National Cancer Institute National Cancer Institute
U.S. National Institutes of Health National Cancer Institute
NCI Home Cancer Topics Clinical Trials Cancer Statistics Research & Funding News About NCI
Cardiopulmonary Syndromes (PDQ®)
Patient VersionHealth Professional VersionEn españolLast Modified: 01/23/2009



Purpose of This PDQ Summary






Overview






Dyspnea and Coughing in Patients With Advanced Cancer







Malignant Pleural Effusion






Malignant Pericardial Effusion






Superior Vena Cava Syndrome






Get More Information From NCI






Changes to This Summary (01/23/2009)






Questions or Comments About This Summary






More Information



Page Options
Print This Page  Print This Page
Print This Document  Print Entire Document
View Entire Document  View Entire Document
E-Mail This Document  E-Mail This Document
Quick Links
Director's Corner

Dictionary of Cancer Terms

NCI Drug Dictionary

Funding Opportunities

NCI Publications

Advisory Boards and Groups

Science Serving People

Español
Quit Smoking Today
NCI Highlights
Report to Nation Finds Declines in Cancer Incidence, Death Rates

High Dose Chemotherapy Prolongs Survival for Leukemia

Prostate Cancer Study Shows No Benefit for Selenium, Vitamin E

The Nation's Investment in Cancer Research FY 2009

Past Highlights
Malignant Pleural Effusion

Significance
Pathogenesis
Assessment
Management of Malignant Pleural Effusions
        To treat or not to treat
        Thoracentesis
        Use of pleural sclerosing agents
        Surgical treatment



Significance

Malignant pleural effusions are a common complication of malignancy, and malignancy is a common cause of pleural effusions in general. Malignancy accounts for roughly 40% of symptomatic pleural effusions, with congestive heart failure and infection being the other leading causes.[1] Lung cancer, breast cancer, lymphoma, and leukemia account for approximately 75% of all malignancy-associated effusions. Significant use of health care resources is attributable to malignant effusions, with approximately 100,000 cases per year being diagnosed in the United States and 43 cases being detected per 100,000 hospital admissions.[2]

Pathogenesis

The normal pleural fluid space is occupied with approximately 10 cc of fluid with 2 g/dL protein. A pleural effusion is an accumulation of an abnormal amount of fluid between the visceral and parietal pleura of the chest. Normally, pleural fluid is absorbed by pulmonary venous capillaries (80%–90%), with some of it also absorbed by pleural lymphatics. Malignant effusions are usually exudative rather than transudative. Exudative effusions exhibit any one of the following characteristics:[3]

  • Pleural fluid:serum protein ratio greater than 0.5.
  • Pleural fluid:serum lactate dehydrogenase (LDH) ratio greater than 0.6.
  • Pleural fluid LDH greater than two thirds of the upper limit of serum LDH.

These exudative malignant effusions are generally caused by pleural metastases, disruption of pulmonary capillary endothelium, or malignant obstruction of pleural lymphatics. Paramalignant effusions may result from chemotherapy, radiation therapy, atelectasis, and/or lymph node involvement.

Assessment

Common symptoms associated with malignant pleural effusions include dyspnea, cough, and chest discomfort. About 20% of patients may experience weight loss and malaise. A chest x-ray is most commonly used for radiographic assessment. About 175 cc of pleural fluid will cause a blunted costophrenic angle discernible on chest radiography. A chest computerized tomography scan is more sensitive than a simple chest x-ray and is often used for assessment of loculated effusions because, in some instances, up to 500 cc of loculated fluid can be obscured behind the dome of the diaphragm.[1]

Not all pleural effusions detected in cancer patients will turn out to be malignant effusions. Cancer patients are prone to developing conditions such as congestive heart failure, pneumonia, pulmonary embolism, and malnutrition, each of which may cause a symptomatic effusion for which the clinical management would substantially differ from the management of a malignant effusion. For this reason, cytologic assessment is important. Pleural fluid cytology requires a minimum sample of 250 cc. The morphology of cells obtained from the pleural space can be difficult to assess because of mesothelial and macrophage abnormalities. The diagnostic sensitivity of pleural fluid cytology is approximately 65%, with a specificity of 97%.[1] Flow cytometry can be applied to these specimens and is often useful, especially for assessment of lymphomas. Thoracoscopy and pleural biopsy are rarely needed for definitive diagnosis, but these techniques may be useful when routine pleural fluid collection and assessment are difficult because of loculation of the effusion. Thoracoscopy-guided biopsy is generally performed under local anesthesia and has a yield of more than 80%, with a lower risk of complications than thoracotomy.

Management of Malignant Pleural Effusions

To treat or not to treat

Pleural effusions are generally markers of advanced, unresectable disease or disease progression. The prognosis for patients with malignant pleural effusions is often measured in weeks.[4] Because a paramalignant effusion due to pneumonia or atelectasis may be present, the cytology should be confirmed before major treatment decisions are made. Once the cytology has been confirmed, the management strategy depends on the underlying primary malignancy and the number and type of previous therapies. For example, patients with newly diagnosed small cell carcinoma or malignant lymphoma are very likely to respond to systemic chemotherapy; however, patients who have already failed several lines of chemotherapy for gastric or ovarian cancer are unlikely to obtain significant palliation with systemic therapy.

About three quarters of patients exhibit symptoms such as cough, dyspnea, and/or chest discomfort. Such patients may benefit from efforts to reduce the fluid burden, depending on their performance status, expected survival, and preference for risks versus benefits. The literature on the efficacy of treatment for pleural effusions is difficult to interpret because of the paucity of randomized trials and the wide variability in the response criteria and the timing and duration of follow-up in uncontrolled trials.[5,6] Generally, the goal of therapy is palliation of symptoms. Measures of success may include complete drainage of the effusion, lung re-expansion, lack of fluid reaccumulation (i.e., duration of response), and subjective report of symptom relief.

Thoracentesis

Thoracentesis involves percutaneous insertion of a needle for drainage of the effusion. Thoracentesis is not expected to permanently resolve the problem, but rather to alleviate symptoms that are acute and severe. The use of thoracentesis is also appropriate as a therapeutic trial to determine whether fluid drainage is beneficial when the relationship between symptoms and effusion is unclear.

Most effusions will reaccumulate a few days after thoracentesis. Repeated thoracenteses carry the potential risks of bleeding, infection, and pneumothorax. Other potential complications of thoracentesis include noncardiogenic pulmonary edema from rapid lung re-expansion (usually with the rapid removal of >1,500 cc) and pleural shock caused by an excessive vagal response to penetration of the parietal pleura. Any of these complications may be lethal, especially for the cancer patient with poor cardiopulmonary reserve.

Use of pleural sclerosing agents

Chemical sclerosants may be administered through a chest tube to create inflammation and subsequent fusion of the parietal and visceral pleura so that fluid cannot reaccumulate in this potential space. This kind of fusion is called pleurodesis. Numerous chemical agents can cause the irritation necessary to produce pleurodesis. The ideal agent would produce effective pleurodesis with minimal cost and minimal side effects. Agents that have been studied include chemotherapeutic agents (bleomycin, cisplatin, etoposide, doxorubicin, mitomycin-C, fluorouracil), antibiotics (doxycycline, minocycline, tetracycline), infectious agents (Corynebacterium parvum), biological agents (interferon beta, interleukin-2), bovine dermal collagen,[7] and other agents (talc, methylprednisolone). Several uncontrolled trials and case series report the efficacy of pleurodesis,[8-12] as do numerous randomized trials.[13-19] A meta-analysis of pleurodesis studies reported between 1966 and 1992 indicates that about two thirds of patients respond to pleurodesis and that tetracyclines (or tetracycline replacement agents such as doxycycline and minocycline), bleomycin, and talc appear to be the most effective agents.[20] A prospective randomized study of videoassisted thoracoscopic pleurodesis with talc versus doxycycline in 33 patients with malignant pleural effusion suggests that talc provides superior short-term and long-term results.[21] Talc appears to be the least expensive agent, at least when given as a slurry rather than by video-assisted thoracoscopic talc insufflation.[19] Bleomycin, however, is the only agent approved by the Food and Drug Administration for the prevention of recurrent pleural effusions.[1] An observational cohort study investigated the use of intrapleural urokinase in 48 patients with loculated pleural effusions or trapped lungs. Lung reexpansion and resolution of dyspnea occurred in approximately 60% of patients, suggesting that intrapleural urokinase may be useful in treating loculated pleural effusions or trapped lungs in medically inoperable cancer patients. Most responders successfully maintained pleurodesis when urokinase was followed by minocycline pleurodesis.[22]

Surgical treatment

For rare patients, standard management of the malignant effusion is unsuccessful and aggressive treatment remains appropriate. Pleuroperitoneal shunting can be considered for these patients. This procedure involves implantation of a shunt with one-way valves that allow the transfer of fluid from the pleural space to the peritoneal space, in which the fluid creates less hazard and is more easily removed. Another option is surgical pleurectomy, but this procedure requires general anesthesia. The risks of significant acute and chronic pain as well as other morbidity approaches 20% to 25%, and the risk of 1-month mortality is 5% to 10%.[2]

References

  1. Maghfoor I, Doll DC, Yarbro JW: Effusions. In: Abeloff MD, Armitage JO, Lichter AS, et al., eds.: Clinical Oncology. New York, NY: Churchill Livingstone, 2000, pp 922-49. 

  2. Fiocco M, Krasna MJ: The management of malignant pleural and pericardial effusions. Hematol Oncol Clin North Am 11 (2): 253-65, 1997.  [PUBMED Abstract]

  3. Light RW: Useful tests on the pleural fluid in the management of patients with pleural effusions. Curr Opin Pulm Med 5 (4): 245-9, 1999.  [PUBMED Abstract]

  4. Chernow B, Sahn SA: Carcinomatous involvement of the pleura: an analysis of 96 patients. Am J Med 63 (5): 695-702, 1977.  [PUBMED Abstract]

  5. Tattersall M: Management of malignant pleural effusion. Aust N Z J Med 28 (3): 394-6, 1998.  [PUBMED Abstract]

  6. Schafers SJ, Dresler CM: Update on talc, bleomycin, and the tetracyclines in the treatment of malignant pleural effusions. Pharmacotherapy 15 (2): 228-35, 1995 Mar-Apr.  [PUBMED Abstract]

  7. Akopov AL, Egorov VI, Varlamov VV, et al.: Thoracoscopic collagen pleurodesis in the treatment of malignant pleural effusions. Eur J Cardiothorac Surg 28 (5): 750-3, 2005.  [PUBMED Abstract]

  8. Gravelyn TR, Michelson MK, Gross BH, et al.: Tetracycline pleurodesis for malignant pleural effusions. A 10-year retrospective study. Cancer 59 (11): 1973-7, 1987.  [PUBMED Abstract]

  9. Heffner JE, Standerfer RJ, Torstveit J, et al.: Clinical efficacy of doxycycline for pleurodesis. Chest 105 (6): 1743-7, 1994.  [PUBMED Abstract]

  10. Holoye PY, Jeffries DG, Dhingra HM, et al.: Intrapleural etoposide for malignant effusion. Cancer Chemother Pharmacol 26 (2): 147-50, 1990.  [PUBMED Abstract]

  11. Markman M, Cleary S, King ME, et al.: Cisplatin and cytarabine administered intrapleurally as treatment of malignant pleural effusions. Med Pediatr Oncol 13 (4): 191-3, 1985.  [PUBMED Abstract]

  12. Ostrowski MJ, Priestman TJ, Houston RF, et al.: A randomized trial of intracavitary bleomycin and Corynebacterium parvum in the control of malignant pleural effusions. Radiother Oncol 14 (1): 19-26, 1989.  [PUBMED Abstract]

  13. Martínez-Moragón E, Aparicio J, Rogado MC, et al.: Pleurodesis in malignant pleural effusions: a randomized study of tetracycline versus bleomycin. Eur Respir J 10 (10): 2380-3, 1997.  [PUBMED Abstract]

  14. Emad A, Rezaian GR: Treatment of malignant pleural effusions with a combination of bleomycin and tetracycline. A comparison of bleomycin or tetracycline alone versus a combination of bleomycin and tetracycline. Cancer 78 (12): 2498-501, 1996.  [PUBMED Abstract]

  15. Zimmer PW, Hill M, Casey K, et al.: Prospective randomized trial of talc slurry vs bleomycin in pleurodesis for symptomatic malignant pleural effusions. Chest 112 (2): 430-4, 1997.  [PUBMED Abstract]

  16. Patz EF Jr, McAdams HP, Erasmus JJ, et al.: Sclerotherapy for malignant pleural effusions: a prospective randomized trial of bleomycin vs doxycycline with small-bore catheter drainage. Chest 113 (5): 1305-11, 1998.  [PUBMED Abstract]

  17. Yim AP, Chan AT, Lee TW, et al.: Thoracoscopic talc insufflation versus talc slurry for symptomatic malignant pleural effusion. Ann Thorac Surg 62 (6): 1655-8, 1996.  [PUBMED Abstract]

  18. Nio Y, Nagami H, Tamura K, et al.: Multi-institutional randomized clinical study on the comparative effects of intracavital chemotherapy alone versus immunotherapy alone versus immunochemotherapy for malignant effusion. Br J Cancer 80 (5-6): 775-85, 1999.  [PUBMED Abstract]

  19. Noppen M, Degreve J, Mignolet M, et al.: A prospective, randomised study comparing the efficacy of talc slurry and bleomycin in the treatment of malignant pleural effusions. Acta Clin Belg 52 (5): 258-62, 1997.  [PUBMED Abstract]

  20. Walker-Renard PB, Vaughan LM, Sahn SA: Chemical pleurodesis for malignant pleural effusions. Ann Intern Med 120 (1): 56-64, 1994.  [PUBMED Abstract]

  21. Kuzdzał J, Sładek K, Wasowski D, et al.: Talc powder vs doxycycline in the control of malignant pleural effusion: a prospective, randomized trial. Med Sci Monit 9 (6): PI54-9, 2003.  [PUBMED Abstract]

  22. Hsu LH, Soong TC, Feng AC, et al.: Intrapleural urokinase for the treatment of loculated malignant pleural effusions and trapped lungs in medically inoperable cancer patients. J Thorac Oncol 1 (5): 460-7, 2006.  [PUBMED Abstract]

Back to TopBack to Top

< Previous Section  |  Next Section >


A Service of the National Cancer Institute
Department of Health and Human Services National Institutes of Health USA.gov