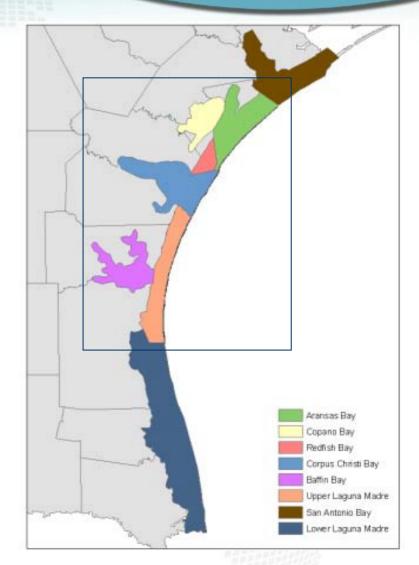
EARTHDATA® **Mapping Underwater Benthic Habitats** From ADS40 Digital **Airborne Imagery Using Semi-Automated Methods**

> JACIE Civil Commercial Imagery Evaluation Workshop 2007 Fairfax, VA

Collaboration

- Chad Lopez, EarthData International
- Kass Green, Alta Vista Company
- Dan Bubser, Joe Muller, Keith Patterson, Avineon, Inc.
- Bill Stevenson, PSGC at NOAA CSC
- John Wood, Harte Research Institute at Texas A&M University--Corpus Christi
- Jim Simons, Coastal Fisheries Division, Texas Parks and Wildlife
- Harold Rempel, Anne Miglarese, EarthData International


Project Goal

- To develop a detailed and accurate benthic habitat map of the southern portion of the Texas coast
- Use high resolution digital aerial imagery
- Use semi-automated methods to delineate habitats and label them
- Map will support Texas Seagrass Monitoring Plan

Project Area-Texas Coastal Bend

- 6 Bay systems for phase 1
- ~1400 miles² or 3625 km²
- Mapping inside barrier island system

Source Imagery

- 2004 NAIP imagery
- 1m ADS40 digital airborne imagery, resampled to 2m
- Reprocessed true color and CIR

What are we mapping?

- Underwater habitats as well as several 'land' habitats
- Our classification scheme derived from the Florida System for Classification of Estuarine and Marine Environments (SCHEME)
 - Hierarchical
 - Mutually exclusive
 - Completely exhaustive
 - Dynamic
 - Includes descriptive modifiers
- Minimum Mapping Unit 100 m²

Our Classes

- Benthic Habitats
 - Continuous SRV (Seagrass)
 - Patchy SRV
 - Continuous Macroalgae*
 - Patchy Macroalgae*
 - Oysters
 - Unconsolidated Sediments
 - Hardbottom
 - Unknown Habitat
 - *Macroalgae classes are no longer mapped classes -- Macroalgae is only used as a modifier now*

- Land/Land Interface
 Habitats
 - Land
 - Spartina
 - Mangroves

Classification Scheme Rules

If habitat is falls within the "land" boundary as identified either by image classification or ancillary data then

-If landcover consists of greater than or equal to 50% oysters, then **Bivalve Reef (321)**

-Else if landcover is greater than or equal to 50% mangrove tree canopy, then **Tidal Swamp-Mangroves (5)**

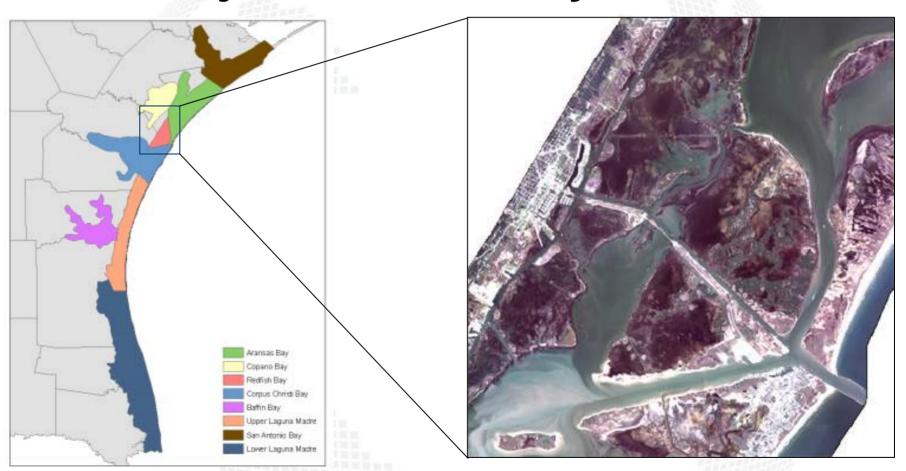
-Else if landcover is greater than or equal to 50% Spartina, then Tidal Marsh – Spartina (4)

-Else Land (6)

-Else benthic habitat

If interpretation of benthic habitat is not possible because of water quality or water depth, then **Unknown Benthic Habitat (7)**

If Submerged Aquatic Vegetation (SAV) cover is greater than 10%, and reef/hardbottom cover is less than SAV cover then SAV (2)



Project Methods

- Collect ancillary data
- Reprocess NAIP imagery to NOAA specs
- Pilot project in Redfish Bay to determine classification methodology
- Collect field data, correlate landscape variability with spectral variability
 - Create 1st map
- Accuracy assessment, map review
- Collect more field data to resolve map confusion and errors
- Edit map
- Final accuracy assessment, map review
- Per-pixel classification of Seagrass and Non-Seagrass pixels within Patchy Seagrass polygons

Pilot Project-Redfish Bay

Pilot Project-Redfish Bay

Tested four methods

- Visual Learning Systems Feature Analyst Unsupervised Classification to delineate habitats, labeling of habitat polygons by CART analysis
 - Feature Analyst Wall-to-Wall Classification
- Feature Analyst traditional Feature-by-Feature
- Extraction-performed by VLS
- Definiens Professional to delineate habitats, labeling of habitat polygons by CART analysis
- Identical imagery, training sites, accuracy sites used and no editing performed

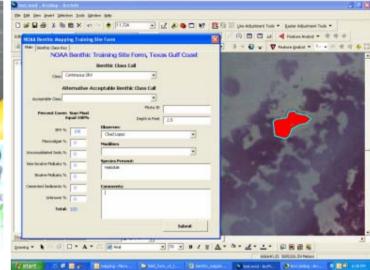
Classification And Regression Tree (CART) Analysis

- A statistical analysis that predicts variables (class) from multiple continuous and/or categorical variables
- "Mines" your independent variables and builds a hierarchical tree diagram (set of "if-then" statements) to predict the your dependent variables
- CART is powerful:
 - Can accept both continuous and categorical data
 - Results are easy to interpret
 - No assumptions about data distributions
 - Can find complex relationships between variables
 - Does not require statistical expertise to use

Pilot Project Conclusions

- All methods had very similar accuracy assessment results
- Feature Analyst Wall-to-Wall and labeling by CART much less time consuming
- Could not get reliable habitat delineations with Feature Analyst
- Definiens Professional produced much more reliable delineations
 - tradeoff of detailed polygons is that it produces so many

Method chosen for project: Create habitat polygons using Definiens Professional and label polygons using CART analysis



Calibration Field Trip

- 4 weeks in the field-summer 2006
- Field Equipment
 - Laptop with all data loaded
 - GPS with field points loaded
 - Underwater video
 - Underwater digital camera
 - Hardcopy maps of imagery
 - Hardcopy field forms
- Collected 583 field sites
- 50 sites per class randomly selected and set aside for accuracy assessment
- Remaining used as signature calibration sites for mapping

Temporal Difference Between Image Collection and Field Site Collection Dates

- 1.5 Year difference
 - Image collection November 2004
 - First field data collection May 2006
- Must map to imagery, not to current field conditions
 - Challenging due to dynamic environment
- Must be able to gain enough knowledge of image signatures and field conditions to infer what field conditions were then vs. what they are now

Classification of Initial Map - 1st Step

- Imagery broken into 6 processing areas
- Definiens Professional segmentation to produce polygons for each area -over 2.6 million polygons created
- Each polygon tagged with data as attribute
 - ADS40 band means and S.D.
 - 2002 Landsat band means and S.D.
 - Majority value for ancillary vector data
 - e.g. 1990's seagrass map, NWI, NLCD
 - Bathymetry data
 - Polygon shape calculation
- Training polygon data used for CART
 - See5 statistical software used
 - CART classification rules used to label every polygon in each area
- Ran accuracy assessment for initial map from CART analysis (no editing done)

Accuracy Error Matrix for Initial Map

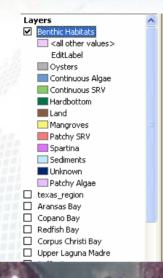
					Reference Data		,	/				
		Algae	SRV	Land	Mangroves	Oysters	Sediments	s Unknown	Spartina	TOTALS	User's S Accuracies	
	Algae	53	5	0	0	1	6	0	0	65	5 0.82	
	SRV	18	68	3	0	20	40	11	4	164	4 0.41	
ta	Land		0	89	6	1	3	0	6	106	6 0.84	
Data	Mangroves	0	0	0	88	0	0	0	0	88	3 1.00	
	Oysters	2	9	1	0	80	11	4	0	107	0.75	
Classified	Sediments	0	9	1	0	1	27	2	0	40	0.68	
ase	Unknown	1	5	0	0	3	7	83	1	100	0.83	
อื	Spartina	0	4	6	6	4	6	0	89	115	5 0.77	8
	TOTALS	75	100	100	0 100	110	0 100) 100) 100) 785	5	
	Producer's Accuracies		0.68	0.89	9 0.88	0.73	3 0.27	0.83	3 0.89			Overall Accuracy
		0.7 1	0.00	0.00	0.00	0.10	0.21	0.00	0.00	4		Accuracy

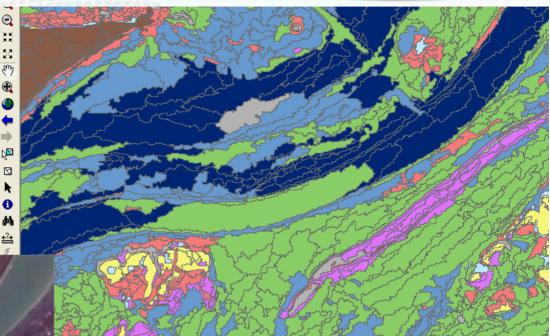
- Use error matrix to guide label editing and validation field trip data collection
- CART with boosting
 - Boosting increased overall accuracy ~10-12% vs. a single CART run

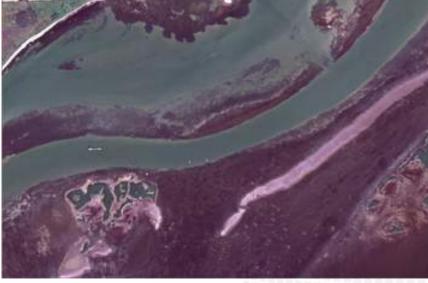
Classification of Initial Map-2nd Step

- Dissolved boundaries for known "Land" polygons and deep water "Unknown Benthic Habitat" polygons to decrease files sizes
 - Total polygons decreased from 2.6 million to < 1 million
- Edit polygon labels based on field data (not accuracy sites!), knowledge of project area, and knowledge of signature and class variability
- Focus editing on most confused classes
 - Macroalgae and Seagrass
 - Unconsolidated Sediments and Seagrass
 - Oyster Reefs and Seagrass
- Overall accuracy increase to > 80%, individual class accuracies all increased as well
- Review of initial map by NOAA and Texas partners

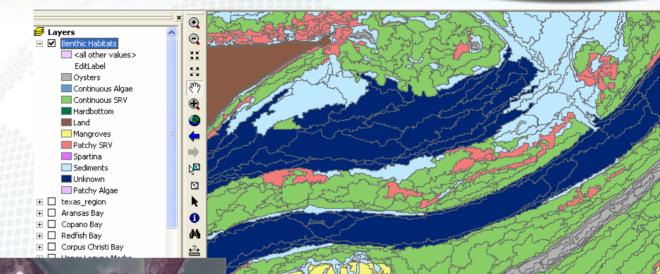
Validation Field Trip


- Field sites chosen based on
 - Class confusion identified in error matrix
 - Areas in initial map that look highly confused
 - Areas where we lacked field data from previous calibration trip
 - Comments on specific sites by NOAA and Texas partners
- 2 week trip January 22 February 2, 2007
 - Only out in field for 6 days due to inclement weather
- Collected 213 points, plus additional 74 accuracy assessment points

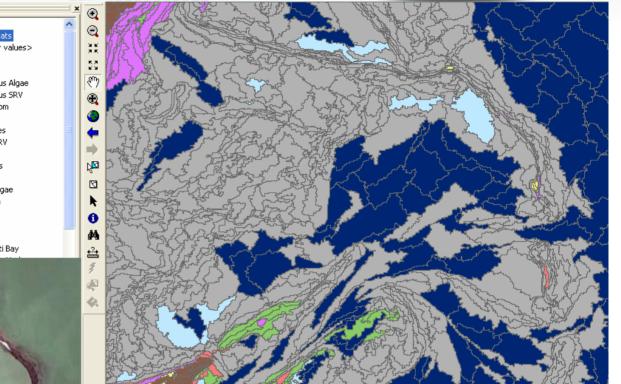



Where We Are Now

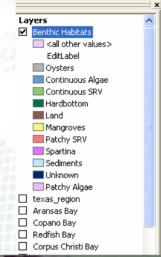
- In process of final label editing and modeling
- Recently dropped Macroalgae classes and will only use as a modifier
 - Macroalgae we have observed in field is drift algae
 Classifying a polygon as Macroalgae is not actually representative of benthic habitat -- it's much more informative as a modifier



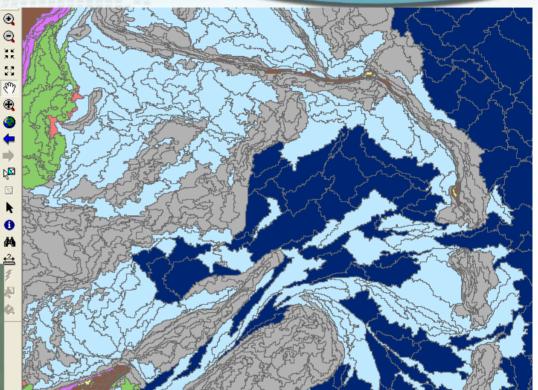
CART Labeled Map-Redfish Bay



Edited Map-Redfish Bay



CART Labeled Map-Aransas Bay



Edited Map-Aransas Bay

Next Steps

- Dissolve polygon boundaries for same-class polygons that are adjacent
- Smooth polygon boundaries to remove "stair-step" effect
- Final accuracy assessment, Draft map review
- Per-pixel classification of Patchy Seagrass
 - Patchy Seagrass polygons used to mask imagery
 - Binary classification of pixels within polygon
 - Seagrass or Non-Seagrass
 - Erdas Imagine supervised or unsupervised classification
 - Two resulting products
 - Raster map of Seagrass/Non-Seagrass pixels
 - Shapefile of Patchy Seagrass polygons with % seagrass cover as attribute calculated using raster map

Lessons Learned-Improvements for Phase 2

- Divide project area into Land and Water
 - Run separate CART analyses for Land and Water classes
- Divide CART inputs into even more "unique" training sites
- Run separate CART analyses for different regions
 - e.g. Oysters might be present in one region but not another
- Create "nested" polygons

Upper Laguna Madre, photo by Dan Bubser