<u>NS102</u> <u>Lecture 10</u>

<u>The distance ladder</u>

Open: *Stairway to Heaven* Led Zeppelin

Close: *Cold in the Sun* Red Eyed Legends

- Website http://home.fnal.gov/~rocky/NS102/
- Need violinist volunteer
- Review logarithms
- Review basic trigonometry (definition of sine, tangent, etc.)
- Exam #1
- Do not memorize eqquations
- Thursday: Original composition "Car horn in G" Shapley-Curtis debate

Lab this week: Non-Euclidean Geometry

NatSci 102 Spring 2005 Exam #1

The Cosmological Distance Ladder

They move They have different apparent brightness They have different colors They change in brightness

The Cosmological **Distance Ladder**

~100 pc

They move They have different apparent brightness They have different colors They change in brightness

Intensity = area

Luminosity property of source

Intensity depends on power and distance between source and detector (R)

Intensity =

luminosity $4\pi R^2$

Eyes, like ears, are logarithmetic detectors.

<u>The luminosity of nearby stars</u>

Measure: intensity of light, I

$$I = \frac{L}{4\pi R^2}$$

If know distance (e.g., parallax) \rightarrow luminosity

If know luminosity (standard candle) \rightarrow distance

$\frac{D}{pc} = \frac{seconds}{\alpha}$ $-26.8 - m = -2.5 \log(0.137)$			$I = \frac{L}{4\pi R^2}$ watts cm ⁻² /I)	
Measured				
star	parallax	distance	apparent	luminosity
	(")	(pc)	magnitude	(solar)
α Centauri	0.75	1.3	0	1.5
Barnard's star	0.5	2.0	9.5	0.0005
Sirius	0.4	2.5	-1.5	25
Altair	0.2	5.0	0.8	10
Canopus	0.003	330	- 0.7	200,000
Arcturus	0.1	10	0	90
Betelgeuse	0.01	100	0.5	14,000

Intensity of Sun vs. Sirius Sun $m_s = -26.8$ Sirius $m_1 = -1.5$ $m_s - m_l = -2.5 \log(l_s/l_l)$ $10^{10} = I_{s}/I_{L}$

We know the distance to Sirius via parallax

Parallax = 0.4 second

Distance = (1/parallax) pc = 2.5 pc = 2.5 X 200,000 AU = 500,000 AU

Our Sun ain't the brightest bulb in the box! Intensity = $\frac{\text{Luminosity}}{4\pi R^2}$

$4\pi R^2$ $L_{SIRIUS} = 25 \times L_{SUN}$

They move They have different apparent brightness They have different colors They change in brightness

COLORS OF THE RAINBOW:

 $\mathbf{R} \mathbf{O} \mathbf{Y} - \mathbf{G} - \mathbf{B} \mathbf{I} \mathbf{V}$

Open Cluster (The Pleiades) 130 pc distant

The Hyades

46 PC

Hyades

3 pc

Ejnar Hertzsprung (1873-1967)

Henry Russell (1877-1957)

Hyades HR diagram

MAGNITUDE

DIM

Schematic Hertzsprung-Russell Diagram

Schematic Hertzsprung-Russell Diagram

 $m_{H} - m_{F} = -2.5 \log(I_{H}/I_{F})$ $-2.5 = -2.5 \log(I_H/I_F)$ $1 = \log(I_H/I_F)$ $10 = I_H / I_F$ $I_{H} = \frac{\text{Luminosity}_{H}}{4\pi R_{H}^{2}}$ $I_F = \frac{\text{Luminosity}_F}{4\pi R_F^2}$ $\frac{I_H}{I_F} = \frac{R_F^2}{R_H^2}$ $10 = \frac{R_F^2}{R_F^2}$ $3 = \frac{R_F}{R_F}$ R_{μ}

Distances to other clusters

- Construct H-R diagram for cluster
- Measure Δm compared to HR diagram for Hyades
- Compute distance in terms of distance to Hyades
- How far can you go?
- Say most distant open observable cluster is Lastades

 $m_{H} - m_{L} = -2.5 \log(I_{H}/I_{L})$ $-10 = -2.5 \log(I_H/I_L)$ $4 = \log(I_H/I_L)$ $10^4 = I_H / I_L$ $I_{H} = \frac{\text{Luminosity}_{H}}{4\pi R_{H}^{2}}$ $I_L = \frac{\text{Luminosity}_L}{4\pi R_L^2}$ $\frac{I_{H}}{I_{L}} = \frac{R_{L}^{2}}{R_{H}^{2}} \quad 10^{4} = \frac{R_{L}^{2}}{R_{H}^{2}}$ $100 = \frac{R_L}{R_H} \quad 4 \,\mathrm{kpc} = R_L$

The Cosmological Distance Ladder

 Main sequence stars are not extremely bright... we need brighter "standard candle"

Intensity =
$$\frac{\text{Luminosity}}{4\pi R^2}$$

They move They have different apparent brightness They have different colors They change in brightness

Stars Lyrae R **M**

RR Lyrae Stars

- Class named after a particular star: RR Lyrae
- Compared to the sun
 - half the mass
 - older than sun
 - hotter
 - expended hydrogen … burning helium to carbon
 - pulsates
- Changes brightness with regular period of days
- Luminosity determined by size & temperature
 - $\begin{array}{ll} \mbox{ for same temperature:} & \mbox{ larger} \rightarrow \mbox{ more luminous} \\ \mbox{ for same size:} & \mbox{ hotter} \rightarrow \mbox{ more luminous} \end{array}$
- Shrink \rightarrow compressional heating \rightarrow more luminous

 Main sequence stars are not extremely bright... we need brighter "standard candle"

Intensity =
$$\frac{\text{Luminosity}}{4\pi R^2}$$

- RR Lyrae stars found in distant clusters we know the distance to via H-R fitting.
- RR Lyrae stars are identified because their light output changes regularly on a time scale of half to one day.
- They are brighter than the sun by about a factor of 100 and are <u>standard candles</u>. Can see farther away and use as standard candle.

The Cosmological Distance Ladder

• Need brighter "standard candle" Intensity = $\frac{\text{Luminosity}}{4\pi R^2}$

- Other variable stars are brighter: Cepheid Stars (Polaris is a Cepheid)
- Cepheid stars are identified because their light output changes regularly on a time scale of weeks to months. They are very rare.
- They are brighter than the sun by about a factor of 10,000 but are <u>not</u> standard candles.

Henrietta Leavitt 1868 - 1921

Cepheid Variable Stars

Light curve of Delta Cephei

<u>Cepheids as distance indicators</u>

For cepheids of known distance

Measure apparent magnitude of the cepheids

$$I = \frac{L}{4\pi R^2} \to \operatorname{know} L$$

- Measure period of the cepheids
- Calibrate (if know period know L)

For cepheids of unknown distance

- Measure period....know L
- Measure apparent magnitude

$$I = \frac{L}{4\pi R^2} \to \operatorname{know} R$$

Large Magellanic Cloud 100 million stars 55 kpc distant

Large and Small Magellanic Clouds

ALL .

£.

55 kpc

Milky Way Galaxy

Sun