
DOT/FAA/AR-07/17

Air Traffic Organization
Operations Planning
Office of Aviation Research
and Development
Washington, DC 20591

Object-Oriented Technology
Verification Phase 3 Handbook—
Structural Coverage at the Source-
Code and Object-Code Levels

June 2007

Final Report

This document is available to the U.S. public
through the National Technical Information
Service (NTIS), Springfield, Virginia 22161.

U.S. Department of Transportation
Federal Aviation Administration

NOTICE

This document is disseminated under the sponsorship of the U.S.
Department of Transportation in the interest of information exchange. The
United States Government assumes no liability for the contents or use
thereof. The United States Government does not endorse products or
manufacturers. Trade or manufacturer's names appear herein solely
because they are considered essential to the objective of this report. This
document does not constitute FAA certification policy. Consult your local
FAA aircraft certification office as to its use.

This report is available at the Federal Aviation Administration William J.
Hughes Technical Center’s Full-Text Technical Reports page:
actlibrary.tc.faa.gov in Adobe Acrobat portable document format (PDF).

 Technical Report Documentation Page

1. Report No.

DOT/FAA/AR-07/17

2. Government Accession No. 3. Recipient's Catalog No.

 4. Title and Subtitle

OBJECT-ORIENTED TECHNOLOGY VERIFICATION PHASE 3
HANDBOOK—STRUCTURAL COVERAGE AT THE SOURCE-CODE AND
OBJECT-CODE LEVELS

5. Report Date

June 2007

 6. Performing Organization Code

7. Author(s)
John Joseph Chilenski and John L. Kurtz

8. Performing Organization Report No.

9. Performing Organization Name and Address

The Boeing Company
P.O. Box 3707
Seattle, WA 98124-2207

10. Work Unit No. (TRAIS)

 11. Contract or Grant No.

12. Sponsoring Agency Name and Address
U.S. Department of Transportation
Federal Aviation Administration
Air Traffic Organization Operations Planning
Office of Aviation Research and Development
Washington, DC 20591

13. Type of Report and Period Covered

Final Report

 14. Sponsoring Agency Code
 AIR-120

15. Supplementary Notes

The Federal Aviation Administration Airport and Aircraft Safety R&D Division COTR was Charles Kilgore.
16. Abstract

The purpose of this Handbook is to provide guidelines into issues and acceptance criteria for the use of structural coverage
analysis (SCA) at the source-code (SC) versus object-code (OC) or executable object-code (EOC) levels when using object-
oriented technology (OOT) in commercial aviation to satisfy Objectives 5 through 8 of Table A-7 in RTCA DO-
178B/EUROCAE ED-12B. OOT has been used extensively throughout the non-safety-critical software and computer-based
systems industry. OOT has also been used in safety-critical medical and automotive systems and is now being used in the
commercial airborne software and systems domain. However, as with any new technology, there are concerns and issues relating
to its adoption within safety-critical systems.

The intent of the SCA is to provide an objective assessment (measure) of the completeness of the requirements-based tests and
supports the demonstration of the absence of unintended function. An analysis of several OOT features (methods tables,
constructors, initializers, finalizers, and finally blocks) and the satisfaction of DO-178B/EUROCAE ED-12B Table A-7
Objective 5 for modified condition decision coverage (MCDC) indicates that either a mix of SC and OC/EOC coverage analyses
or SC to OC/EOC traceability may be required for all software levels requiring SCA in DO-178B/EUROCAE ED-12B (Levels
A-C). This differs from the current practice where the coverage analysis is conducted against either the SC or OC/EOC, and SC
to OC/EOC traceability is needed for Level A only.

The differences between SC and OC/EOC coverage analyses for the OOT features and MCDC are identified. An approach for
dealing with the differences is provided for each issue identified.

17. Key Words

Object-oriented technology, Structural coverage, Decision
coverage, Statement coverage, Verification, Coupling-based
integration testing, Analysis

18. Distribution Statement

This document is available to the U.S. public through the
National Technical Information Service (NTIS) Springfield,
Virginia 22161.

19. Security Classif. (of this report)
 Unclassified

20. Security Classif. (of this page)
 Unclassified

21. No. of Pages
 24

22. Price

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized

TABLE OF CONTENTS

Page

EXECUTIVE SUMMARY vii

1. INTRODUCTION 1

1.1 Purpose 1
1.2 Background 1
1.3 Document Overview 2
1.4 Related Activities and Documents 2

2. OBJECT-ORIENTED TECHNOLOGY FEATURES REQUIRING

ADDITIONAL CONSIDERATION 2

2.1 Methods Tables 5
2.2 Constructors 7
2.3 Initializers 9
2.4 Finally Blocks 9

3. OBJECT-CODE BRANCH COVERAGE ISSUES REQUIRING

ADDITIONAL CONSIDERATION 13

4. SUMMARY 15

5. REFERENCES 15

iii

LIST OF FIGURES

Figure Page

1 Requirements/Implementation Overlap 3
2 Five-Level Life Cycle Artifacts Overlap 4
3 Methods Tables Within a Class Hierarchy 5
4 Method Table With Offset 6
5 Constructor Example 8
6 Finally Example Code 11
7 Predicate Graph for (A OR B) AND C 14

iv

LIST OF TABLES

Table Page

1 Constructor Example Bytecodes 8
2 Example Java Bytecodes 10
3 Java Bytecodes for the Finally Example 11
4 Alternate Java Bytecodes for the Finally Example 12

v

vi

LIST OF ACRONYMS

CAST Certification Authorities Software Team
EOC Executable object-code
EOCC Executable object-code coverage
FAA Federal Aviation Administration
LHS Left-hand side
MCDC Modified condition decision coverage
OBC Object-code branch coverage
OC Object code
OCC Object-code coverage
OOT Object-oriented technology
OOTiA Object-Oriented Technology in Aviation
RHS Right-hand side
SC Source code
SCA Structural coverage analysis
SCC Source-code coverage

EXECUTIVE SUMMARY

Object-oriented technology (OOT) has been used extensively throughout the non-safety-critical
software and computer-based systems industry, in safety-critical medical and automotive
systems and is now being used in the commercial airborne software and systems domain.
However, as with any new technology, there are concerns and issues relating to its adoption
within safety-critical airborne systems. Previous Federal Aviation Administration (FAA)
research and two OOT in Aviation (OOTiA) workshops with industry indicate that there are
some areas of OOT verification that are still a concern in safety-critical systems. One of those
areas of concern is the adequacy of performing structural coverage analysis (SCA) at either the
source-code (SC) level or object-code (OC)/executable object-code (EOC) level.

This Handbook provides input to industry and the FAA into issues and acceptance criteria for the
use of SCA at the SC versus OC/EOC levels within OOT in commercial aviation, as required by
Objectives 5 through 8 of Table A-7 in RTCA DO-178B/EUROCAE ED-12B. The intent of the
SCA is to provide an objective assessment (measure) of the completeness of the requirements-
based tests and support the demonstration of the absence of unintended function.

Certain features of OOT requiring object-code coverage (OCC) or executable object-code
coverage (EOCC) analysis are identified, as well as features requiring source-code coverage
(SCC) analysis. The combination of these features indicates that either a combined SCC and
OCC/EOCC analysis or source to OC/EOC traceability is needed for OOT software to satisfy
Objectives 5 through 8 of Table A-7 in DO-178B/EUROCAE ED-12B for the following OOT
features:

• Method tables
• Constructors and initializers
• Destructors, finalizers, and finally blocks

Object-code branch coverage (OBC) of short-circuited logic at the OC or EOC level is not
equivalent to modified condition decision coverage (MCDC) of logic at the SC level in the
general case. Certain deficiencies in automated OCC analyzers contributing to part of the
problem are identified. Further analyses to identify these deficiencies are identified. To cover
the primary difference between MCDC and OBC requires that the independence of each
condition be demonstrated. Note that these results apply equally to both non-OOT and OOT
software.

vii/viii

1. INTRODUCTION.

1.1 PURPOSE.

This Handbook is intended to provide guidelines to industry and the Federal Aviation
Administration (FAA) into issues and acceptance criteria for the use of structural coverage
analysis (SCA) at the source-code (SC) level versus object-code (OC) or executable object-code
(EOC) level when using object-oriented technology (OOT) in commercial aviation, as required
by Objectives 5 through 8 of Table A-7 in RTCA DO-178B/EUROCAE ED-12B (DO-178B
hereinafter) [1]. The intent of the SCA is to provide an objective assessment (measure) of the
completeness of the requirements-based tests and supports the demonstration of the absence of
unintended
function [1].

This Handbook identifies that either a combined source-code coverage (SCC) analysis and
object-code coverage (OCC) and executable object-code coverage (EOCC) analysis, or SCC
analysis and SC to OC/EOC traceability is needed for OOT software to satisfy Objectives 5
through 8 of Table A-7 in DO-178B for the following OOT features:

• Method tables
• Constructors and initializers
• Destructors, finalizers, and finally blocks

This Handbook also identifies that object-code branch coverage (OBC) of short-circuited logic at
the OC or EOC level is not equivalent to modified condition decision coverage (MCDC) of logic
at the SC level in the general case. To cover the primary difference between MCDC and OBC
requires that the independence of each condition be demonstrated. Note that the results
concerning OBC of short-circuited logic apply equally to both OOT software and non-OOT
software.

1.2 BACKGROUND.

DO-178B specifies the need for SCA in Objectives 5 through 8 of Table A-7 in reference 1.

OOT has been used extensively throughout the non-safety-critical software and computer-based
systems industry, in safety-critical medical and automotive systems, and is now being used in the
commercial airborne software and systems domain [2 and 3]. Previous FAA research [2, 3,
and 4] and two Object-Oriented Technology in Aviation (OOTiA) workshops with industry (see
http://shemesh.larc.nasa.gov/foot/ and reference 5 for more information) indicate that guidance
for the application of SCA to OOTiA is needed.

The FAA requested that The Boeing Company conduct research to identify issues and provide
input to the industry and the FAA on SCA at the SC versus OC and EOC level (satisfaction of
Objectives 5 through 8 of DO-178B/ED-12B Table A-7 [1]) within OOTiA. This Handbook is a
companion document to the research report [6] on structural coverage at the source- and object-
code levels.

1

1.3 DOCUMENT OVERVIEW.

As stated, this Handbook is a companion document to the research report [6]. The research
report contains the details behind the steps employed in this Handbook. This Handbook contains
the practical how-to guidelines for performing SCA for certain aspects of OOT.

• Section 1 provides the purpose, background, and general overview of this Handbook.

• Section 2 identifies OOT features requiring additional consideration.

• Section 3 identifies issues concerning the substitution of OBC for MCDC needing

additional consideration.

• Section 4 summarizes the approach of this Handbook.

• Section 5 provides a list of references used in this Handbook.

• Section 6 identifies activities and documents related to the work reported herein.

1.4 RELATED ACTIVITIES AND DOCUMENTS.

There is one related activity and its associated documents that relate directly to the issues
addressed herein:

• The joint FAA/NASA Object-Oriented Technology in Aviation project workshops and

the associated documentation at http://shemesh.larc.nasa.gov/foot/.

2. OBJECT-ORIENTED TECHNOLOGY FEATURES REQUIRING ADDITIONAL
CONSIDERATION.

From the high-level perspective, coverage analysis at the SC level, OC level, and EOC level are
relatively equal as each has strengths and weaknesses, independent of whether OOT is used or
not [6]. To understand this, consider the basic need for coverage analysis depicted in figure 1.

2

Implementation

Unimplemented
Function

Unspecified
Function

Correct
Function

Requirements

Incorrect
Function

Figure 1. Requirements/Implementation Overlap

In figure 1, the requirements are shown as overlapping the implementation. Where the two
overlap, there are parts where the implementation is in agreement with the requirements (i.e.,
correct) and parts where it is not (i.e., incorrect). Where the requirements do not have an overlap
with the implementation is where the implementation fails to use a requirement. Requirements-
based test coverage analysis will generally identify these defects (unimplemented function), but
SCA generally will not. Where the implementation does not have an overlap with the
requirements is where the implementation provides a capability beyond the requirements
(unspecified function, possibly unintended). Requirements-based test coverage analysis will
generally not identify these defects, but SCA generally will.

Consider how the intermediate life cycle artifacts between the requirements and the
implementation fit into an analysis of overlaps as in figure 1. For this analysis, the simple five-
level software-process life cycle model and the following corresponding artifacts are derived
from DO-178B [1]:

• Requirements (high-level requirements)
• Design (low-level requirements and architecture)
• SC
• OC
• EOC (i.e., implementation)

In the software artifacts, requirements consist of both traceable requirements and derived
requirements. The analysis of the overlap of the five-level life cycle artifacts is depicted in
figure 2.

3

Figure 2. Five-Level Life Cycle Artifacts Overlap

Note that in figure 2 there are more subdomains than in figure 1. The four major subdomains
from figure 1 are still present in figure 2 (unimplemented function, correct function, incorrect
function, unspecified function), but the addition of the design artifacts, SC and OC has divided
these subdomains further and added some new ones. Note that figure 2 is using a simple
rectilinear Venn diagram representation, so all overlapping subdomains cannot be represented.

If one looks at injecting faults into the subdomains of figure 2, then the SCC analysis, OCC
analysis, and EOCC analysis will each find faults in the same number of mutually exclusive
subdomains. Since these subdomains are mutually exclusive, this means that each has its own
strengths and weaknesses [6]. Note also that for the majority of subdomains, neither SCC
analysis, OCC analysis, nor EOCC analysis is guaranteed to find the faults [6].

The previous analysis is independent of whether OOT is used or not. Therefore, if there are
OOT-related structural coverage issues, they must exist with the specific features of OOT and
the implementation of those features within specific programming languages. The specific
features of OOT for the SCC, OCC, or EOCC issues are discussed in the following sections.

4

• Methods tables
• Constructors
• Initializers
• Finally blocks

2.1 METHODS TABLES.

Methods tables (also known as dispatch tables, virtual method tables, and vtables) are
mechanisms used to support dispatching within OOT [7]. Figure 3 depicts the implementation
for methods tables found in a previous study [7].

Class_1
Attribute_1

Method_1()
Method_2()

Class_2
Attribute_2
Method_3()

Class_3
Attribute_3

Method_2()
Method_4()

Method_1 Class_1.Method_1()
Method_2 Class_1.Method_2()
Method_3 Class_2.Method_3()

Method_1 Class_1.Method_1()
Method_2 Class_3.Method_2()
Method_4 Class_3.Method_4()

Method_1 Class_1.Method_1()
Method_2 Class_1.Method_2()

Figure 3. Methods Tables Within a Class Hierarchy

The implementation depicted in figure 3 builds a method table for each class containing a set of
pointers to the methods applicable to that class. Other implementations using a single table for a
class and all children are used by different compilers. Within these implementations, child
classes add to the parent method table for both new methods and methods that override parent
methods. Overridden methods are added to the table offset by a constant value from the parent
method. This is invisible from a SC level, and can only be viewed by looking at the OC/EOC
that allocates this memory, and calculates the offset. This mechanism is demonstrated in figure 4
where there is an offset for the overridden Method_2.

5

Figure 4. Class Methods Table With Offset

Whether there is a single table or multiple tables, the issue is the same: how does one assure
coverage? Clearly, since these tables exist in the OC/EOC and not in the SC, SCC alone will be
an insufficient measure of adequacy of the requirements-based testing, because it provides no
visibility into the coverage attained on the method table itself. This lack of visibility fails to
indicate if the entire table was covered properly. Dead code, deactivated code, unspecified
function, unintended function, corruption of the offset, failure modes introduced by platform
issues, and bugs in the tools that convert SC to OC and EOC cannot be fully evaluated at the SC
level.

Franco Gasperoni of AdaCore [8] proposes a novel way to fix SCC problems inherent with
conventional dynamic dispatching. Instead of allowing the compiler to set the child objects in
the same memory as the parent, Gasperoni proposes that the compiler creates an object having a
unique identifier. This unique identifier will then be used to replace dynamically bound objects
with static references using a switch (Java, C++) or case statement (Ada) automatically by the
compiler. As static dispatching can be tested using conventional tools, developers can use
polymorphism and dynamic binding to generate code without the pitfalls associated with
conventional dynamic binding. When the code is compiled, instead of dynamic binding using
methods tables, it would use the statically dispatched objects from case or switch statements.

However, as mentioned in a previous study and elsewhere [7 and 8], the amount of coverage of
either the methods tables or the compiler-generated switch/case statements in the Gasperoni
approach is still an open issue. Coverage of methods tables and the Gasperoni switch/case
statements impacts both inheritance and polymorphism. For inheritance, either complete
coverage of the table/switch/case statements as a whole may be sufficient or complete coverage
within every class may be required (flattened class approach). For polymorphism, either
complete coverage of the table/switch/case statements as a whole may be sufficient or complete
coverage at each dynamic dispatch site may be required [7 and 8].

Without the use of Gasperoni’s approach, the EOC code has to be evaluated because there is no
explicit program flow at any other level of code. The program flows through an entire

6

inheritance hierarchy to find the proper method, but this hierarchy is not created until run time.
Dynamic dispatching, the technology that causes the program to flow to the proper location,
creates executable code having multidecision branch instructions that have to be evaluated.
Since the branching does not exist except within the EOC, SCA has to include EOCC.

When doing an evaluation, the depth of the class hierarchy has to be considered as well as the
amount of polymorphism used. C++ compounds this problem by allowing multiple inheritances,
further complicating any analysis. The number of classes between the last child class and the
base class (or classes for multiple inheritances) determines the complexity of tracing program
flow as each class within the hierarchy re-uses and adds its own memory requirements to the
vtable. When polymorphism is used, additional space is allocated within the vtable. Tracing
program flow then becomes even more complex and has to examine the memory within the
vtable to make sure that it is sufficient and contains the proper code. Further adding to the
complexity of the analysis is the possibility that the memory for polymorphic functions could
become corrupted if the offsets used to determine their location become corrupted or somehow
altered.

2.2 CONSTRUCTORS.

As part of the class mechanism for C++ and Java, supporting methods known as constructors are
required for a class [7]. As the name implies, constructors create an instance of a class by
initializing the attributes (internal variables) of the object necessary to establish its initial state.

The issue is that, in both languages, there will always be a discrepancy between the SC and code
created by the compiler (OC/EOC), because code has to be added to the constructors to at least
initialize the object’s variables and the object itself. In both languages, when no constructor is
specified, the compiler automatically generates an initial constructor with no code in it except
what is needed to create a reference to the object. In Java, the reference is the variable “this.”

The SC and OC/EOC will differ, because there will be OC/EOC that appears like any other
method signature. Specific things to look for are:

• Has a default constructor been created if there is none specified?

• For C++, if memory needs to be allocated and a default constructor created, does the

memory get allocated within the object?

• In the OC, have all arguments in the constructor been accounted for? In C++, has

memory been allocated?

• If there are multiple constructors, are all of them accounted for?

To resolve the issue, SCA tools should be developed, qualified, and used to examine every
constructor and the corresponding SC or OC/EOC to ensure each has been successfully
generated and corresponds with the constructor’s method signature. For SC without a
constructor, the tool should ensure a default constructor has been created. For all constructors,

7

there should be a reference to the particular object initialized. Some example constructor code is
presented in figure 5.

class Airplane extends java.lang.Object {
public Airplane(String,int);
}

Code

Airplane Boeing747 = new Airplane(“747”, 1000);

Constructor – Method public Airplane(java.lang.String,int)

Figure 5. Constructor Example

The bytecodes for the constructor example presented in figure 5 are presented in table 1. In
table 1, and all following tables where bytecode examples are given, the first column provides a
line reference number, the second column provides the bytecode, and the third column provides
a description.

Table 1. Constructor Example Bytecodes

Line Reference
Number Bytecode Description

0 aload_0 Push instance of object –

1 Invokespecial
#3

<Method java.lang.Object() – Base class for all
objects

4 aload_0
5 aload_1
6 Putfield #5 String input argument
9 aload_0
10 Iload_2
11 Putfield #4 Integer input argument
14 aload_0
15 aload_1
16 Iload_2
17 invokespecial #6 Store constructor data
20 Return

C++ has copy constructors that will also add additional OC/EOC. A copy constructor has the
same name as the class and is used to make a copy of the entire object, including any pointer and
dynamically allocated variables. C++ compilers automatically add a copy constructor if one is
not specified, producing OC/EOC that, again, differs from the SC (OC/EOC is present without
any corresponding SC).

8

A real danger exists when the compiler creates a copy constructor of an object requiring a deep
copy, that is, an object that allocates dynamic memory. When this is used to create an object,
memory will not be allocated and a program crash will occur when the object’s variable is used.
The following should be looked for when evaluating a C++ object’s copy constructor:

• Has the copy constructor been created by the developer or compiler?
• Does it take into account dynamically allocating memory?

2.3 INITIALIZERS.

In addition to constructors, Java also has initializers that automatically move blocks of code into
constructors. This, again, yields OC/EOC that is different from SC. A single-code block is
declared at the beginning of the class. When the class is compiled, all code in the initialization
block is moved into the constructor.

When initializers are used in Java, the SC and OC/EOC will always be different, as the compiler
moves the code from the initialization blocks into the constructor. The more constructors, the
more differences between the SC and the OC/EOC.

When analyzing Java code that uses initializers, one should ensure that each constructor contains
the code within the initialization block. When no constructor is specified but there is
initialization code, then the complier should create a new constructor with this code within it.

To resolve this issue, SCA tools need to be developed, qualified, and used to read the
initialization code block from the beginning of the class. Then the number of constructors needs
to be counted. As the tool looks over the OC/EOC, it should ensure that the initialization code is
contained in every constructor. The code can be contained explicitly or as a branch to a
subroutine that contains the initializer code.

The most important thing to look for is whether the code within the initializer block has been
added to all constructors. The companion report shows an example of this, including bytecode
[6].

2.4 FINALLY BLOCKS.

As part of the class mechanism for C++, supporting methods known as destructors are required
for a class [7]. Destructors release the memory for the object and close any shared or managed
resources. The destructor methods carry out whatever activities must be performed before an
object is no longer needed (e.g., free-managed resources and tasks).

In Java, shared or managed resources are closed within finally blocks within methods. These
always execute regardless of whether an exception was thrown or program execution exits
before the end of the code in the method.

The Java compiler implements the finally capability by adding a branch to a subroutine
containing the finally block code or by simply duplicating all the code within the finally block

9

before each exit point within a method whose code is surrounded by a try/catch block. Adding
these subroutines or finally code blocks causes a gap between the SC and compiled Java
OC/EOC.

The issue is that SC and OC/EOC will differ anytime there is a finally block of code, because the
compiler adds a branch to a subroutine at each exit point in a method that branches to the code in
the finally block or has a number of duplicate blocks of code inserted at each exit point. A major
concern is how the compiler determines where the exit points are located within the method.
The complexity of the method, the objects used, and the total number of lines of code in the
method will determine the number and position of the exit points within a method.

The first thing to look for is the accuracy of the rules that determine the endpoints within a
method. For safety-critical applications, these should be stricter than those used for conventional
Java. The second item to look for is whether these rules are correctly applied. Lastly, the SC
and OC/EOC code need to be compared to make sure that all subroutines branch to the correct
location.

The following example demonstrates the analysis for Java. Table 2 shows the bytecodes used
for branching to the “finally” subroutine. Depending on the size of the program, the compiler
will use either a “jsr” or “jsr_w” opcode. The “et” opcode just uses the “pointer” (address) to
return to program flow.

Table 2. Example Java Bytecodes

Opcode Operand(s) Description
Jsr branchbyte1, branchbyte2 pushes the return address, branches to

offset
jsr_w branchbyte1, branchbyte2, branchbyte3,

branchbyte4
pushes the return address, branches to
wide offset

et Index returns to the address stored in local
variable index

The example code is presented in figure 6.

10

Figure 6. Finally Example Code

The bytecode for the try/catch block code in figure 6 is presented in table 3.

Table 3. Java Bytecodes for the Finally Example

Line Reference
Number Bytecode Description

0 iload_200 Push local variable 200 (arg passed as divisor)
1 ifeq 1100 Push local variable 100 (arg passed as dividend)
4 iconst_1 Push int 100
5 istore_3 Pop an int (the 100), store into local variable 3
6 jsr 24 Jump to the subroutine for the finally clause <inserted by compiler>
9 iload_3 Push local variable 3 (the 100)

10 ireturn Return int on top of the stack (the 100)
11 iconst_200 Push int 200
12 istore_3 Pop an int (the 200), store into local variable 3

13 jsr 24 Jump to the subroutine for the finally clause<inserted by the
compiler>

16 iload_3 Push local variable 3 (the 200)
17 ireturn Return integer on top of the stack (the 200)

18 astore_1 Pop the reference to the thrown exception store Pop the reference to
the thrown exception

19 jsr 24 Jump to the subroutine for the finally clause<inserted by
the compiler>

20 aload_1 Push the reference (to the thrown exception) from local variable 1
23 athrow Rethrow the exception
24 astore_2 Pop the return address, store it in local variable 2
25 Getstatic #8 Get a reference to java.lang.System.out
28 ldc #1 Push <String “Values Returned.”> from the constant pool
30 invokevirtual #7 Invoke System.out.println()
33 Ret 2 Return to return address stored in local variable 2

11

http://www.javaworld.com/javaworld/jw-02-1997/jw-02-hood.html

In table 3, the bytecodes are shown for the code in figure 6. In lines 6, 13, and 19, the compiler
has inserted code that will branch to the finally clause, located at line 24. Lines 0 through 17
contain the code with the conditional loop and return values. From line 18 to 23, the exception is
handled; notice the call to the finally subroutine at line 19. From line 24 to 33 is the actual
finally clause code.

The try/catch block contains two exit points, one when the condition is True, and the other when
it is False. At each exit point a branch to the finally subroutine occurs, indicated by the jsr
instruction at instructions number 6 and 13 in table 7. Within the catch block of code, there is a
single exit point and another jsr instruction.

For smaller programs, the compiler simply recreated the code within the finally block a number
of times, creating even more discrepancy between the SC and bytecode. Table 4 shows another
bytecode representation of the same SC, however, this was compiled as a stand-alone class with
no optimization. Here, the functionality in the SC’s finally block is repeated for each exit point:
lines 7-15, 21-29, and 45-53. Lines 31 through 43 are not executed and are dead code. The
optimized version in table 8 is more efficient and has no dead code, using branches to a
subroutine. Traceability is easier without the subroutine branching and could be considered to
be the optimal way to compile the finally clauses.

Table 4. Alternate Java Bytecodes for the Finally Example

Line Reference
Number Bytecode Description

0 iload_0
1 ifeq 17
4 bipush 100
6 istore_1
7 getstatic #2 //Field java/lang/System.out;Ljava/io/PrintStream;
10 ldc #3 //String done
12 invokevirtual #4 //Method java/io/PrintStream.println;(Ljava/lang/String;)V
15 iload_1
16 ireturn
17 sipush 200
20 istore_1
21 getstatic #2 //Field java/lang/System.out;Ljava/io/PrintStream;
24 ldc #3 //String done
26 invokevirtual #4 //Method java/io/PrintStream.println;(Ljava/lang/String;)V
29 iload_1
30 ireturn
31 astore_1
32 iconst_0
33 istore_2

12

Table 4. Alternate Java Bytecodes for the Finally Example (Continued)

Line Reference
Number Bytecode Description

34 getstatic #2 //Field java/lang/System.out;Ljava/io/PrintStream;
37 ldc #3 //String done
39 invokevirtual #4 //Method java/io/PrintStream.println;(Ljava/lang/String;)V
42 iload_2
43 ireturn
44 astore_3
45 getstatic #2 //Field java/lang/System.out;Ljava/io/PrintStream;
48 ldc #3 //String done
50 invokevirtual #4 //Method java/io/PrintStream.println;(Ljava/lang/String;)V
53 aload_3
54 athrow

SCA tools and tests will have to verify methods like these by noting the exit points and making
sure they are correct. Afterwards, they can follow each exit point branch to make sure it runs the
finally code correctly with no errors and with control returning to the program at the end of the
subroutine.

3. OBJECT-CODE BRANCH COVERAGE ISSUES REQUIRING ADDITIONAL
CONSIDERATION.

The companion report established that OBC is not equivalent to MCDC in the general case [6].
The issues that need to be addressed when using OBC in place of MCDC are:

• The context of the decision. Some automated OCC analysis tools will only identify

decisions and conditions when they are associated with a branch point. Some tools will
only identify single condition decisions when they either are associated with a branch
point, use a Boolean logical operator (NOT), or use a relational operator (=, /=, <, <=, >,
or >=).

• The programming language employed. Some languages without an explicitly required

Boolean logical type (e.g., C, C++, and assembly) present difficulties for automated SCA
tools to identify all decisions and conditions.

• The analysis method employed by the coverage analyzers. Automated tools that perform

a syntactic scan, as opposed to a semantic one, are not capable of detecting all single
condition decisions.

• The identification and verification of independence pairs. Automated tools that monitor

conditions only when they are associated with a branch point (i.e., perform OBC) are not
capable of determining the independence of all conditions in certain decisions consisting
of three or more conditions.

13

To address these issues, one should understand what an SCA tool is monitoring, and thereby
measuring, and the implications for the SCA results. For the first three issues, if the SCA tool is
not capable of detecting and monitoring all decisions and conditions, then additional analysis
will need to be performed to cover the gaps left by the tool.

For the fourth issue, MCDC requires that a specific combination of condition values be executed
in order to show a condition’s independence [6]. At the OC/EOC level, this means that a
specific path must be taken through the predicate graph of the decision. Figure 7 shows the
predicate graph for the expression “(A OR B) AND C” when short-circuit forms are used.

Figure 7. Predicate Graph for (A OR B) AND C

For MCDC, for a condition’s independence to be demonstrated, it must be executed both True
and False, and the decision’s outcome must be different, and that condition’s change must be the
only significant change [9]. When that condition is the left-hand side (LHS) (right-hand side
(RHS)) of a short-circuiting AND, the RHS (LHS), when executed, must return a True result [9].
When that condition is the LHS (RHS) of a short-circuiting OR, the RHS (LHS), when executed,
must return a False [9]. This means that for A’s independence to be demonstrated, B must be
False when executed and C must be True when executed. For B’s independence to be
demonstrated, A must be False to execute B and C must be True when executed. For C’s
independence to be demonstrated, either A or B must be True to execute C.

Most OBC analysis tools will monitor whether each condition (A, B, and C) has been both True
and False. Given that this is known for the expression and predicate graph in figure 7, it is
known that C’s independence has been demonstrated. It is not known if B’s independence has
been demonstrated because it is possible that after B was True that C was False instead of the
required True. It is also not known if A’s independence was demonstrated, because it is not
known what values B and C executed after A was False and True, respectively.

To know if a condition’s independence was demonstrated or not, it must be known what paths
were taken through the predicate graph. If the coverage analysis tool’s monitoring and
measuring can be used to determine what paths were taken, and thereby what combinations of
conditions were executed, then a proper MCDC analysis can be conducted. Otherwise,
additional analysis to determine the paths will be required. As mentioned in Certification
Authorities Software Team (CAST)-17, OCC/EOCC analysis should provide equivalent results
to SCC analysis [10], and the only way discovered to accomplish that in this study was the
execution of independence pairs [6]. Note that the results concerning OBC of short-circuited
logic apply equally to both OOT software and non-OOT software.

14

4. SUMMARY.

This Handbook provides guidelines for developers, verifiers, and acceptors (generally regulators
or their designees) into issues and acceptance criteria for the use of SCA at the SC versus
OC/EOC levels within OOT in commercial aviation, as required by Objectives 5 though 8 of
Table A-7 in DO-178B. The intent of the SCA is to provide an objective assessment (measure)
of the completeness of the requirements-based tests and support the demonstration of the absence
of unintended function.

Guidelines were provided for the combined use of SCC analysis and OCC/EOCC analysis for
the following OOT features:

• Methods tables
• Constructors
• Initializers
• Finally blocks

The combined SCC and OCC/EOCC analyses differ from the current practice where the SCA is
conducted at either the SC level or the OC level. If combined analyses are not desired,
appropriate SC to OC/EOC traceability may be substituted. This traceability for all software
levels requiring SCA also differs from the common practice where SC to OC/EOC traceability is
needed for Level A only.

5. REFERENCES.

Note that links were known to be correct when this report was published.

1. “Software Considerations in Airborne Systems and Equipment Certification,” Document

No. RTCA/DO-178B, RTCA Inc., December 1, 1992.

2. Chilenski, J.J., Heck, D., Hunt, R., and Philippon, D., “Object-Oriented Technology
(OOT) Verification Phase 1 Report-Survey Results,” FAA contract DTFACT-03-P-
10383; deliverable, August 2004.

3. Knickerbocker, J., “Object-Oriented Software-Object-Oriented Technology in Aviation
(OOTiA) Survey,” a presentation to the 2005 FAA Software/CEH Conference, July
2005.

4. Chilenski, J.J., Timberlake, T.C., and Masalskis, J.M., “Issues Concerning the Structural
Coverage of Object-Oriented Software,” DOT/FAA/AR-02/113, November 2002.

5. “Handbook for Object-Oriented Technology in Aviation (OOTiA),” Revision 0, October
26, 2004, available at: http://faa.gov/aircraft/air_cert/design_approvals/air_software/oot/,
last visited July 24, 2006.

15

16

6. Chilenski, J.J. and Kurtz, J.L., “Object-Oriented Technology Verification Phase 3
Report—Structural Coverage at the Source and Object Code Levels,” FAA report
DOT/FAA/AR-07/20, August 2007.

7. Chilenski, J.J., Timberlake, T.C., and Masalskis, J.M., “Issues Concerning the Structural
Coverage of Object-Oriented Software,” DOT/FAA/AR-02/113, November 2002.

8. Chilenski, J.J. and Kurtz, J.L., “Object-Oriented Technology Verification Phase 2
Report—Data Coupling and Control Coupling,” FAA report DOT/FAA/AR-07/52,
August 2007.

9. Chilenski, J.J., “An Investigation of Three Forms of the Modified Condition Decision
Coverage (MCDC) Criterion,” FAA report DOT/FAA/AR-01/18, March 2001, available
at: http://faa.gov/aircraft/air_cert/design_approvals/air_software/research/.

10. Certification Authorities Software Team (CAST), Position Paper CAST-17, “Structural
Coverage of Object Code,” Completed June 2003, (Rev 3), available at:
http://faa.gov/aircraft/air_cert/design_approvals/air_software/cast/cast_papers/.

	Abstract
	Key Words
	Table of Contents
	List of Figures
	List of Tables

