with the pseu-
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doscalar spectrum as taste-breaking of valence fermions isreduced [46, 10]; heuristically this is
like reducingv without reducinga. Lastly, Exhibit C is a pilot investigation of∆n itself [79].

A lack of scaling ofa∆n would kill rooted staggered fermions, because then we wouldbe left
with a non-unitary, non-local theory, even in the continuumlimit. It is therefore worth stating how
the evidence given above could be misleading. The pilot investigation [79] is not yet definitive. The
pseudoscalar splittings probe only four of the plethora of taste-exchange effects generated by∆n.
Finally, it could be that rooting and the continuum limit do not commute, in a way so profound that
the rooted determinant itself generates∆n’s anomalously large anomalous dimension [49]. Such
“self-inconsistency” is possible, but highly implausible.

6. Explicit refutation of Refs. [12, 13, 14, 15, 16]

With the preceding sections’ outline of rooted staggered quarks as a basis for discussion, I can
now address Mike Creutz’s specific criticisms, which below are summarized inslanted font. Many
of my counterarguments are the same as in the original refutation [17].

6.1 Order of limits

Rooted staggered fermions require a “peculiar” order of limits, a → 0 with m fixed, followed by
m→ 0 [12, 13, 14]. The required order is especially peculiar withone flavor [13].

For two or more flavors, this criticism is misguided. Computers have a finite memory, so
one takes the continuum limit,a → 0, at fixed spatial volume,L3. But there is no spontaneous
symmetry breaking in a finite volume. To select a finite-volume vacuum close to the infinite-
volume spontaneously-broken vacuum, explicit symmetry breaking is needed. For this general
reason, one should keepm 6= 0 while taking the continuum limit, then takeL → ∞, and lastm→ 0.

Also, the continuum limit must be carefully specified whenever exact symmetries imply pseudo-
Goldstone bosons [80]. Suppose there are two kinds of particles with massesm2

πa2 = κΣ, m2
σ a2 =

Σ2, and consider an unconventional family of continuum limits, κ = mqa1+p, Σ = Λa1−p. Then
m2

π = mqΛ, m2
σ = Λ2a−2p, so if p > 0 thenπ ’s correlation length diverges whileσ ’s does not. This

is a different universality class than the standard one,p = 0. Staggered fermions (without rooting)
are subtler still, because the would-beπ-like particles, except the one with tasteP, have a mass
m2

ξ a2 = κΣ + Σ4, m2
ξ = mqΛ + Λ4a2−4p. For p > 1/2, the continuum limit strands these at the

cutoff, reminiscent of theε ′ regime.
With one flavor there is no spontaneous symmetry breaking—the lowest-lying pseudoscalar

is anη ′-like meson. In this case, the above considerations no longer apply. But every numerical
lattice QCD calculation has unphysically large quark masses, to allow the algorithms to run faster,
so I do not consider the order of limits to be a serious criticism even with one flavor.

6.2 Mutilated quark-mass dependence

Rooted staggered fermions yield the same system for−m as for m; therefore, the small-mass
behavior is a function ofm2, which we know is wrong in specific cases [12, 13, 14].

Odd powers of the quark mass stem from zero modes ofD/. As is obvious from Eq. (4.1), the
rooting procedure turnsm into (m4)1/4 = |m|. This defect of the algorithm has nothing to do with
staggered fermions [17].
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It is instructive to examine how odd powers arise when one hasnear-zero modesλi ∼ Λ2a, as
with staggered fermions. Two pairs with eigenvalue±iciΛ2a, i = 1,2 arise [54], so

[

det4(D/stag+m)
]1/4

∝
[(

c2
1Λ4a2 +m2)(

c2
2Λ4a2 +m2)]1/4 ≈ |m|

[

1+ 1
4(c2

1 +c2
2)

Λ4a2

m2

]

(6.1)

when the limits are taken in the correct order. If one takes the limits in the wrong order, then the
determinant is indeed a function ofm2. It is correct to consider this the wrong theory, but it is
incorrect to assert that the numerical work takes the limit in the wrong order. The applicability of
Eq. (6.1) has been demonstrated clearly in the Schwinger model [81]. It is also possible to follow
themdependence of observables down untilm∼ Λ3a2 ≪ Λ2a using RSχPT [82], well beyond the
regime where the approximation in Eq. (6.1) applies.

6.3 Cancellation of non-unitary contributions

The cancellations among taste multiplets seem contrived [12, 13, 14].
TheGedankenalgorithm of sect. 4 shows that phantoms cancel each other automatically in the

absence of taste-exchange processes [17]. Thus, if the Shamir defect scales so that one can treat
it as a perturbation, it is not reasonable to call the cancellation contrived. The scalar propagator
provides a good numerical test, for two reasons. First, the weights of the non-unitary contributions
depend (inχPT) onNr in an illuminating way, which could be checked numerically with (some)
new simulations withNr = 1,2,3,4. Second, the cancellation of the phantom modes depends ona2,
which is being monitored as part of ongoing simulations [70].

6.4 Rank of chiral symmetry

The rank (i.e., number of diagonal generators) of the chiral symmetry is wrong [13, 14].
With four tastes the rank is indeed larger. But theGedankenalgorithm shows that this is not

a feature of staggered fermions per se, but of the rooting procedure itself. It provides a clear ex-
planation of why thephysicalsector is the taste-singlet sector. The other particles arephantoms.
In particular the extra neutral pseudoscalars cancel each other out, perfectly in theGedankenalgo-
rithm and (on the basis of numerical results) to ordera2 with rooted staggered fermions.

6.5 Anomalies

The conventional axial anomaly cancels [12, 13, 14].
This claim is simply wrong. The taste-P axial current suffers no anomaly, as desired, because

it is off-diagonal in taste. The conventionalstaggeredanomaly appears in the taste-singlet PCAC
relation, as explained in the discussion of Eqs. (3.31) and (3.32). It comes with the right strength,
because rooting multiplies the 4-species anomaly with the factor 1

4 appropriate for one species.

6.6 Topology

Rooted staggered quarks implement topology incorrectly, because quartets must break up at the
boundary of topological sectors [12, 14, 15]. Rooting averages over positive and negative chirality
modes, so the index theorem cannot be satisfied [13].

Studies of the eigenvalues reveal a quartet structure, including quartets of near-zero modes [54].
As the gauge field transits from one topological sector to another, this structure must indeed be dis-
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rupted. But gauge fields near the boundary of topological sectors should have a large gluon action
and are, hence, suppressed. If not, it is a drawback of the gluon action and has nothing to do with
staggered fermions. It would be interesting to monitor thiswith smooth gauge fields. It would
bode well for rooting if the quartets rearrange themselves rapidly, similarly to the way a lattice
approximant toQ does.

The assertion about positive and negative chirality is false. Ref. [57] shows that near-zero
modes appear in quartets of the same taste-singletchirality, Eq. (3.32). The confusion may stem,
as in sect. 6.5, from contemplating taste-P currents and densities. But taste-P chirality vanishes for
all modes, including near-zero modes:∑x f †

i (x)ε(x) fi(x) = 0, because iffi(x) is an eigenvector of
eigenvalueiλi +m, thenε(x) fi(x) is the eigenvector of−iλi +m, and they are orthogonal. Hence,
many statements about chirality in Refs. [12, 13, 14, 15, 16]are simply ill-conceived.

6.7 ’t Hooft vertices

’t Hooft vertices generate contributions to correlation functions that diverge in the chiral limit as a
power ofm−1 [15, 16].

Only a full analysis of ’t Hooft vertices can refute this assertion, because no explicit equations
are given in Refs. [15, 16]. Here I shall examine theη ′-like meson with one quark flavor, which
should [15, 16] expose the problem. The taste-singlet propagator consists of two terms

C(x,y) = tr[G(x,y)U5G(y,x)U5], (6.2)

D(x,y) = tr[G(x,x)U5] tr[G(y,y)U5], (6.3)

where the trace is over color, andU5 abbreviates the sign factors, link matrices, and translations
indicated in Eq. (3.32). The quark propagatorG(x,y) = 〈χ(x)χ̄(y)〉χ,χ̄ . The right way to combine
C(x,y) andD(x,y) is

〈

η ′(x)η ′(y)
〉

=
〈

−1
4C(x,y)+ 1

16D(x,y)
〉

U , (6.4)

where the sign arises from Fermi statistics. The weights1
4 and 1

16 are crucial and follow immedi-
ately from Eqs. (4.2) and (4.3).

’t Hooft vertices arise from (near) zero modes. At first glance, such gauge fields are suppressed
by small eigenvalues from the determinant. For rooted staggered fermions the determinant factor is
that given in Eq. (6.1). In a correlation function, however,these factors can be cancelled by small
eigenvalues in the denominator, coming from fermion propagators.

Let us consider theQ= 1 sector for simplicity. Numerical simulation [54] tells usthere are four
near-zero modes, which we shall label±1,±2. Inserting an eigenvector-eigenvalue representation
of the fermion propagators, the disconnected contributionis

D(x,y) = ∑
i=±1,±2

1
iλi +m

f †
i (x)U5 fi(x) ∑

j=±1,±2

1
iλ j +m

f †
j (y)U5 f j(y)+ . . . ∼

(

4
m

)2

, (6.5)

isolating the most singular parts asm→ 0 (with λ ≪ m). Similarly, the connected correlator is

C(x,y) = ∑
i, j

1
iλi +m

f †
i (x)U5 f j(x)

1
iλ j +m

f †
j (y)U5 fi(y). (6.6)

Within a quartet, it is plausible to assumef †
i (x)U5 f j(x) ∼ O(a), i 6= j, because each eigenvector

should have a different taste. Then,
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C(x,y) = ∑
i=±1,±2

(

1
iλi +m

)2

f †
i (x)U5 fi(x) f †

i (y)U5 fi(y)+ . . . ∼ 4
m2 . (6.7)

When combining the two pieces according to Eq. (6.4), no singular behavior appears asm→ 0 (af-
ter a→ 0). Thus, modulo one easy-to-check assumption, Creutz’s claims about the ’t Hooft vertex
do not hold up in this, the simplest, example. Similarly, the’t Hooft vertex of thephysicaleight-
fermion operator discussed in Ref. [16] is not singular, when Fermi statistics and orthogonality in
taste is taken into account [83].

6.8 Summary

The criticisms of Refs. [12, 13, 14, 15, 16] are based on threesources of confusion. Difficulties
with mass dependence, the rank of the flavor-taste symmetry,and the way that phantoms cancel
are explained by theGedankenalgorithm of sect. 4. This approach also illuminates the blunder
of confusing the exact taste-nonsinglet chirality with theconventional taste-singlet chirality, which
connects correctly to topology and ’t Hooft vertices. Finally, it is easy to draw incorrect conclusions
by choosing the incorrect order of limits (obdurately forcing m→ 0 beforea → 0). The correct
order is not “absurd” [12, 14], but necessary whether or not staggered fermions are employed.

7. New developments

There are two noteworthy methodological developments in improved actions for staggered
fermions. One is a new discretization reducing taste-exchange interactions, while maintaining
O(a2) improvement. The other is the completion of the full O(αsa2) corrections to the gluon action.
Either or both could be incorporated into future simulations of sea quarks.

7.1 Highly improved staggered quarks

Although the Asqtad action has much smaller taste-changingeffects than the original staggered
action, it would be better to reduce them further. The Asqtadaction is obtained from the standard
staggered action, Eq. (3.8), in two steps, as follows. Firstsmeared links are constructed,

Vµ = FµUµ =
sym

∏
ρ 6=µ

(

1+
a2

4
△ρ

)

Uµ , (7.1)

where△ρ is a covariant nearest-neighbor second derivative, and theproduct is symmetrized over
all possible orderings of the directions orthogonal toµ . It yields bent staples of length 3, 5, and 7;
substitutingV for U in Eq. (3.8) yields the FAT7 action. The smearing is designedfor, and is
successful at, reducing the size of taste-exchange interactions. It does not achieve Symanzik im-
provement, however. This is achieved by adding two improvement terms to the FAT7 action, the
Naik [84] term and the Lepage term [9], to obtain thea-squared (Asq) action and, with tadpole-
improved couplings, the Asqtad action.

A new action [85] extends the philosophy behind the FAT7 and Asqtad actions, introducing
Wµ = FµU FµUµ , where the operatorU brings the smearedV-links back into U(3), thereby
reducing ultraviolet fluctuations, including taste-changing interactions [86]. UsingW in Eq. (3.8)
and generalizing the Naik and Lepage terms yields the highly-improved staggered quark (HISQ)
action [85]. A numerical implementation [87] is only aroundtwo times slower than Asqtad.
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The first results from the HISQ action shed light on the issuesof sect. 5. Reference [85]
calculates in perturbation theory the size of the four-quark interactions in the Symanzik LEL for
both Asqtad and HISQ, finding the latter’s to be an order of magnitude smaller. Reference [85]
also computes thea2∆ξ splittings of Eq. (3.33), finding them to be half as large withHISQ. In the
language of (5.4) and (5.5), the HISQ action reduces the sizeof the (valence) Shamir defect,va∆n,
by methodological means, and yields a valence spectrum closer to that of the continuum limit.

7.2 nnnfff dependence of the gauge action

The MILC ensembles [10] use the order-a2 improved gauge action [88]. The pure-gauge
one-loop matching of this action has been available for a long time [89]. Using these improved
couplings, as MILC does, removes errors formally of orderαsNca2 but notαsnf a2. Earlier this year,
Hao et al. completed the fermion loop calculation with Asqtad fermions [90]. They find that the
fermion loop has the opposite sign from the gluon+ghost loops. Fornf = 3 they change the sign of
the radiative correction to the coupling of the rectangle and reduce greatly the radiative correction
to the twisted parallelogram. They recommend putting theseresults into future simulations and
note that the size of the effects is what is needed to explain observed scaling violations [91]. The
MILC Collaboration plans to use this result in future simulations [92].

8. Conclusions

Staggered fermions are fast, but not easy. After trivializing the spinor index of the naïve
fermion field, the projection to one component entangles flavor symmetries with spacetime sym-
metries, and the remaining species doubling is reflected in anew flavor-like quantum number,
taste. The exact flavor and taste symmetries are expected to enlarge to (softly broken) SUV(4nf )×
SUA(4nf ), a mechanism that has been established by numerical simulations.

When the fourth root is taken, staggered fermions have both too little symmetry (discretization
effects break SUV(4nf )×SUA(4nf )) and too much (the target symmetry is SUV(nf )×SUA(nf )).
Confusion stemming from too much symmetry can be avoided viathe Gedankenalgorithm dis-
cussed in sect. 4. It explains why rooted theories have “extra” particles, in particular pseudo-
Goldstone bosons, and why the extra symmetry protects physical (single-taste) correlators. Most
of the criticisms of Refs. [12, 13, 14, 15, 16] can be refuted with this framework [17, 83].

Valid criticisms of rooted staggered fermions should focuson the difference between staggered
fermions and the continuum, namely on the interactions thatbreak the full SUV(4nf )×SUA(4nf )

taste-flavor symmetry. The most glaring issue is the violation of unitarity. With the full symmetry
such violations cancel identically (for physical correlators). Without the full symmetry they do not
cancel, but rooted staggered chiral perturbation theory (RSχPT) offers a way to describe them. Fits
to pseudoscalar masses and decay constants (light and heavy-light), and studies of the two-particle
contribution to the scalar propagator, give evidence that RSχPT works. It not only guides the chiral
extrapolation but also provides a framework for estimatingthe associated uncertainty.

Refutation of specific criticisms, here and in Refs. [17, 83], does not prove that rooted, stag-
gered fermions are valid. It is remarkable, however, that somany numerical tests have shored up
the theoretical framework, when any one of them could have gone wrong. Of special interest here
is the interplay of chirality and topology. The analysis of chirality in Refs. [12, 13, 14, 15, 16] is
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wrong, because it discusses a taste-nonsinglet chiral symmetry that has nothing to do with topol-
ogy. The conventional staggered taste-singlet chirality agrees with the index theorem, in the same
way any two lattice definitions of topological charge do.

More tests can and should be carried out. A comprehensive study of the scaling of the Shamir
defect,a∆n, should help decide whether all taste breaking interactions vanish in the continuum
limit. For self-consistency, this study should be done witha rooted staggered sea. Tests of the
sea, such as the scaling of the two-particle contributions to taste-singlet correlators, would bolster
confidence in RSχPT. Most of Creutz’s discussion of ’t Hooft vertices can be refuted with the setup
in sect. 4, but it does bring out the need to check numericallywhether the members of near-zero
mode quartets are all of different taste.

Much of our structural, and not to mention practical, understanding of rooted, staggered
fermions depends on RSχPT. It is based on plausible arguments [64], with one reservation. An
original justification forχPT is that it gives the most general description of particle interactions,
consistent with unitarity [93]. What happens when unitarity is lost? Can a non-unitaryχPT de-
scribe a non-unitary gauge theory? Is, for example, clusterdecomposition enough [94]? This is a
basic concern wherever partially quenchedχPT is used. With other formulations of lattice fermions
one could, if necessary, avoid it. With staggered fermions it seems essential.

A friend of mine, who expects that Eq. (1.1) is not valid, saysthat the burden of proof is on
the staggered community. He is correct, of course, but only half correct. A “proof” is unlikely to
be mathematically rigorous. Instead, as in all of lattice gauge theory, methods will be validated, or
not, with a combination of theoretical framework and numerical simulation. It does not make much
sense for proponents to prove to themselves that their methods are acceptable. Skeptics need to be
engaged, examine the theoretical and numerical evidence infavor of rooted staggered fermions,
think about the issues clearly, and state where the shortcomings lie. In other words, their job now
is to be like Mike. Think it through and write it up!
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