NS102

Lecture 10

The distance ladder

Open: Stairway to Heaven Led Zeppelin

Close: Cold in the Sun Red Eyed Legends

GnatSigh News
 (all the news that fits)

- Website http://home.fnal.gov/~rocky/NS102/
- Need violinist volunteer
- Review logarithms
- Review basic trigonometry (definition of sine, tangent, etc.)
- Exam \#1
- Do not memorize eqquations
- Thursday: Original composition "Car horn in G" Shapley-Curtis debate

Lab this week: Non-Euclidean Geometry

NatSci 102 Spring 2005 Exam \#1

Annual Stellar Parallax

DISTANT

VIEW FROM A

The Cosmological Distance Ladder

They move

They have different apparent brightness They have different colors
They change in brightness

seconds
 $\overline{200,000 \mathrm{AU}}=\frac{\alpha}{}$

 $\frac{D}{\mathrm{pc}}=\frac{\text { seconds }}{\alpha}$

The Cosmological Distance Ladder

They move

They have different apparent brightness They have different colors
They change in brightness

For light!!!

Intensity $=\frac{\text { luminosity }}{\text { area }}$

Luminosity property of source
Intensity
depends on power and distance between source and detector (R)

Intensity =

$\frac{\text { luminosity }}{4 \pi R^{2}}$

Logarithmic Eye

Eyes, like ears, are logarithmetic detectors.

The luminosity of nearby stars

Measure: intensity of light, I

$$
I=\frac{L}{4 \pi R^{2}}
$$

If know distance (e.g., parallax) \rightarrow luminosity

If know luminosity (standard candle) \rightarrow distance

$D=$ seconds
 pc $\quad \alpha$

$$
-26.8-m=-2.5 \log \left(0.137 \text { watts } \mathrm{cm}^{-2} / I\right)
$$

star	$\ell^{\text {Measured }}$			luminosity (solar)
	parallax (")	distance (pc)	apparent magnitude	
α Centauri	0.75	1.3	0	1.5
Barnard's star	0.5	2.0	9.5	0.0005
Sirius	0.4	2.5	-1.5	25
Altair	0.2	5.0	0.8	10
Canopus	0.003	330	-0.7	200,000
Arcturus	0.1	10	0	90
Betelgeuse	0.01	100	0.5	14,000

Intensity of Sun vs. Sirius

Sun

$$
m_{s}=-26.8
$$

Sirius

$$
m_{1}=-1.5
$$

$$
m_{s}-m_{l}=-2.5 \log \left(I_{S} / I_{1}\right)
$$

$$
10^{10}=I_{S} / I_{I}
$$

We know the distance to Sirius via parallax
Parallax $=0.4$ second

Distance $=(1 /$ parallax $) p c=2.5 p c=2.5 \times 200,000 \mathrm{AU}$ $=500,000 \mathrm{AU}$

Our Sun ain't the brightest bulb in the box!

$$
\text { Intensity }=\frac{\text { Luminosity }}{4 \pi \mathrm{R}^{2}}
$$

$$
L_{\text {sirus }}=25 \times L_{\text {sun }}
$$

For stars we know distance to via parallax:
Measure Distance $(R) \longrightarrow$ Know Luminosity
Measure

They move

They have different apparent brightness They have different colors
They change in brightness

COLORS OF THE RAINBOW:

R O Y - G - B I

Know distance to
 Hyades by parallax

Ejnar Hertzsprung (1873-1967)

Henry Russell (1877-1957)

Hyades HR diagram

Schematic Hertzsprung-Russell Diagram

Schematic Hertzsprung-Russell Diagram

$$
m_{H}-m_{F}=-2.5 \log \left(I_{H} / I_{F}\right)
$$

$$
-2.5=-2.5 \log \left(I_{H} / I_{F}\right)
$$

$$
1=\log \left(I_{H} / I_{F}\right)
$$

$$
10=I_{H} / I_{F}
$$

$$
I_{H}=\frac{\text { Luminosity }_{H}}{4 \pi R_{H}^{2}} \quad I_{F}=\frac{\text { Luminosity }_{F}}{4 \pi R_{F}^{2}}
$$

$$
\frac{I_{H}}{I_{F}}=\frac{R_{F}^{2}}{R_{H}^{2}} \quad 10=\frac{R_{F}^{2}}{R_{H}^{2}} \quad 3=\frac{R_{F}}{R_{H}}
$$

Distances to other clusters

- Construct H-R diagram for cluster
- Measure $\Delta \mathrm{m}$ compared to HR diagram for Hyades
- Compute distance in terms of distance to Hyades
- How far can you go?
- Say most distant open observable cluster is Lastades

$$
\begin{gathered}
m_{H}-m_{L}=-2.5 \log \left(I_{H} / I_{L}\right) \\
-10=-2.5 \log \left(I_{H} / I_{L}\right) \\
4=\log \left(I_{H} / I_{L}\right) \\
10^{4}=I_{H} / I_{L} \\
I_{H}=\frac{\text { Luminosity }_{H}}{4 \pi R_{H}^{2}} \quad I_{L}=\frac{\text { Luminosity }_{L}}{4 \pi R_{L}^{2}} \\
\frac{I_{H}}{I_{L}}=\frac{R_{L}^{2}}{R_{H}^{2}} \quad 10^{4}=\frac{R_{L}^{2}}{R_{H}^{2}} \quad 100=\frac{R_{L}}{R_{H}} \quad 4 \mathrm{kpc}=R_{L}
\end{gathered}
$$

The Cosmological Distance Ladder

- Main sequence stars are not extremely bright... we need brighter "standard candle"

$$
\text { Intensity }=\frac{\text { Luminosity }}{4 \pi R^{2}}
$$

They move

They have different apparent brightness They have different colors
They change in brightness

RR Lyrae Stars

- Class named after a particular star: RR Lyrae
- Compared to the sun
- half the mass
- older than sun
- hotter
- expended hydrogen ... burning helium to carbon
- pulsates
- Changes brightness with regular period of days
- Luminosity determined by size \& temperature
- for same temperature: larger \rightarrow more luminous
- for same size: hotter \rightarrow more luminous
- Shrink \rightarrow compressional heating \rightarrow more luminous

- Main sequence stars are not extremely bright... we need brighter "standard candle"

$$
\text { Intensity }=\frac{\text { Luminosity }}{4 \pi R^{2}}
$$

- RR Lyrae stars found in distant clusters we know the distance to via $\mathrm{H}-\mathrm{R}$ fitting.
- RR Lyrae stars are identified because their light output changes regularly on a time scale of half to one day.
- They are brighter than the sun by about a factor of 100 and are standard candles. Can see farther away and use as standard candle.

The Cosmological Distance Ladder

Globular Clusters

M15

- Need brighter "standard candle"

$$
\text { Intensity }=\frac{\text { Luminosity }}{4 \pi R^{2}}
$$

- Other variable stars are brighter: Cepheid Stars (Polaris is a Cepheid)
- Cepheid stars are identified because their light output changes regularly on a time scale of weeks to months. They are very rare.
- They are brighter than the sun by about a factor of 10,000 but are not standard candles.

Cepheid Variable Stars

Henrietta Leavitt 1868-1921

© 2006, C. I Hilder, www.AgtronomyinvourHande.com
Light curve of Detta Cephei

Cepheids as distance indicators

For cepheids of known distance

- Measure apparent magnitude of the cepheids

$$
I=\frac{L}{4 \pi R^{2}} \rightarrow \text { know } L
$$

- Measure period of the cepheids
- Calibrate (if know period know L)

For cepheids of unknown distance

- Measure period....know L
- Measure apparent magnitude

$$
I=\frac{L}{4 \pi R^{2}} \rightarrow \text { know } \boldsymbol{R}
$$

The Cosmological Distance Ladder

Milky Way Galaxy

55 KPc

