Donald Savage Headquarters, Washington, DC November 15, 1994 (Phone: 202/358-1547) EMBARGOED UNTIL NOON Jim Elliott Goddard Space Flight Center, Greenbelt, MD (Phone: 301/286-6256) Ray Villard Space Telescope Science Institute, Baltimore (Phone: 410/338-4562) RELEASE: 94-188 HUBBLE RULES OUT A LEADING EXPLANATION FOR DARK MATTER Two teams of astronomers, working independently with NASA's Hubble Space Telescope (HST), have ruled out the possibility that red dwarf stars constitute the invisible matter, called dark matter, believed to account for more than 90 percent of the mass of the universe. Until now, the dim, small stars were considered ideal candidates for dark matter. Whatever dark matter is, its gravitational pull ultimately will determine whether the universe will expand forever or will someday collapse. "Our results increase the mystery of the missing mass. They rule out a popular but conservative interpretation of dark matter," said Dr. John Bahcall, professor of natural science at the Institute of Advanced Study, Princeton, NJ, and leader of one of the teams. The group, led by Bahcall and Andrew Gould of Ohio State University, Columbus, OH, (formerly of the Institute for Advanced Study), showed that faint red dwarf stars, which were thought to be abundant, actually are sparse in the Earth's home galaxy, and in the universe by inference. The team, led by Dr. Francesco Paresce of the Space Telescope Science Institute in Baltimore, MD, and the European Space Agency, determined that the faint red stars rarely form and that there is a cutoff point below which nature does not make this type of dim, low-mass star. The space telescope observations involved accurately counting stars and gauging their brightness. The observations overturn several decades of conjecture, theory and observation about the typical mass and abundance of the smallest stars in the universe. - more - - 2 - PREVIOUS GROUND-BASED RESULTS INCONCLUSIVE In our own stellar neighborhood, there are almost as many red dwarfs as there are all other types of stars put together. The general trend throughout our galaxy is that small stars are more plentiful than larger stars, just as there are more pebbles on the beach than rocks. This led many astronomers to believe that they were only seeing the tip of the iceberg and that many more extremely faint red dwarf stars were at the limits of detection with ground-based instruments. According to stellar evolution theory, stars as small as eight percent of the mass of the Sun are still capable of shining by nuclear fusion processes. Over the past two decades, theoreticians have suggested that the lowest mass stars also should be the most prevalent and therefore might provide a solution for dark matter. This seemed to be supported by previous observations with ground-based telescopes that hinted at an unexpected abundance of what appeared to be red stars at the faintest detection levels achievable from the ground. However, these prior observations were uncertain because the light from these faint objects is blurred slightly by Earth's turbulent atmosphere. This makes the red stars appear indistinguishable from the far more distant, diffuse-looking galaxies. PINNING DOWN THE LONG-SOUGHT HALO POPULATION Hubble's capabilities made it possible for the team of astronomers led by Bahcall and Gould to observe red stars that are 100 times dimmer than those detectable from the ground -- a level where stars can be distinguished easily from galaxies. Hubble Space Telescope's extremely high resolution also can separate faint stars from the much more numerous galaxies by resolving the stars as distinct points of light, as opposed to the "fuzzy" extended signature of a remote galaxy. Bahcall and Gould, with their colleagues Chris Flynn and Sophia Kirhakos (also of the Institute for Advanced Study, Princeton) used images of random areas in the sky taken with the HST Wide Field Planetary Camera 2 while the telescope was performing scheduled observations with other instruments. By simply counting the number of faint stars in the areas observed by HST, the scientists demonstrated that the Milky Way has relatively few faint red stars. The HST observations show that dim red stars make up no more than six percent of the mass in the halo of the Galaxy, and no more than 15 percent of the mass of the Milky Way's disk. The Galactic halo is a vast spherical region that envelops the Milky Way's spiral disk of stars, of which Earth's Sun is one inhabitant. - more - - 3 - FAINT RED STARS MISSING FROM A GLOBULAR CLUSTER By coincidence, Paresce pursued the search for faint red dwarfs after his curiosity was piqued by an HST image taken near the core of the globular cluster NGC 6397. He was surprised to see that the inner region was so devoid of stars, he could see right through the cluster to far more distant background galaxies. Computer simulations based on models of stellar population predicted the field should be saturated with dim stars-- but it wasn't. HST's sensitivity and resolution allowed Paresce, and co-investigators Guido De Marchi (Space Telescope Science Institute and the University of Firenze, Italy), and Martino Romaniello (University of Pisa, Italy) to conduct the most complete study to date of the population of the cluster (globular clusters are ancient, pristine laboratories for studying stellar evolution). To Paresce's surprise, he found that stars 1/5 the mass of our Sun are very abundant -- there are about 100 stars this size for every single star the mass of our Sun -- but that stars below that range are rare. "The very small stars simply don't exist," he said. A star is born as a result of the gravitational collapse of a cloud of interstellar gas and dust. This contraction stops when the infalling gas is hot and dense enough to trigger nuclear fusion, causing the star to glow and radiate energy. "There must be a mass limit below which the material is unstable and cannot make stars," Paresce emphasizes. "Apparently, nature breaks things off below this threshold." Paresce has considered the possibility that very low-mass stars formed long ago but were thrown out of the cluster due to interactions with more massive stars within the cluster, or during passage through the plane of our Galaxy. This process would presumably be common among the approximately 150 globular clusters that orbit the Milky Way. However, the cast-off stars would be expected to be found in the Milky Way's halo, and Bahcall's HST results don't support this explanation. THE SEARCH FOR DARK MATTER The HST findings are the latest contribution to a series of recent, intriguing astronomical observations that are struggling to pin down the elusive truth behind the universe's "missing mass." Models describing the origin of helium and other light elements during the birth of the universe, or "Big Bang," predict that less than 5% of the universe is made up of "normal stuff," such as neutrons and protons. This means more than 90% of the universe must be some unknown material that does not emit any radiation that can be detected by current instrumentation. Candidates for dark matter include black holes, neutron stars and a variety of exotic elementary particles. - more - - 4 - Within the past year, astronomers have uncovered indirect evidence for a dark matter candidate called a MACHO (MAssive Compact Halo Objects). These previous observations detected several instances of an invisible object that happens to lie along the line of sight to an extragalactic star. When the intervening object is briefly aligned between Earth and a distant star, it amplifies, or gravitationally lenses, the light from the distant star. The new HST finding shows that faint red stars are not abundant enough to explain the gravitational lensing events attributed to MACHOs. Bahcall cautions, however, that his results do not rule out other halo objects that could be smaller than the red stars such as brown dwarfs -- objects not massive enough to burn hydrogen and shine in visible light. Additional circumstantial evidence for dark matter in the halo of our galaxy has been inferred from its gravitational influence on the motions of stars within the Milky Way's disk. Recently, this notion was further supported by ground-based observations, made by Peggy Sachett of the Institute for Advanced Study, that show a faint glow of light around a neighboring spiral galaxy that is the shape expected for a halo composed of dark matter. This could either be light from the dark matter itself or stars that trace the presence of the galaxy's dark matter. The reality of dark matter also has been inferred from the motions of galaxies in clusters, the properties of high-temperature gas located in clusters of galaxies and from the relative amounts of light elements and isotopes produced in the Big Bang. The ultimate fate of the universe will be determined by the amount of dark matter present. Astronomers have calculated that the amount of matter -- planets, stars and galaxies -- observed in the universe cannot exert enough gravitational pull to stop the expansion which began with the Big Bang. Therefore, if the universe contains less than a critical density of matter, it will continue expanding forever, but if enough of the mysterious dark matter exists, the combined gravitational pull someday will cause the universe to stop expanding and eventually collapse. Bahcall stresses, "The dark matter problem remains one of the fundamental puzzles in physics and astronomy. Our results only sharpen the question of what is the dark matter." Bahcall's results appeared in the November 1, 1994 issue of the Astrophysical Journal. Paresce's paper will appear in the February 10, 1995, issue of the Astrophysical Journal. -more- -5- The Space Telescope Science Institute is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) for NASA, under contract with the Goddard Space Flight Center, Greenbelt, MD. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency (ESA). - end - NASA press releases and other information are available automatically by sending an Internet electronic mail message to domo@hq.nasa.gov. In the body of the message (not the subject line) users should type the words "subscribe press-release" (no quotes). The system will reply with a confirmation via E-mail of each subscription. A second automatic message will include additional information on the service. Questions should be directed to (202) 358-4043.