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EXECUTIVE SUMMARY 

Object-oriented technology (OOT) has been used extensively throughout the non-safety-critical 
software and computer-based systems industry, in safety-critical medical and automotive 
systems and is now being used in the commercial airborne software and systems domain.  
However, as with any new technology, there are concerns and issues relating to its adoption 
within safety-critical airborne systems.  Previous Federal Aviation Administration (FAA) 
research and two OOT in Aviation (OOTiA) workshops with industry indicate that there are 
some areas of OOT verification that are still a concern in safety-critical systems.  One of those 
areas of concern is the adequacy of performing structural coverage analysis (SCA) at either the 
source-code (SC) level or object-code (OC)/executable object-code (EOC) level. 
 
This Handbook provides input to industry and the FAA into issues and acceptance criteria for the 
use of SCA at the SC versus OC/EOC levels within OOT in commercial aviation, as required by 
Objectives 5 through 8 of Table A-7 in RTCA DO-178B/EUROCAE ED-12B.  The intent of the 
SCA is to provide an objective assessment (measure) of the completeness of the requirements-
based tests and support the demonstration of the absence of unintended function. 
 
Certain features of OOT requiring object-code coverage (OCC) or executable object-code 
coverage (EOCC) analysis are identified, as well as features requiring source-code coverage 
(SCC) analysis.  The combination of these features indicates that either a combined SCC and 
OCC/EOCC analysis or source to OC/EOC traceability is needed for OOT software to satisfy 
Objectives 5 through 8 of Table A-7 in DO-178B/EUROCAE ED-12B for the following OOT 
features: 
 
• Method tables 
• Constructors and initializers 
• Destructors, finalizers, and finally blocks 
 
Object-code branch coverage (OBC) of short-circuited logic at the OC or EOC level is not 
equivalent to modified condition decision coverage (MCDC) of logic at the SC level in the 
general case.  Certain deficiencies in automated OCC analyzers contributing to part of the 
problem are identified.  Further analyses to identify these deficiencies are identified.  To cover 
the primary difference between MCDC and OBC requires that the independence of each 
condition be demonstrated.  Note that these results apply equally to both non-OOT and OOT 
software. 
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1.  INTRODUCTION. 

1.1  PURPOSE. 

This Handbook is intended to provide guidelines to industry and the Federal Aviation 
Administration (FAA) into issues and acceptance criteria for the use of structural coverage 
analysis (SCA) at the source-code (SC) level versus object-code (OC) or executable object-code 
(EOC) level when using object-oriented technology (OOT) in commercial aviation, as required 
by Objectives 5 through 8 of Table A-7 in RTCA DO-178B/EUROCAE ED-12B (DO-178B 
hereinafter) [1].  The intent of the SCA is to provide an objective assessment (measure) of the 
completeness of the requirements-based tests and supports the demonstration of the absence of 
unintended  
function [1]. 
 
This Handbook identifies that either a combined source-code coverage (SCC) analysis and 
object-code coverage (OCC) and executable object-code coverage (EOCC) analysis, or SCC 
analysis and SC to OC/EOC traceability is needed for OOT software to satisfy Objectives 5 
through 8 of Table A-7 in DO-178B for the following OOT features: 
 
• Method tables 
• Constructors and initializers 
• Destructors, finalizers, and finally blocks 
 
This Handbook also identifies that object-code branch coverage (OBC) of short-circuited logic at 
the OC or EOC level is not equivalent to modified condition decision coverage (MCDC) of logic 
at the SC level in the general case.  To cover the primary difference between MCDC and OBC 
requires that the independence of each condition be demonstrated.  Note that the results 
concerning OBC of short-circuited logic apply equally to both OOT software and non-OOT 
software. 
 
1.2  BACKGROUND. 

DO-178B specifies the need for SCA in Objectives 5 through 8 of Table A-7 in reference 1. 
 
OOT has been used extensively throughout the non-safety-critical software and computer-based 
systems industry, in safety-critical medical and automotive systems, and is now being used in the 
commercial airborne software and systems domain [2 and 3].  Previous FAA research [2, 3, 
and 4] and two Object-Oriented Technology in Aviation (OOTiA) workshops with industry (see 
http://shemesh.larc.nasa.gov/foot/ and reference 5 for more information) indicate that guidance 
for the application of SCA to OOTiA is needed. 
 
The FAA requested that The Boeing Company conduct research to identify issues and provide 
input to the industry and the FAA on SCA at the SC versus OC and EOC level (satisfaction of 
Objectives 5 through 8 of DO-178B/ED-12B Table A-7 [1]) within OOTiA.  This Handbook is a 
companion document to the research report [6] on structural coverage at the source- and object-
code levels. 
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1.3  DOCUMENT OVERVIEW. 

As stated, this Handbook is a companion document to the research report [6].  The research 
report contains the details behind the steps employed in this Handbook.  This Handbook contains 
the practical how-to guidelines for performing SCA for certain aspects of OOT. 
 
• Section 1 provides the purpose, background, and general overview of this Handbook. 
 
• Section 2 identifies OOT features requiring additional consideration. 
 
• Section 3 identifies issues concerning the substitution of OBC for MCDC needing 

additional consideration. 
 
• Section 4 summarizes the approach of this Handbook. 
 
• Section 5 provides a list of references used in this Handbook. 
 
• Section 6 identifies activities and documents related to the work reported herein. 
 
1.4  RELATED ACTIVITIES AND DOCUMENTS. 

There is one related activity and its associated documents that relate directly to the issues 
addressed herein: 
 
• The joint FAA/NASA Object-Oriented Technology in Aviation project workshops and 

the associated documentation at http://shemesh.larc.nasa.gov/foot/. 
 
2.  OBJECT-ORIENTED TECHNOLOGY FEATURES REQUIRING ADDITIONAL 
CONSIDERATION. 

From the high-level perspective, coverage analysis at the SC level, OC level, and EOC level are 
relatively equal as each has strengths and weaknesses, independent of whether OOT is used or 
not [6].  To understand this, consider the basic need for coverage analysis depicted in figure 1. 
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Figure 1.  Requirements/Implementation Overlap 

In figure 1, the requirements are shown as overlapping the implementation.  Where the two 
overlap, there are parts where the implementation is in agreement with the requirements (i.e., 
correct) and parts where it is not (i.e., incorrect).  Where the requirements do not have an overlap 
with the implementation is where the implementation fails to use a requirement.  Requirements-
based test coverage analysis will generally identify these defects (unimplemented function), but 
SCA generally will not.  Where the implementation does not have an overlap with the 
requirements is where the implementation provides a capability beyond the requirements 
(unspecified function, possibly unintended).  Requirements-based test coverage analysis will 
generally not identify these defects, but SCA generally will. 
 
Consider how the intermediate life cycle artifacts between the requirements and the 
implementation fit into an analysis of overlaps as in figure 1.  For this analysis, the simple five-
level software-process life cycle model and the following corresponding artifacts are derived 
from DO-178B [1]: 
 
• Requirements (high-level requirements) 
• Design (low-level requirements and architecture) 
• SC 
• OC 
• EOC (i.e., implementation) 
 
In the software artifacts, requirements consist of both traceable requirements and derived 
requirements.  The analysis of the overlap of the five-level life cycle artifacts is depicted in 
figure 2. 
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Figure 2.  Five-Level Life Cycle Artifacts Overlap 

Note that in figure 2 there are more subdomains than in figure 1.  The four major subdomains 
from figure 1 are still present in figure 2 (unimplemented function, correct function, incorrect 
function, unspecified function), but the addition of the design artifacts, SC and OC has divided 
these subdomains further and added some new ones.  Note that figure 2 is using a simple 
rectilinear Venn diagram representation, so all overlapping subdomains cannot be represented. 
 
If one looks at injecting faults into the subdomains of figure 2, then the SCC analysis, OCC 
analysis, and EOCC analysis will each find faults in the same number of mutually exclusive 
subdomains.  Since these subdomains are mutually exclusive, this means that each has its own 
strengths and weaknesses [6].  Note also that for the majority of subdomains, neither SCC 
analysis, OCC analysis, nor EOCC analysis is guaranteed to find the faults [6]. 
 
The previous analysis is independent of whether OOT is used or not. Therefore, if there are 
OOT-related structural coverage issues, they must exist with the specific features of OOT and 
the implementation of those features within specific programming languages.  The specific 
features of OOT for the SCC, OCC, or EOCC issues are discussed in the following sections. 
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• Methods tables 
• Constructors 
• Initializers 
• Finally blocks 
 
2.1  METHODS TABLES. 

Methods tables (also known as dispatch tables, virtual method tables, and vtables) are 
mechanisms used to support dispatching within OOT [7].  Figure 3 depicts the implementation 
for methods tables found in a previous study [7]. 
 

Class_1
Attribute_1

Method_1()
Method_2()

Class_2
Attribute_2
Method_3()

Class_3
Attribute_3

Method_2()
Method_4()

Method_1  Class_1.Method_1()
Method_2  Class_1.Method_2()
Method_3  Class_2.Method_3()

Method_1  Class_1.Method_1()
Method_2  Class_3.Method_2()
Method_4  Class_3.Method_4()

Method_1  Class_1.Method_1()
Method_2  Class_1.Method_2()

 

Figure 3.  Methods Tables Within a Class Hierarchy 

The implementation depicted in figure 3 builds a method table for each class containing a set of 
pointers to the methods applicable to that class.  Other implementations using a single table for a 
class and all children are used by different compilers.  Within these implementations, child 
classes add to the parent method table for both new methods and methods that override parent 
methods.  Overridden methods are added to the table offset by a constant value from the parent 
method.  This is invisible from a SC level, and can only be viewed by looking at the OC/EOC 
that allocates this memory, and calculates the offset.  This mechanism is demonstrated in figure 4 
where there is an offset for the overridden Method_2. 
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Figure 4.  Class Methods Table With Offset 

Whether there is a single table or multiple tables, the issue is the same:  how does one assure 
coverage?  Clearly, since these tables exist in the OC/EOC and not in the SC, SCC alone will be 
an insufficient measure of adequacy of the requirements-based testing, because it provides no 
visibility into the coverage attained on the method table itself.  This lack of visibility fails to 
indicate if the entire table was covered properly.  Dead code, deactivated code, unspecified 
function, unintended function, corruption of the offset, failure modes introduced by platform 
issues, and bugs in the tools that convert SC to OC and EOC cannot be fully evaluated at the SC 
level. 
 
Franco Gasperoni of AdaCore [8] proposes a novel way to fix SCC problems inherent with 
conventional dynamic dispatching.  Instead of allowing the compiler to set the child objects in 
the same memory as the parent, Gasperoni proposes that the compiler creates an object having a 
unique identifier.  This unique identifier will then be used to replace dynamically bound objects 
with static references using a switch (Java, C++) or case statement (Ada) automatically by the 
compiler.  As static dispatching can be tested using conventional tools, developers can use 
polymorphism and dynamic binding to generate code without the pitfalls associated with 
conventional dynamic binding.  When the code is compiled, instead of dynamic binding using 
methods tables, it would use the statically dispatched objects from case or switch statements. 
 
However, as mentioned in a previous study and elsewhere [7 and 8], the amount of coverage of 
either the methods tables or the compiler-generated switch/case statements in the Gasperoni 
approach is still an open issue.  Coverage of methods tables and the Gasperoni switch/case 
statements impacts both inheritance and polymorphism.  For inheritance, either complete 
coverage of the table/switch/case statements as a whole may be sufficient or complete coverage 
within every class may be required (flattened class approach).  For polymorphism, either 
complete coverage of the table/switch/case statements as a whole may be sufficient or complete 
coverage at each dynamic dispatch site may be required [7 and 8]. 
 
Without the use of Gasperoni’s approach, the EOC code has to be evaluated because there is no 
explicit program flow at any other level of code.  The program flows through an entire 
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inheritance hierarchy to find the proper method, but this hierarchy is not created until run time.  
Dynamic dispatching, the technology that causes the program to flow to the proper location, 
creates executable code having multidecision branch instructions that have to be evaluated.  
Since the branching does not exist except within the EOC, SCA has to include EOCC. 
 
When doing an evaluation, the depth of the class hierarchy has to be considered as well as the 
amount of polymorphism used.  C++ compounds this problem by allowing multiple inheritances, 
further complicating any analysis.  The number of classes between the last child class and the 
base class (or classes for multiple inheritances) determines the complexity of tracing program 
flow as each class within the hierarchy re-uses and adds its own memory requirements to the 
vtable.  When polymorphism is used, additional space is allocated within the vtable. Tracing 
program flow then becomes even more complex and has to examine the memory within the 
vtable to make sure that it is sufficient and contains the proper code. Further adding to the 
complexity of the analysis is the possibility that the memory for polymorphic functions could 
become corrupted if the offsets used to determine their location become corrupted or somehow 
altered.  
 
2.2  CONSTRUCTORS. 

As part of the class mechanism for C++ and Java, supporting methods known as constructors are 
required for a class [7].  As the name implies, constructors create an instance of a class by 
initializing the attributes (internal variables) of the object necessary to establish its initial state. 
 
The issue is that, in both languages, there will always be a discrepancy between the SC and code 
created by the compiler (OC/EOC), because code has to be added to the constructors to at least 
initialize the object’s variables and the object itself.  In both languages, when no constructor is 
specified, the compiler automatically generates an initial constructor with no code in it except 
what is needed to create a reference to the object.  In Java, the reference is the variable “this.” 
 
The SC and OC/EOC will differ, because there will be OC/EOC that appears like any other 
method signature.  Specific things to look for are: 
 
• Has a default constructor been created if there is none specified? 
 
• For C++, if memory needs to be allocated and a default constructor created, does the 

memory get allocated within the object? 
 
• In the OC, have all arguments in the constructor been accounted for?  In C++, has 

memory been allocated? 
 
• If there are multiple constructors, are all of them accounted for? 
 
To resolve the issue, SCA tools should be developed, qualified, and used to examine every 
constructor and the corresponding SC or OC/EOC to ensure each has been successfully 
generated and corresponds with the constructor’s method signature.  For SC without a 
constructor, the tool should ensure a default constructor has been created.  For all constructors, 
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there should be a reference to the particular object initialized.  Some example constructor code is 
presented in figure 5. 
 

class Airplane extends java.lang.Object {
public Airplane(String,int);
}

Code

Airplane Boeing747 = new Airplane(“747”, 1000);

Constructor – Method public Airplane(java.lang.String,int)  

Figure 5.  Constructor Example 

The bytecodes for the constructor example presented in figure 5 are presented in table 1.  In 
table 1, and all following tables where bytecode examples are given, the first column provides a 
line reference number, the second column provides the bytecode, and the third column provides 
a description. 
 

Table 1.  Constructor Example Bytecodes 

Line Reference 
Number Bytecode Description 

0 aload_0 Push instance of object –  

1 Invokespecial 
#3 

<Method java.lang.Object() – Base class for all 
objects 

4 aload_0  
5 aload_1  
6 Putfield #5 String input argument 
9 aload_0  
10 Iload_2  
11 Putfield #4 Integer input argument 
14 aload_0  
15 aload_1  
16 Iload_2  
17 invokespecial #6 Store constructor data 
20 Return  

 
C++ has copy constructors that will also add additional OC/EOC.  A copy constructor has the 
same name as the class and is used to make a copy of the entire object, including any pointer and 
dynamically allocated variables.  C++ compilers automatically add a copy constructor if one is 
not specified, producing OC/EOC that, again, differs from the SC (OC/EOC is present without 
any corresponding SC). 
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A real danger exists when the compiler creates a copy constructor of an object requiring a deep 
copy, that is, an object that allocates dynamic memory.  When this is used to create an object, 
memory will not be allocated and a program crash will occur when the object’s variable is used.  
The following should be looked for when evaluating a C++ object’s copy constructor: 
 
• Has the copy constructor been created by the developer or compiler? 
• Does it take into account dynamically allocating memory? 
 
2.3  INITIALIZERS. 

In addition to constructors, Java also has initializers that automatically move blocks of code into 
constructors.  This, again, yields OC/EOC that is different from SC.  A single-code block is 
declared at the beginning of the class.  When the class is compiled, all code in the initialization 
block is moved into the constructor. 
 
When initializers are used in Java, the SC and OC/EOC will always be different, as the compiler 
moves the code from the initialization blocks into the constructor.  The more constructors, the 
more differences between the SC and the OC/EOC. 
 
When analyzing Java code that uses initializers, one should ensure that each constructor contains 
the code within the initialization block.  When no constructor is specified but there is 
initialization code, then the complier should create a new constructor with this code within it. 
 
To resolve this issue, SCA tools need to be developed, qualified, and used to read the 
initialization code block from the beginning of the class.  Then the number of constructors needs 
to be counted.  As the tool looks over the OC/EOC, it should ensure that the initialization code is 
contained in every constructor.  The code can be contained explicitly or as a branch to a 
subroutine that contains the initializer code. 
 
The most important thing to look for is whether the code within the initializer block has been 
added to all constructors.  The companion report shows an example of this, including bytecode 
[6]. 
 
2.4  FINALLY BLOCKS. 

As part of the class mechanism for C++, supporting methods known as destructors are required 
for a class [7].  Destructors release the memory for the object and close any shared or managed 
resources.  The destructor methods carry out whatever activities must be performed before an 
object is no longer needed (e.g., free-managed resources and tasks). 
 
In Java, shared or managed resources are closed within finally blocks within methods. These 
always execute regardless of whether an exception was thrown or program execution exits 
before the end of the code in the method. 
 
The Java compiler implements the finally capability by adding a branch to a subroutine 
containing the finally block code or by simply duplicating all the code within the finally block 
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before each exit point within a method whose code is surrounded by a try/catch block.  Adding 
these subroutines or finally code blocks causes a gap between the SC and compiled Java 
OC/EOC. 
 
The issue is that SC and OC/EOC will differ anytime there is a finally block of code, because the 
compiler adds a branch to a subroutine at each exit point in a method that branches to the code in 
the finally block or has a number of duplicate blocks of code inserted at each exit point.  A major 
concern is how the compiler determines where the exit points are located within the method.  
The complexity of the method, the objects used, and the total number of lines of code in the 
method will determine the number and position of the exit points within a method. 
 
The first thing to look for is the accuracy of the rules that determine the endpoints within a 
method.  For safety-critical applications, these should be stricter than those used for conventional 
Java.  The second item to look for is whether these rules are correctly applied.  Lastly, the SC 
and OC/EOC code need to be compared to make sure that all subroutines branch to the correct 
location. 
 
The following example demonstrates the analysis for Java.  Table 2 shows the bytecodes used 
for branching to the “finally” subroutine.  Depending on the size of the program, the compiler 
will use either a “jsr” or “jsr_w” opcode.  The “et” opcode just uses the “pointer” (address) to 
return to program flow. 
 

Table 2.  Example Java Bytecodes 

Opcode Operand(s) Description 
Jsr branchbyte1, branchbyte2 pushes the return address, branches to 

offset 
jsr_w branchbyte1, branchbyte2, branchbyte3, 

branchbyte4 
pushes the return address, branches to 
wide offset 

et Index returns to the address stored in local 
variable index 

 
The example code is presented in figure 6. 
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Figure 6.  Finally Example Code 

The bytecode for the try/catch block code in figure 6 is presented in table 3. 
 

Table 3.  Java Bytecodes for the Finally Example 

Line Reference 
Number Bytecode Description 

0 iload_200 Push local variable 200 (arg passed as divisor) 
1 ifeq 1100 Push local variable 100 (arg passed as dividend) 
4 iconst_1 Push int 100 
5 istore_3 Pop an int (the 100), store into local variable 3 
6 jsr 24 Jump to the subroutine for the finally clause <inserted by compiler> 
9 iload_3 Push local variable 3 (the 100) 

10 ireturn Return int on top of the stack (the 100) 
11 iconst_200 Push int 200 
12 istore_3 Pop an int (the 200), store into local variable 3 

13 jsr 24 Jump to the subroutine for the finally clause<inserted by the 
compiler> 

16 iload_3  Push local variable 3 (the 200) 
17 ireturn Return integer on top of the stack (the 200) 

18 astore_1 Pop the reference to the thrown exception store Pop the reference to 
the thrown exception 

19 jsr 24 Jump to the subroutine for the finally clause<inserted by  
the compiler> 

20 aload_1 Push the reference (to the thrown exception) from local variable 1 
23 athrow Rethrow the  exception 
24 astore_2 Pop the return address, store it in local variable 2 
25 Getstatic #8 Get a reference to java.lang.System.out 
28 ldc #1 Push <String “Values Returned.”> from the constant pool 
30 invokevirtual #7 Invoke System.out.println() 
33 Ret 2 Return to return address stored in local variable 2 
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In table 3, the bytecodes are shown for the code in figure 6.  In lines 6, 13, and 19, the compiler 
has inserted code that will branch to the finally clause, located at line 24.  Lines 0 through 17 
contain the code with the conditional loop and return values.  From line 18 to 23, the exception is 
handled; notice the call to the finally subroutine at line 19.  From line 24 to 33 is the actual 
finally clause code. 
 
The try/catch block contains two exit points, one when the condition is True, and the other when 
it is False.  At each exit point a branch to the finally subroutine occurs, indicated by the jsr 
instruction at instructions number 6 and 13 in table 7.  Within the catch block of code, there is a 
single exit point and another jsr instruction. 
 
For smaller programs, the compiler simply recreated the code within the finally block a number 
of times, creating even more discrepancy between the SC and bytecode.  Table 4 shows another 
bytecode representation of the same SC, however, this was compiled as a stand-alone class with 
no optimization.  Here, the functionality in the SC’s finally block is repeated for each exit point: 
lines 7-15, 21-29, and 45-53.  Lines 31 through 43 are not executed and are dead code.  The 
optimized version in table 8 is more efficient and has no dead code, using branches to a 
subroutine.  Traceability is easier without the subroutine branching and could be considered to 
be the optimal way to compile the finally clauses. 
 

Table 4.  Alternate Java Bytecodes for the Finally Example 

Line Reference 
Number Bytecode Description 

0 iload_0  
1 ifeq 17  
4 bipush 100  
6 istore_1  
7 getstatic #2 //Field java/lang/System.out;Ljava/io/PrintStream; 
10 ldc  #3 //String done 
12 invokevirtual #4 //Method java/io/PrintStream.println;(Ljava/lang/String;)V 
15 iload_1  
16 ireturn  
17 sipush 200  
20 istore_1  
21 getstatic #2 //Field java/lang/System.out;Ljava/io/PrintStream; 
24 ldc  #3 //String done 
26 invokevirtual #4 //Method java/io/PrintStream.println;(Ljava/lang/String;)V 
29 iload_1  
30 ireturn  
31 astore_1  
32 iconst_0  
33 istore_2  
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Table 4.  Alternate Java Bytecodes for the Finally Example (Continued) 
 

Line Reference 
Number Bytecode Description 

34 getstatic #2 //Field java/lang/System.out;Ljava/io/PrintStream; 
37 ldc  #3 //String done 
39 invokevirtual #4 //Method java/io/PrintStream.println;(Ljava/lang/String;)V 
42 iload_2  
43 ireturn  
44 astore_3  
45 getstatic #2 //Field java/lang/System.out;Ljava/io/PrintStream; 
48 ldc  #3 //String done 
50 invokevirtual #4 //Method java/io/PrintStream.println;(Ljava/lang/String;)V 
53 aload_3  
54 athrow  

 
SCA tools and tests will have to verify methods like these by noting the exit points and making 
sure they are correct.  Afterwards, they can follow each exit point branch to make sure it runs the 
finally code correctly with no errors and with control returning to the program at the end of the 
subroutine. 
 
3.  OBJECT-CODE BRANCH COVERAGE ISSUES REQUIRING ADDITIONAL 
CONSIDERATION. 

The companion report established that OBC is not equivalent to MCDC in the general case [6].  
The issues that need to be addressed when using OBC in place of MCDC are: 
 
• The context of the decision.  Some automated OCC analysis tools will only identify 

decisions and conditions when they are associated with a branch point.  Some tools will 
only identify single condition decisions when they either are associated with a branch 
point, use a Boolean logical operator (NOT), or use a relational operator (=, /=, <, <=, >, 
or >=). 

 
• The programming language employed.  Some languages without an explicitly required 

Boolean logical type (e.g., C, C++, and assembly) present difficulties for automated SCA 
tools to identify all decisions and conditions. 

 
• The analysis method employed by the coverage analyzers.  Automated tools that perform 

a syntactic scan, as opposed to a semantic one, are not capable of detecting all single 
condition decisions. 

 
• The identification and verification of independence pairs.  Automated tools that monitor 

conditions only when they are associated with a branch point (i.e., perform OBC) are not 
capable of determining the independence of all conditions in certain decisions consisting 
of three or more conditions. 
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To address these issues, one should understand what an SCA tool is monitoring, and thereby 
measuring, and the implications for the SCA results.  For the first three issues, if the SCA tool is 
not capable of detecting and monitoring all decisions and conditions, then additional analysis 
will need to be performed to cover the gaps left by the tool. 
 
For the fourth issue, MCDC requires that a specific combination of condition values be executed 
in order to show a condition’s independence [6].  At the OC/EOC level, this means that a 
specific path must be taken through the predicate graph of the decision.  Figure 7 shows the 
predicate graph for the expression “(A OR B) AND C” when short-circuit forms are used. 
 

 

Figure 7.  Predicate Graph for (A OR B) AND C 

For MCDC, for a condition’s independence to be demonstrated, it must be executed both True 
and False, and the decision’s outcome must be different, and that condition’s change must be the 
only significant change [9].  When that condition is the left-hand side (LHS) (right-hand side 
(RHS)) of a short-circuiting AND, the RHS (LHS), when executed, must return a True result [9].  
When that condition is the LHS (RHS) of a short-circuiting OR, the RHS (LHS), when executed, 
must return a False [9].  This means that for A’s independence to be demonstrated, B must be 
False when executed and C must be True when executed.  For B’s independence to be 
demonstrated, A must be False to execute B and C must be True when executed.  For C’s 
independence to be demonstrated, either A or B must be True to execute C. 
 
Most OBC analysis tools will monitor whether each condition (A, B, and C) has been both True 
and False.  Given that this is known for the expression and predicate graph in figure 7, it is 
known that C’s independence has been demonstrated.  It is not known if B’s independence has 
been demonstrated because it is possible that after B was True that C was False instead of the 
required True.  It is also not known if A’s independence was demonstrated, because it is not 
known what values B and C executed after A was False and True, respectively. 
 
To know if a condition’s independence was demonstrated or not, it must be known what paths 
were taken through the predicate graph.  If the coverage analysis tool’s monitoring and 
measuring can be used to determine what paths were taken, and thereby what combinations of 
conditions were executed, then a proper MCDC analysis can be conducted.  Otherwise, 
additional analysis to determine the paths will be required.  As mentioned in Certification 
Authorities Software Team (CAST)-17, OCC/EOCC analysis should provide equivalent results 
to SCC analysis [10], and the only way discovered to accomplish that in this study was the 
execution of independence pairs [6].  Note that the results concerning OBC of short-circuited 
logic apply equally to both OOT software and non-OOT software. 
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4.  SUMMARY. 

This Handbook provides guidelines for developers, verifiers, and acceptors (generally regulators 
or their designees) into issues and acceptance criteria for the use of SCA at the SC versus 
OC/EOC levels within OOT in commercial aviation, as required by Objectives 5 though 8 of 
Table A-7 in DO-178B.  The intent of the SCA is to provide an objective assessment (measure) 
of the completeness of the requirements-based tests and support the demonstration of the absence 
of unintended function. 
 
Guidelines were provided for the combined use of SCC analysis and OCC/EOCC analysis for 
the following OOT features: 
 
• Methods tables 
• Constructors 
• Initializers 
• Finally blocks 
 
The combined SCC and OCC/EOCC analyses differ from the current practice where the SCA is 
conducted at either the SC level or the OC level.  If combined analyses are not desired, 
appropriate SC to OC/EOC traceability may be substituted.  This traceability for all software 
levels requiring SCA also differs from the common practice where SC to OC/EOC traceability is 
needed for Level A only. 
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