

TABLE OF CONTENTS

1.0 Overview of caCORE ..1

1.1 Introduction: The NCICB Core Infrastructure...2
1.2 The caCORE Standards ...2
1.3 Organization of this Guide...5

2.0 The Unified Modeling Language...6

2.1 Use Case diagrams...8
2.2 The Class diagram..9
2.3 The Rose Web Publisher Pages ...13
2.4 Package diagrams...15
2.5 Collaboration and Sequence diagrams...16

3.0 The caBIO Domain Objects...19

3.1 The Object Hierarchies ..20
3.2 The caBIO Domain Object Catalog...23

4.0 The EVS Domain Objects..31

4.1 The UMLS Metathesaurus...33
4.2 Knowledge Representations and Description Logic..34
4.3 Description Logic in the NCI Thesaurus ...38
4.4 Concept Edit History in the NCI Thesaurus ..39
4.5 The caBIO EVS API..40
4.6 The EVS Search Paradigm...42
4.7 The EVS Domain Object Catalog..46
4.8 Downloading the NCI Thesaurus ..48
4.9 Mapping of the Gene Ontology to Ontylog ...52

5.0 The caDSR Domain Objects..54

5.1 Modeling Metadata: The ISO/IEC 11179 Standard ..55
5.2 The caDSR Metamodel..58
5.3 The caDSR API..63
5.4 Downloading the caDSR..66
5.5 The caDSR Domain Object Catalog ..66

6.0 The caMOD Domain Objects ..73

6.1 The Mouse Models of Human Cancers Consortium..74
6.2 The caMOD API ..75
6.3 The caMOD Domain Object Catalog ..78

7.0 The caCORE MAGE-OM API ..86

7.1 The GEDP Project..87
7.2 The caCORE MAGE-OM API ..88
7.3 Installing a MAGE-OM Java Client ..90

 i

7.4 The caBIO Bridge to MAGE ...91

8.0 Search Criteria Objects and the caCORE APIs ...92

8.1 The Java API Search/Retrieve Paradigm...94
8.2 How the caBIO Search Paradigm Operates ...97
8.3 The SOAP API...98
8.4 The HTTP Interface ...99
8.5 Summary of Search Controls in the Different APIs ..99
8.6 The caBIO SearchCriteria Catalog ..100
8.7 The EVS SearchCriteria Catalog ...109
8.8 The caDSR SearchCriteria Catalog ...110
8.9 The caMOD SearchCriteria Catalog..117

9.0 The caCORE Package Architecture...124

9.1 Organization of Packages in caCORE ...125
9.2 The caBIO DAS Package...128

10.0 Advanced Search Methods ..130

10.1 Basic and Advanced Search Methods..131
10.2 Constructing the query tree..132
10.3 Building the GridSearchCriteria ..133
10.4 Executing the Search and Interpreting the Results ..134
10.5 Building More Complex Queries...134
10.6 Roles and Attributes...137

11.0 The caBIO Java API ..140

11.1 Installing a caBIO Client ...141
11.2 Installing the caBIO Server..145

12.0 Code Examples ..146

12.1 The caBIO GeneDemo program ..147
12.2 The EVSDemo Program ..148
12.3 The caDSR Demo Program ...148
12.4 The caMOD Demo Program..149
12.5 The MAGE-OM Demo Program ...149

13.0 The SOAP API and Web Services...151

13.1 The SOAP API and caBIO ..152
13.2 Using the SOAP API with Perl and SOAP::LITE...153
13.3 The caBIO SOAP Services Catalog...157
13.4 The EVS SOAP Services Catalog..171
13.5 The caDSR SOAP Services Catalog..171
13.6 The caMOD Soap Services Catalog ..181

14.0 The HTTP Interface ...188

14.1 Overview..189
14.2 Using the HTTP Interface..190

 ii

14.3 Drilling Down Through XLinks ..194
14.4 Controlling the Number of Items Returned ...194
14.5 Specifying the IP Address and Port in the URL ..194
14.6 Applying XSL to XML Output..194
14.7 The HTTP Operation Catalog..195
14.8 The caBIO HTTP Catalog ...196
14.9 The EVS HTTP Catalog ..201
14.10 The caDSR HTTP Catalog...202
14.11 The caMOD HTTP Catalog ...205

15.0 The caCORE Data Sources..210

15.1 Data Sources in the caBIO Database ...211
15.2 References..220

Appendix A: The GeneDemo Program..222

Appendix B: The EVSDemo Program...227

Appendix C: The CaseReportFormDemo Program...233

Appendix D: The CancerModelDemo Program ..237

Appendix E: The MageTest Program ..241

Appendix F: The caBIO_MageTest Program..246

Appendix G: The SearchPkgExample Program ..250

Appendix H. geneClient.pl ..253

LIST OF FIGURES

Figure 2.1-1 CGAP Browser Use Case..8

Figure 2.2-1 The caBIO Domain Objects Class diagram ..9

Figure 2.2-2 (a) Schematic for a UML class. (b) A simple class called Gene10

Figure 2.2-3 Rational Rose access modifier representations...11

Figure 2.2-4 A one-to-one association with unidirectional navigability11

Figure 2.2-5 A bidirectional many-to-one relation..12

Figure 2.2-6 Aggregation and association ...12

Figure 2.2-7 Generalization relationship ...13

Figure 2.3-1 The caBIO object managers ..14

Figure 2.3-2 Interface as the stereotype name ...15

Figure 2.4-1 The caCORE packages..15

 iii

Figure 2.5-1 Collaboration between objects ..16

Figure 2.5-2 Collaboration diagram for retrieving genes ..17

Figure 2.5-3 Sequence diagram for retrieving genes...17

Figure 3.1-1 The domain object hierarchy...20

Figure 3.1-2 The SearchCriteria inheritance hierarchy ..21

Figure 4.2-1 An earthquake in a semantic network of news stories ..35

Figure 4.2-2 Propositional versus first-order predicate logic ..35

Figure 4.3-1. An overview of the NCI Thesaurus infrastructure...38

Figure 4.4-1 History records for the split action..40

Figure 4.5-1 The caBIO EVS API domain object classes ...41

Figure 4.6-1 Middleware Interfaces to the EVS Databases...43

Figure 5.1-1 Representing data in the ISO/IEC 11179 model ...56

Figure 5.1-2 Abstract and concrete components of the data representation................................57

Figure 5.1-3 Many-to-one mappings of information elements in the metadata model57

Figure 5.2-1 Information component infrastructure in the metamodel58

Figure 5.2-2 Administrative and organizational components of the caDSR metamodel61

Figure 5.2-3 Components in the caDSR metamodel for clinical trials data62

Figure 5.3-1 The caDSR domain objects in the caCORE Java API ..64

Figure 5.3-2 The caDSR API class hierarchy..65

Figure 6.2-1 The caMOD class hierarchy..76

Figure 6.2-2 The UML Class diagram for the caMOD Domain Objects77

Figure 7.1-1 The caCORE MAGE-OM API to GEDP..88

Figure 7.2-1 A high-level view of the MAGE-OM API from a client perspective.....................89

Figure 8-1 The caBIO architecture..93

Figure 8.2-1 The logical deployment of the caBIO packages for data retrieval..........................97

Figure 9.1-1 The caCORE 1.0 package structure ..125

Figure 10.4-1 Assembled Code for Example 2..136

Figure 10.4-2 Sample Output from Example 2..137

Figure 10.6-1 The association roles between Gene and Taxon ...139

Figure 10.6-2 Objects with multiple association roles ..139

Figure 11.1-1 The caBIO Java API ...141

Figure 11.1-2 Screen shot of GeneDemo output ...144

 iv

Figure 13.1-1 The caBIO architecture and the SOAP interface ..153

Figure 14.1-1 The caBIO HTTP interface ...189

Figure 14.7-1 XML excerpt in response to the Gene operation ..196

Figure 15.1-1 caBIO objects supporting basic research ..212

Figure 15.1-2 caBIO objects supporting clinical research...213

LIST OF TABLES

Table 4.1-1 NCI local source vocabularies included in the Metathesaurus.34

Table 4.4-1 The NCI Thesaurus concept history table ..39

Table 4.8-1 Ontylog DTD to OWL conversions ...51

Table 4.9-1 Ontylog elements used for GO mapping ..52

Table 4.9-2 Mapping of GO term to Ontylog conceptDef...53

Table 5.2-1 Information components in the caDSR metamodel..59

Table 5.2-2 Class attributes of an AdministeredComponent..60

Table 5.2-3 Components in the caDSR metamodel for clinical trials data..................................63

Table 6.1-1 The web interface information pages for the Cancer Models Database...................75

Table 8.1-1. Common methods implemented by all SearchCriteria objects94

Table 8.5-1 Attributes controlling the way reuslts are returned ..100

Table 8.6-1 caBIO putSearchCriteria arguments..100

Table 8.8-1 caDSR putSearchCriteria arguments ...110

Table 8.9-1 caMOD putSearchCriteria arguments ...117

Table 9.1-1 The caCORE Packages...126

Table 9.1-2 caCORE Packages Summaries ...126

Table 10.1-1Central objects used in the advanced search methods...131

Table 13.2-1 Frequently used caBIO SOAP services..154

Table 13.3-1 Mapping web services to methods ...168

Table 14.2-1 Summary of the HTTP syntax..193

 v

1.0 OVERVIEW OF caCORE

 1

1.1 Introduction: The NCICB Core Infrastructure
The last decade has produced a wealth of genomic information that has just begun to be

examined. With this accumulation of bioinformatic data has come a paradigm shift to
translational research, and a directive to more quickly advance discoveries in basic research to
multifaceted clinical settings and trials. This calls not only for advanced analytic tools and
customized data warehouses, but, in addition, for computational environments and software tools
that support the development of complex data-mining and information management tasks.

The National Cancer Institute’s Center for Bioinformatics (NCICB) has as its mission the
goal of bridging these diverse initiatives via a core infrastructure called caCORE. The collection
of NCICB web sites described in this technical guide and in the accompanying user manual
provide web-based analysis tools and integrated data repositories, as well as a rich development
environment for implementing bioinformatics applications.

As described in the NCICB Applications User Manual, clinical and basic research scientists
can find web-based tools for the analysis of genomic and clinical data as well as for the
development of clinical trials protocols. For the clinical researcher, the Cancer Data Standards
Repository (caDSR) provides metadata support for developing clinical trials protocols, and the
controlled vocabularies available from the Enterprise Vocabulary Services (EVS) provide a
semantic integration of the many diverse medical terminologies in use today.

For the cancer research scientist, these NCICB interfaces provide access to

• the Cancer Genome Anatomy Project (CGAP),
• the Cancer Models Database (caMOD),
• the Cancer Molecular Analysis Project (CMAP),
• the Cancer Images database (caIMAGE), and
• the Gene Expression Data Portal (GEDP).

Behind this array of web tools, data repositories, and biomedical informatics services is the
“caCORE stack”—a set of core technologies providing the necessary middleware and knowledge
infrastructure to serve the cancer research community. This document provides a technical guide
to the caCORE, for users intending to make use of the application programming interfaces
(APIs), and, more generally, for anyone who wants to look “under the hood,” to better
understand the philosophies and vision at NCICB.

The accompanying NCICB Applications User Manual describes the various types of cancer
research information and services available via the web, and includes step-by-step instructions
on how to access these resources, along with simple examples.

1.2 The caCORE Standards
In addition to providing software and data repositories, the caCORE serves a critical role in

defining standards—in biomedical nomenclature, data modeling, and shared data elements, as
well as in the processes whereby these models and elements are developed. A guiding principle
throughout all of the NCICB projects is the need to establish and/or adhere to agreed-upon
standards of data representation, exchange, and manipulation.

 2

The caCORE infrastructure is composed of three primary components: the Enterprise
Vocabulary Services, the Cancer Data Standards Repository, and the Cancer Bioinformatics
Infrastructure Objects (caBIO). The “standards stack” integrates

• controlled vocabularies (dictionaries, ontologies, and thesauri),
• common data elements (metadata), and
• object models of entities within and across each domain.

The EVS, managed cooperatively with the NCI Office of Communications, provides a set of
standardized, controlled vocabularies for the life sciences, along with tools and guidelines for the
development and curation of such vocabularies. The vocabularies and ontologies managed by the
EVS span multiple disciplines and domains, including human and mouse pathology,
epidemiology, molecular biology, genetics, clinical trials, patient care, and various other
biomedical and bioinformatic application areas. The EVS team is also working closely with the
developers of the Semantic Web, and the ontologies available through the EVS can be
downloaded in both ASCII and OWL format.

The caDSR addresses a related but somewhat orthogonal aspect of data representation and
exchange; specifically, the need to standardize the data representations, report forms, and
protocols implemented in clinical trials. Although much data have accrued over the years in
ongoing clinical trials, to date, little effort has been made to standardize the methods of record-
keeping and reporting. As a result, an enormous amount of valuable information that could be
used to advance efforts in related studies has become effectively inaccessible, and the capacity to
generalize important results from these legacy data has been precluded.

Based on the ISO11179 standard for metadata, the caDSR manages the NCI Common Data
Elements (CDEs) and provides a registry in an Oracle 8i database for agreed-upon clinical terms
and their usage. In the previous release (caCORE 1.0), the EVS and caDSR were related but
separate efforts. One of the new features of caCORE 2.0 is the interface between these two
components: caDSR users can now access the EVS terminologies and definitions, and use these
as the basis for curating new data elements.

This interaction between the two projects is further enhanced by the new EVS feature,
"Suggest New Term," which allows curators to request new terms as needed. The EVS staff
reviews such requests and, working with the caDSR curators, creates new terms to enrich the
NCI vocabularies as well. This interface represents a first step towards establishing a well-
defined process for curating new data elements, as well as towards achieving a global
harmonization of the terms and concepts used in the controlled vocabularies and in clinical
applications.

While the EVS and the caDSR address the representational needs and standardization issues
involved in controlled vocabularies, report forms, and terminologies, the caBIO project provides
a comprehensive set of predefined data structures, programming interfaces, and customized data
sources to support the development of advanced software applications seeking to elucidate the
molecular basis of cancer.

Many of the data structures and development tools provided by caBIO were initially
developed in response to the need to directly access information provided by the Cancer Genome
Anatomy Project web site. CGAP is an interactive web site providing access to vast reserves of

 3

genomic information filtered by tissue type, histological status, chromosome location, and
biological pathways. Some applications that have used the CGAP resources include

• Analysis of correlations between allelic variants of genes and disease states,
• Identification of single-nucleotide polymorphisms from EST chromatograms,
• Identification of potential tumor markers and antigens,
• In silico cloning of novel endothelial-specific genes, and
• Clustering of highly expressed genes in chromosomal domains.

But caBIO is more than a programmatic interface to CGAP; it provides access to many other
data sources, as well as to software development tools that are customized for bioinformatic
data-mining applications. One such application is NCI’s Cancer Molecular Analysis Project,
which enables researchers to identify and evaluate molecular targets in cancer. The CMAP web
site was developed using the data structures and software tools provided by the caBIO
infrastructure.

caBIO provides domain objects (Genes, Chromosomes, Sequences, etc.) that, in conjunction
with search criteria objects, encapsulate the complexities of cross-platform data exchange and
SQL query statements. For the reader familiar with caCORE 1.0, this second major release of
caCORE introduces numerous additional domain objects, providing access to the EVS
vocabularies, the Cancer Models Database, the GEDP database, and the Cancer Data Standards
Repository. Some of the resources and data caBIO supplies access to include

• NCI’s CGAP, CMAP, and Genetic Annotation Initiative (GAI) databases;
• Unigene, Homolgene, and LocusLink data from the National Center for Biotechnology

Information (NCBI)
• The Distributed Annotation Server (DAS) at UCSC; and
• BioCarta Pathway data.

In keeping with the principle of conformance to emerging standards for data exchange, all of
the caBIO data objects are “XML aware,” and their design embodies many of the principles
advocated by the Life Sciences Research Group at the Object Management Group (OMG).
Several transparent programming interfaces are available, to support the developer’s language of
choice—including Java, Perl, C++, Python, or even HTML. All of the caBIO web services have
associated Web Services Description Language files (WSDLs).

caBIO is available as open source, and was developed using best software practices. The
development process is an integral part of the end product, and the philosophy at NCI has been
to combine the principles of the Rational Unified Process with the agility of eXtreme
programming methodology. The Unified Modeling Language (UML) is a critical part of this
process, and UML diagrams that convey the internal design elements and implementation of
caBIO are used throughout this guide.

In summary, the caCORE infrastructure brings a set of bridging technologies to the frontiers
of cancer research. The EVS provides a web interface to vocabulary resources spanning over 70
controlled vocabularies specific to the areas of cancer research, prevention, and treatment. The
caDSR provides a platform for registered common data elements to be used in the development
of protocols, adverse event reports, and clinical report forms for use in clinical trials. The caBIO
software development tools provide domain modeling of both the bioinformatic and the

 4

administrative components of these efforts and supply access to both customized data
warehouses and public databases.

1.3 Organization of this Guide
Chapter 2 provides a brief review of the UML diagrams used to depict the caCORE Java

classes, their relations to one another, and their interactions. Chapter 3 then outlines the
hierarchical relations and shared behaviors of the caBIO domain objects, and concludes with a
catalog of these objects. Chapters 4 through 7 describe the additional domain objects which have
evolved from this original set of caBIO domain objects. Each chapter is devoted to a new
application domain, covering the EVS, caDSR, caMOD, and MAGE-OM APIs respectively. The
first three of these are integrated with the caBIO objects at the package level, and share a
common design framework. The MAGE-OM API is based on the Object Management Group
(OMG) specifications for the Microarray Gene Expression (MAGE) object model, and, therefore
has a different design structure.

Chapter 8 defines the caBIO search criteria object paradigm. A general discussion of how
these objects interact with the domain objects to retrieve data for the user is provided, along with
specifications of the syntax and parameters to be used in their deployment. All of the interfaces,
including the Simple Object Access Protocol (SOAP) API and the HTTP interface, operate on
these domain objects and their associated search criteria objects. Thus, the discussion in Chapter
8 provides a basis for understanding the software mechanisms whereby all of the caCORE search
capabilities are defined. A search criteria object catalog then summarizes this information for
quick reference.

Chapter 9 outlines the package structure used in the design of the caCORE APIs, and Chapter
10 discusses the classes in one type of package in particular, the search packages. The search
classes and methods defined in those packages are used in the implementation of the BIOgopher
interface (described in the NCICB Applications User Manual); a discussion of it is included here
for advanced programmers who may wish to deploy this capability in similar applications.

Chapters 11 provides instructions for installing and using the caCORE Java API. The
installation instructions document the client installation for users who intend to access data via
the NCI servers. Detailed instructions fpr the complete installation of the caBIO server and
database are provided in the Readme file that is included in the distribution package. Chapter 12
discusses the sample demonstration programs that are included in the appendices.

Chapter 13 introduces the caBIO Web Services API and their deployment via SOAP using
tools such as SOAP: Lite for Perl. Chapter 14 documents the HTTP interface and provides
specifications of the methods and parameters to be used in its deployment. Finally, Chapter 15
summarizes the data sources made available through these interfaces.

 5

http://www.mged.org/Workgroups/MAGE/mage-om.html
http://www.omg.org/

2.0 THE UNIFIED MODELING LANGUAGE

 6

The caCORE APIs were initially designed to provide programmatic access to the caBIO
databases only. However, the confluence of independent projects at NCI has redefined and
extended the requirements of these APIs, and they now provide an integration platform and
infrastructure for several efforts, including

• The Enterprise Vocabulary Services,
• The Cancer Data Standards Repository,
• The Cancer Models Database,
• The Gene Expression Data Portal,
• The Cancer Images Database,
• The Cancer Genome Anatomy Project, and
• The Cancer Molecular Analysis Project.

These efforts are at various stages of integration with the larger caCORE design, and the
intention is that the caBIO domain objects, which form the core of the APIs, will ultimately
provide a variety of application programming interfaces for all of these resources. A good deal of
documentation on these objects is available in the Unified Modeling Language at various
NCICB web sites; the purpose of this chapter is to familiarize the reader who has not worked
with UML with the notation and interpretation of these diagrams.

The UML is an international standard notation for specifying, visualizing, and documenting
the artifacts of an object-oriented system. Defined by the Object Management Group, the UML
emerged as the result of several complementary systems of software notation and has now
become the de facto standard for visual modeling.

In its entirety, the UML is composed of nine different types of diagrams. Perhaps the most
intuitive of these are the Use Case and Class diagrams. A Use Case diagram uses simple ball and
stick figures with labeled ellipses and arrows to signify how users or other software agents might
interact with the system. A Class diagram offers a compact representation of the classes, their
static relations to one another, and, optionally, the class attributes and operations.

The caBIO development team applies Use Case analysis in the early design stages to
informally capture high-level system requirements. Later in the design stage, as classes and their
relations to one another begin to emerge, Class Diagrams help to define the static attributes,
functionalities, and relations that must be implemented. As design progresses, other types of
interaction diagrams are used to capture the dynamic behaviors and cooperative activities the
objects must execute. Finally, additional diagrams, such as the Component, Package, and
Deployment diagrams, can be used to represent pragmatic information such as the physical
locations of source modules and the allocations of resources.

Many good development tools provide support for generating UML diagrams. In addition to
providing a customizable interface for creating diagrams, the Rational RoseTM software package
also offers web publishing tools to disseminate the models by generating a suite of HTML pages.
The resulting documents, originally generated during design and development, provide value
throughout the software life cycle as they can rapidly familiarize new users of the system with
the logic and structure of the underlying design elements. The Rose object model of the caBIO
software can be browsed on the caBIO Object Model pages.

Each diagram type captures a different view of the system, emphasizing specific aspects of the
design such as the class hierarchy, message-passing behaviors between objects, the configuration

 7

http://www.omg.org/
http://www.rational.com/uml/index.jsp
http://ncicb.nci.nih.gov/content/coreftp/rose/caBIO2-0/root.html

of physical components, and user interface capabilities. Only a subset of these diagrams is
discussed here, beginning with the Use Case diagram.

2.1 Use Case diagrams

Use Case: 1 Browse CGAP Web Site
--
CHARACTERISTIC INFORMATION
Goal: To find genetic information about the molecular characterization of normal, precancerous,

 and malignant cells, utilizing the tools available at the CGAP site.
Preconditions: The user’s browser has been directed to the web site URL.
Success End Condition: The user finds genetic information of interest.
Failed End Condition: The user is unable to use the web site to find information.
Primary Actor: Researcher

MAIN SUCCESS SCENARIO
1. The user is presented with a screen in which he/she can:

- Find genes by tissue, function, cytogenetic location, title (use case Find Genes by Attribute).
- Find genes by symbol, accession number, cluster number (use case Find Genes by Name).
- Find genes by search by nucleotide sequences (use case Find Genes by Sequence).
- Find candidate, validated, and confirmed SNPs in genes (use case Browse CGAP GAI Site).
- View the curated lists of cancer genes (use case View Gene List).

2. The user may select to continue to any part of CGAP.

Figure 2.1-1 CGAP Browser Use Case

A good starting point for capturing system requirements is to develop structured textual
descriptions of how users will interact with the system. While there is no hard and fast
predefined structure, Use Case descriptions typically consist of an Actor, a process, a list of

 8

steps, and a set of pre- and post-conditions. In most cases, it is also good practice to show the
post-conditions associated with success as well as failure. Figure 2.1-1 shows a sample Use Case
diagram for browsing the CGAP web site, along with a textual description. Additional examples
of Use Cases can be viewed by clicking here

steps, and a set of pre- and post-conditions. In most cases, it is also good practice to show the
post-conditions associated with success as well as failure. Figure 2.1-1 shows a sample Use Case
diagram for browsing the CGAP web site, along with a textual description. Additional examples
of Use Cases can be viewed by clicking here.1

2.2 The Class diagram
The system designer utilizes the Use Case diagrams to identify the classes that must be

implemented in the system, their attributes and behaviors, and the relationships and cooperative
activities that must be realized. A Class diagram is used later in the design process to illustrate
the hierarchy of classes and their static relationships at varying levels of detail. Figure 2.2-1
shows an abbreviated version of a UML Class diagram depicting many of the caBIO domain
objects.

1

0..

<<Interface>
>

0..

GoOntologyRelationship

0..

<<Interface>>
Relationable

<<Interface>
>

DiseaseRelationship

0..

ClinicalTrialProtocol 0..

0..

Agent

OrganRelationshi

1..
0..

0..

0..1..0..

1

0..

0..

0..

0..

0..1

1

1

Library

0..

1.. 0..

1

0..

TraceFile

1 Tissue

1

0..

1

ProteinHomolog
1..

MapLocatio

0..
Pathway

0..
CMAPOntology

1

Chromosome

11

0..
GeneAlias

0..

1

0..

Sequenc1..
1

1

ConsensusSequence

1

0..
0..

GoOntolog
Protocol

Taxon

ReadSequence

Histopathology

ESTExperiment SAGEExperimen

ExpressionExperiment

Conti

Target Anomal

DiseasOrgan

ExpressionFeature

Gene

GeneHomolog
SNP

Protein

Clone

Figure 2.2-1 The caBIO Domain Objects Class diagram

Several different types of objects are defined in the caBIO Java API; the two major types are
domain objects, which are designed to represent class objects in specific scientific domains, and
the SearchCriteria objects, which are associated with these domain objects. The domain objects

1 Depending upon your browser, you may not be able to see the entire model. In Internet Explorer (IE), there
may be no scroll bar in the left panel, depending on your Java Runtime Environment (JRE). To solve this problem,
install the latest Java™ 2 Runtime Environment (the current Standard Edition is 1.4.0). In IE, then go to Tools
Internet Options Advanced and uncheck the box under Java (Sun)—"Use Java 2 1.4.x_xx for <applet>." Make
sure also that the checkbox in the HTML published model "Display documentation" is checked.

 9

http://ncicb.nci.nih.gov/NCICB/core/caBIO/technical_resources/use_cases
http://ncicb.nci.nih.gov/NCICB/core/caBIO/technical_resources/use_cases

encapsulate those attributes and properties that uniquely identify the object. For example, the
Gene object encodes the gene’s symbol and RefSeqId, along with various other attributes. The
associated GeneSearchCriteria object is engineered to use these attributes as selection criteria in
a constructed SQL query.

encapsulate those attributes and properties that uniquely identify the object. For example, the
Gene object encodes the gene’s symbol and RefSeqId, along with various other attributes. The
associated GeneSearchCriteria object is engineered to use these attributes as selection criteria in
a constructed SQL query.

Figure 2.2-1 is not an exhaustive catalog of the domain objects in caBIO but, instead, depicts
a subset that is primary to bioinformatics applications and cancer research. Class objects can
have a variety of possible relationships to one another, including “is derived from,” “contains,”
“uses,” “is associated with,” etc. The UML provides specific notations to designate these
different kinds of relations, and enforces a uniform layout of the objects’ attributes and methods
— thus reducing the learning curve involved in interpreting new software specifications or
learning how to navigate in a new programming environment.

Figure 2.2-1 is not an exhaustive catalog of the domain objects in caBIO but, instead, depicts
a subset that is primary to bioinformatics applications and cancer research. Class objects can
have a variety of possible relationships to one another, including “is derived from,” “contains,”
“uses,” “is associated with,” etc. The UML provides specific notations to designate these
different kinds of relations, and enforces a uniform layout of the objects’ attributes and methods
— thus reducing the learning curve involved in interpreting new software specifications or
learning how to navigate in a new programming environment.

Figure 2.2-2 (a) is a schematic for a UML class representation, and 2.2-2 (b) is an example of
how a simple class might be represented in this scheme. The enclosing box is divided into three
sections: The topmost section provides the name of the class, and is often used as the identifier
for the class; the middle section contains a list of attributes (data members) for the class; the
bottom section lists the object’s operations (methods). In the example below, (b) specifies the
Gene class as having a single attribute called sequence and a single operation called
getSequence():

Figure 2.2-2 (a) is a schematic for a UML class representation, and 2.2-2 (b) is an example of
how a simple class might be represented in this scheme. The enclosing box is divided into three
sections: The topmost section provides the name of the class, and is often used as the identifier
for the class; the middle section contains a list of attributes (data members) for the class; the
bottom section lists the object’s operations (methods). In the example below, (b) specifies the
Gene class as having a single attribute called sequence and a single operation called
getSequence():

Class

-attribute
+operation()

(a)

Gene
-sequence
+getSequence()

(b)

Figure 2.2-2 (a) Schematic for a UML class. (b) A simple class called Gene Figure 2.2-2 (a) Schematic for a UML class. (b) A simple class called Gene

The operations and attributes of an object are called its features. The features, along with the
class name, constitute the signature, or classifier, of the object. The UML provides explicit
notation for the permissions assigned to a feature. UML tools vary with respect to how they
represent their private, public, and protected notations for their Class diagrams.

The operations and attributes of an object are called its features. The features, along with the
class name, constitute the signature, or classifier, of the object. The UML provides explicit
notation for the permissions assigned to a feature. UML tools vary with respect to how they
represent their private, public, and protected notations for their Class diagrams.

The caBIO classes represented in Figure 2.2-1 show only class names; both the operations
and attributes are suppressed in that diagram. This is an example of a UML view: Details are
hidden where they might obscure the bigger picture the diagram is intended to convey. Most
UML design tools, such as Rational Rose, provide means for selectively suppressing visible
details without removing the information from the underlying design model. In Figure 2.2-1, the
emphasis is on the relationships that are defined among the objects, rather than on any particular
class’s features.

The caBIO classes represented in Figure 2.2-1 show only class names; both the operations
and attributes are suppressed in that diagram. This is an example of a UML view: Details are
hidden where they might obscure the bigger picture the diagram is intended to convey. Most
UML design tools, such as Rational Rose, provide means for selectively suppressing visible
details without removing the information from the underlying design model. In Figure 2.2-1, the
emphasis is on the relationships that are defined among the objects, rather than on any particular
class’s features.

Rational Rose uses variants on a lock and key icon (Figure 2.2-3) to indicate that a feature is
public, protected, or private. Alternative notations use a “-” prefix for private features, a “+” for
public features, and a “#” for protected features. In the above example, the Gene object’s
sequence attribute is private and can only be accessed using the public getSequence() method.

Rational Rose uses variants on a lock and key icon (Figure 2.2-3) to indicate that a feature is
public, protected, or private. Alternative notations use a “-” prefix for private features, a “+” for
public features, and a “#” for protected features. In the above example, the Gene object’s
sequence attribute is private and can only be accessed using the public getSequence() method.

In more detailed Class diagrams, it is common practice to display only those features that are
part of the object’s interface. An interface is the externally visible behavior of a class or
component. In most cases, this means that only the object’s public methods are shown, as the

In more detailed Class diagrams, it is common practice to display only those features that are
part of the object’s interface. An interface is the externally visible behavior of a class or
component. In most cases, this means that only the object’s public methods are shown, as the

 10

attributes are generally private or protected. The most salient information contained in Figure
2.2-1 is the objects’ names and their relationships to one another, which are described next.
attributes are generally private or protected. The most salient information contained in Figure
2.2-1 is the objects’ names and their relationships to one another, which are described next.

Figure 2.2-3 Rational Rose access modifier representations

A quick glance at Figure 2.2-1 shows that most of the other classes are organized around the
Gene and Sequence classes. These two classes are themselves related to each other, by the has-a
relation. More generally, the relationships occurring among the caBIO objects are of three types:
association, aggregation, and generalization. The most primitive of these relationships is
association, which represents the ability of one instance to send a message to another instance.
The relationship between the Gene and Sequence classes is an example of an association and is
depicted by a simple straight line connecting the two classes.

Optionally, a UML relation can have a label providing additional semantic information, as
well as numerical ranges such as 1..n at its endpoints. These cardinality constraints indicate that
the relationship is one-to-one, one-to-many, many-to-one, or many-to-many, according to the
ranges specified and their placement. For example, the Gene-to-Chromosome relation in Figure
2.2-1 is many-to-one.

Protocol Library has

Figure 2.2-4 A one-to-one association with unidirectional navigability

UML relations may also have directionality, as in Figure 2.2-4. Here, a Library object is
uniquely associated with a Protocol object, with an arrow denoting unidirectional navigability.
Specifically, the Library object has access to the Protocol object (i.e., there is a getProtocol()
method), but the Protocol object does not have access to the Library object.

 11

Figure 2.2-5 depicts a bidirectional many-to-one relation between Sequence objects and Clone
objects. Each Sequence may have at most one Clone associated with it, while a Clone may be
associated with many Sequences. To get information about a Clone from the Sequence object
requires calling the getSequenceClone() method. Each Clone in turn can return its array of
associated Sequence objects using the getSequences() method. This bidirectional relationship is
shown using a single undirected line between the two objects.

Figure 2.2-5 depicts a bidirectional many-to-one relation between Sequence objects and Clone
objects. Each Sequence may have at most one Clone associated with it, while a Clone may be
associated with many Sequences. To get information about a Clone from the Sequence object
requires calling the getSequenceClone() method. Each Clone in turn can return its array of
associated Sequence objects using the getSequences() method. This bidirectional relationship is
shown using a single undirected line between the two objects.

 +1 +1..n
Clone Sequence

Figure 2.2-5 A bidirectional many-to-one relation Figure 2.2-5 A bidirectional many-to-one relation

Another relationship exhibited by caBIO objects is aggregation, which denotes a whole/part
relationship. This relationship is exactly the same as an association with the exception that
instances cannot have cyclic aggregation relationships (i.e., a part cannot contain its whole). So
a Library can contain Clones but not vice-versa. Aggregation is represented by empty diamonds,
as shown in the Clone-to-Library relation of Figure 2.2-6.

Another relationship exhibited by caBIO objects is aggregation, which denotes a whole/part
relationship. This relationship is exactly the same as an association with the exception that
instances cannot have cyclic aggregation relationships (i.e., a part cannot contain its whole). So
a Library can contain Clones but not vice-versa. Aggregation is represented by empty diamonds,
as shown in the Clone-to-Library relation of Figure 2.2-6.

comprises generated from

+1 +1..n +1 +1..n

Sequence

Library Clone Trace

+1..n

+1

Figure 2.2-6 Aggregation and association Figure 2.2-6 Aggregation and association

Figure 2.2-6 shows a more complex network of relations. This diagram indicates that: Figure 2.2-6 shows a more complex network of relations. This diagram indicates that:

(a)
(b)
(c)

(a)
(b)
(c)

one or more Sequences is associated with a Clone; one or more Sequences is associated with a Clone;
the Clone is contained in a Library, which comprises one or more Clones; and the Clone is contained in a Library, which comprises one or more Clones; and
the Clone may have one or more Traces. the Clone may have one or more Traces.

Only the relationship between the Library and the Clone is an aggregation. The others are
simple associations.

Only the relationship between the Library and the Clone is an aggregation. The others are
simple associations.

In the UML, the empty diamond of aggregation designates that the whole maintains a
reference to its part. More specifically, this means that while the Library is composed of Clones,
these contained objects may have been created prior to the Library object’s creation, and so will
not be automatically destroyed when the Library goes out of scope.

In the UML, the empty diamond of aggregation designates that the whole maintains a
reference to its part. More specifically, this means that while the Library is composed of Clones,
these contained objects may have been created prior to the Library object’s creation, and so will
not be automatically destroyed when the Library goes out of scope.

All information retrieval in caBIO is implemented by search methods associated with the
caBIO objects. Indeed, the quintessential operation is to instantiate a “blank” instance of the
desired object type, define appropriate search criteria to select specific instances of that type
from the databases, and use the search results to populate either the original instance itself or,
alternatively, an array of instances, in the event that more than one match is found. More
information about this paradigm will be detailed in Chapters 3 and 8, which discuss the caBIO
domain objects and their associated search criteria and search result objects. A comprehensive
listing of all of the domain objects, along with their attributes and methods, is available at the
caBIO JavaDocs

All information retrieval in caBIO is implemented by search methods associated with the
caBIO objects. Indeed, the quintessential operation is to instantiate a “blank” instance of the
desired object type, define appropriate search criteria to select specific instances of that type
from the databases, and use the search results to populate either the original instance itself or,
alternatively, an array of instances, in the event that more than one match is found. More
information about this paradigm will be detailed in Chapters 3 and 8, which discuss the caBIO
domain objects and their associated search criteria and search result objects. A comprehensive
listing of all of the domain objects, along with their attributes and methods, is available at the
caBIO JavaDocs page.

 12

http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/index.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/index.html

The final relationship to be covered in this discussion of Class diagrams is generalization.
Figure 2.2-7 depicts a generalization relationship between the SequenceVariant parent class and
the Repeat and SNP classes. Classes participating in generalization relationships form a
hierarchy, as depicted here.

The final relationship to be covered in this discussion of Class diagrams is generalization.
Figure 2.2-7 depicts a generalization relationship between the SequenceVariant parent class and
the Repeat and SNP classes. Classes participating in generalization relationships form a
hierarchy, as depicted here.

Generalization denotes a taxonomic relationship between a more general element and a more
specific element. The more specific element is fully consistent with the more general element (it
has all of its properties, members, and relationships) and may contain additional information.
Both the SNP and Repeat objects follow that definition. The superclass-to-subclass relationship
is designated by connecting unidirectional empty arrow heads, as shown in the SequenceVariant-
to-Repeat and SequenceVariant-to-SNP relations of Figure 2.2-7.

Generalization denotes a taxonomic relationship between a more general element and a more
specific element. The more specific element is fully consistent with the more general element (it
has all of its properties, members, and relationships) and may contain additional information.
Both the SNP and Repeat objects follow that definition. The superclass-to-subclass relationship
is designated by connecting unidirectional empty arrow heads, as shown in the SequenceVariant-
to-Repeat and SequenceVariant-to-SNP relations of Figure 2.2-7.

has a
+1

SequenceVariant

Allele

+1

+1

is a

+1

is a

Repeat

SNP

Figure 2.2-7 Generalization relationship Figure 2.2-7 Generalization relationship

In summary, Class diagrams represent the static structure of a set of classes. Class diagrams,
along with Use Cases, are the starting point when modeling a set of classes. Recall that an object
is an instance of a class. Therefore, when the diagram references objects, it is representing
dynamic behavior, whereas when it’s referencing classes, it is representing the static structure.

In summary, Class diagrams represent the static structure of a set of classes. Class diagrams,
along with Use Cases, are the starting point when modeling a set of classes. Recall that an object
is an instance of a class. Therefore, when the diagram references objects, it is representing
dynamic behavior, whereas when it’s referencing classes, it is representing the static structure.

2.3 The Rose Web Publisher Pages 2.3 The Rose Web Publisher Pages
As noted, the Class diagram in Figure 2.1.1 is a reduced form of the complete Class diagram.

A more complete view can be found at the caBIO Object Model
As noted, the Class diagram in Figure 2.1.1 is a reduced form of the complete Class diagram.

A more complete view can be found at the caBIO Object Model pages.2 The contents of these
pages were extracted automatically from the Java source code by the Rational Rose Web
Publisher facility. Each page generates two frames; the tree structure on the left-hand side
provides an index to the different views, and the right-hand side displays the diagrams associated
with the currently selected view. To view the full caBIO Class diagram:

1. Expand the Logical View folder located in the upper-left frame.
2. Double click on the Main icon.
3. Click on any object in the model to view its related attributes and associates.

The tables displayed in response to selecting an element in the Class diagram are summaries
of the class generated by the Rose Publisher. For example, selecting the Protocol class brings up
a page showing several tables, including:

 13

2 See the previous footnote on updating your JRE if you cannot view the complete model.

http://ncicb.nci.nih.gov/content/coreftp/rose/caBIO2-0/root.html
http://ncicb.nci.nih.gov/content/coreftp/rose/caBIO2-0/root.html

Class Protocol {Analysis} Class Protocol {Analysis}

Parent Package Parent Package Logical ViewLogical View Abstract No

Export Control PublicAccess Link Class for None

Class Kind NormalClass Cardinality n

Space Concurrency Sequential

Persistence No

Attributes

Name Class Type Initial Value

id Protocol Long

name Protocol String

type Protocol String

description Protocol String

The columns in these tables are grouped as attribute-value pairs. Thus, in the first table, the
parent package for this class is the Logical View—not Export Control, which is another attribute
whose value is PublicAccess.

RMI

Object
Managers

Data
Access
Objects

Object Layer

Presentation
Layer

Data
Layer

Domain
Objects

Figure 2.3-1 The caBIO object managers

Double clicking on Logical View/Managers brings up a diagram illustrating the relationship
between the various Manager objects and the objects that they manage. As depicted
schematically in Figure 2.3-1, the Manager objects act as intermediaries to both the client side
and the data sources on the back end, brokering requests and retrieving data as needed. The
Logical View/ExpressionClasses detail shows both inheritance relationships among expression
classes as well as their usage of related classes.

Some of these diagrams introduce additional UML notation not yet discussed — specifically,
the interface notation. For example, the Logical View/Beans diagram shows a few beans and a
few interfaces. A UML diagram may explicitly label an interface using the <<interface>>
notation, thus making it part of its stereotype name:

 14

+ExpressionExperiment

ExpressionExperiment<<interface>>
BioSampleable

+ExpressionLevel

Figure 2.3-2 Interface as the stereotype name

Alternatively, a diagram may use the so-called “lollipop notation,” where an interface is
represented by a label and a small circle, as in:

BioSampleable

2.4 Package diagrams
Large-scale software design is a highly complex activity. As the number of classes grows to

satisfy the evolving requirements of an application, the overall architectural design can quickly
become obscured by this proliferation of design elements. A UML package is a logical grouping
of semantically related elements, and is depicted as a labeled rectangle with a smaller rectangle
attached to its upper left corner, somewhat resembling a file folder.

Packaging can be applied to any type of UML diagram, and a Package diagram is any UML
diagram composed only of packages. Most commonly, packaging is used to simplify Use Case
and Class diagrams. The Package diagram is not one of the nine standard UML diagrams, but as
it provides a convenient way of depicting the organization of software components into packages
it is described here.

bea

webserviceservle
ne

manage

d

Figure 2.4-1 The caCORE packages

The concept of a package in a software application is similar but not identical to the notion of
a UML package. Figure 2.4-1 is an abstract representation showing five logical packages that
collaborate to implement the HTTP and SOAP interfaces in caCORE. The db package at the
bottom provides access to the backend database; the net and manager packages provide
middleware; and the servlet and webservices packages at the top implement the HTTP and
SOAP interfaces, respectively. In the actual Java implementation, each database has its own
bean package, for example, gov.nih.nci.cabio.bean, gov.nih.nci.cadsr.bean, etc. These packages
are described in more detail in Chapter 9.

 15

The organization of software components into packages is used to increase reusability and to
minimize compile-time dependencies. It is highly unusual to reuse a single class, but quite
common to reuse a collection of related classes that collaborate to produce some desired
functionality. The UML models of the caCORE software that are available on the Rose Publisher
pages approximately reflect the actual Java package structure but do not have a one-to-one
correspondence.

The organization of software components into packages is used to increase reusability and to
minimize compile-time dependencies. It is highly unusual to reuse a single class, but quite
common to reuse a collection of related classes that collaborate to produce some desired
functionality. The UML models of the caCORE software that are available on the Rose Publisher
pages approximately reflect the actual Java package structure but do not have a one-to-one
correspondence.

The purpose of the next two types of diagrams is to describe the dynamic behavior of selected
sets of objects—specifically, their communications and sequences of execution.

The purpose of the next two types of diagrams is to describe the dynamic behavior of selected
sets of objects—specifically, their communications and sequences of execution.

2.5 Collaboration and Sequence diagrams 2.5 Collaboration and Sequence diagrams
Collaboration diagrams are used to describe interactions among different objects or classes. A

Collaboration diagram can describe both the static structure and the dynamic behavior of a
system. The structure of a Collaboration diagram generally will include two components. First,
it may include a set of Object Instances and Class Names, or just the Class Names alone. Second,
the messages and their directional nature are described by the arrows. Messages can be
unidirectional or bidirectional and are typically method calls within the code.

Collaboration diagrams are used to describe interactions among different objects or classes. A
Collaboration diagram can describe both the static structure and the dynamic behavior of a
system. The structure of a Collaboration diagram generally will include two components. First,
it may include a set of Object Instances and Class Names, or just the Class Names alone. Second,
the messages and their directional nature are described by the arrows. Messages can be
unidirectional or bidirectional and are typically method calls within the code.

A : Class B : Class
setValue(): Message1()

Figure 2.5-1 Collaboration between objects Figure 2.5-1 Collaboration between objects

Figure 2.5-1 is an example of collaboration between objects A and B, which are represented
by rectangles. The black arrow and method call depict the dependency between these two
objects: Object A calls the setValue() method that is on object B. A may have a dependency on
the return value or may just need to change the state of B.

Figure 2.5-1 is an example of collaboration between objects A and B, which are represented
by rectangles. The black arrow and method call depict the dependency between these two
objects: Object A calls the setValue() method that is on object B. A may have a dependency on
the return value or may just need to change the state of B.

Figure 2.5-2 diagrams the collaborations of caBIO objects called into action when searching
for a gene. Four objects participate in the collaboration, as indicated by the leading colons in the
labels. The user initiates the activity by invoking the getGeneList() method on a Gene object.
The Gene object passes this message on to the GeneManagerProxy object, which in turn passes
it on to the GeneManager object. The GeneManager then invokes the searchGenes() method on
a GenePersistence object, which finally forwards the request to the database as an SQL select
statement.

Figure 2.5-2 diagrams the collaborations of caBIO objects called into action when searching
for a gene. Four objects participate in the collaboration, as indicated by the leading colons in the
labels. The user initiates the activity by invoking the getGeneList() method on a Gene object.
The Gene object passes this message on to the GeneManagerProxy object, which in turn passes
it on to the GeneManager object. The GeneManager then invokes the searchGenes() method on
a GenePersistence object, which finally forwards the request to the database as an SQL select
statement.

As indicated by the messages, each of the first three objects implements the getGeneList()
method, and the argument, in each case, is a GeneSearchCriteria object. This interaction
between domain objects—such as the Gene in this case—and the associated search criteria
object, is elaborated on in Chapters 3 and 8. The object managers and their proxies serve to
insulate the domain objects from both the data and presentation layers, thus allowing for a clean
separation between the logical design and the business rules of the implementation.

As indicated by the messages, each of the first three objects implements the getGeneList()
method, and the argument, in each case, is a GeneSearchCriteria object. This interaction
between domain objects—such as the Gene in this case—and the associated search criteria
object, is elaborated on in Chapters 3 and 8. The object managers and their proxies serve to
insulate the domain objects from both the data and presentation layers, thus allowing for a clean
separation between the logical design and the business rules of the implementation.

 16

:Gene

:GeneManager

:GeneManagerProxy

:GenePersistence

USER
1: getGeneList(GeneSearchCriteria)

2: getGeneList(GeneSearchCriteria)

3: getGeneList(GeneSearchCriteria)

4: searchGenes(GeneSearchCriteria)

Database

5: Select

Figure 2.5-2 Collaboration diagram for retrieving genes

Figure 2.5-3 shows a Sequence diagram depicting the same activities over time. Sequence
diagrams are very much like Collaboration diagrams in that they describe interactions among
objects. The Sequence diagram, however, describes the interaction of objects in terms of an
exchange of messages over time.

:Gene :GeneManager:Gene
ManagerProxy

:Gene
Persistence

USER Database :
(Database)

1: getGeneList(GeneSearchCriteria)

2: getGeneList(GeneSearchCriteria)

3: getGeneList(GeneSearchCriteria)

4: searchGenes(GeneSearchCriteria)

5: Select

Figure 2.5-3 Sequence diagram for retrieving genes

 17

The components of a Sequence diagram are very much the same as those of a Collaboration
diagram. The Sequence diagram represents instantiated objects and their associated interactions
as messages. However, the orientation of a Sequence diagram allows it to introduce a time
component as represented by the horizontal bars. The diagram is read from top to bottom and
describes the sequence of execution. The next several chapters provide more details of the
domain objects developed for the various applications supported by the caCORE APIs.

 18

3.0 THE caBIO DOMAIN OBJECTS

 19

3.1 The Object Hierarchies 3.1 The Object Hierarchies
Most of the packages prefixed by gov.nih.nci.cabio were initially defined in the caCORE 1.0

release. At that time, the primary application domains supported by the software involved
genomic analysis, and the primary data types were centered around genes, taxa, sequences,
diseases, and expression data. The term “domain objects” was used to distinguish those objects
that modeled domain-specific entities from the more general implementation classes involved in
the presentation and data layers.

Most of the packages prefixed by gov.nih.nci.cabio were initially defined in the caCORE 1.0
release. At that time, the primary application domains supported by the software involved
genomic analysis, and the primary data types were centered around genes, taxa, sequences,
diseases, and expression data. The term “domain objects” was used to distinguish those objects
that modeled domain-specific entities from the more general implementation classes involved in
the presentation and data layers.

The caBIO domain objects are implemented as Java beans in the gov.nih.nci.caBIO.beanThe caBIO domain objects are implemented as Java beans in the gov.nih.nci.caBIO.bean
package, and include those classes that correspond to biological entities and bioinformatic
concepts. As depicted in Figure 3.1-1, the domain objects in the bean package define a wide,
shallow hierarchy that is just three levels deep. The caBIO domain objects descend directly from
PersistentCaBIOBean, and only four of the domain objects have subclasses.

(all other domain objects)

ExpressionExperiment Agent Tissue Gene

ProteinHomolog

Protein Sequence

GeneHomolog

ReadSequence

…

ConsensusSequence
ESTExperiment SAGEExperiment

PersistentCaBIOBean

Figure 3.1-1 The domain object hierarchy

Additional logical and tactical structures, however, derive from the interfaces implemented by
some of these domain objects, and from related bean objects, such as the SearchCriteria beans
and a small set of “relationable” objects.

Each domain object Xxx has a corresponding SearchCriteria named XxxSearchCriteria. Thus,
for example, there is a GeneSearchCriteria object and a LibrarySearchCriteria object
corresponding to the Gene and Library domain objects, respectively. The inheritance relations
that hold among the SearchCriteria objects reflect their associations with the domain objects
and, in addition, capture the interfaces that are implemented by some of the domain objects.
Figure 3.1-2 shows the SearchCriteria object hierarchy.

All objects in the bean package implement the java.io.serializable interface. In addition, all
domain objects implement gov.nih.nci.caBIO.util.XMLInterface, thus facilitating their transport
to the Presentation Layer where the SOAP and HTTP APIs are implemented.

 20

http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caBIO/bean/package-frame.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caBIO/bean/package-frame.html

TissueSearchCriteria

ExpressionExperimentSearchCriteria

ESTExperimentSearchCriteria

SAGEExperimentSearchCriteria

OntologySearchCriteria

CMAPOntologySearchCriteria

GoOntologySearchCriteria

DiseaseSearchCriteria

OrganSearchCriteria

Re

AgentSearchCriteria

.

.

. (all other SearchCriteria objects)

lationshipSearchCriteria

DiseaseRelationshipSearchCriteria

GoOntologyRelationshipSearchCriteria

OrganRelationshipSearchCriteria

 CMAPOntologyRelationshipSearchCriteria

SearchCriteria

Figure 3.1-2 The SearchCriteria inheritance hierarchy Figure 3.1-2 The SearchCriteria inheritance hierarchy

Specifically, each domain object implements the following methods: Specifically, each domain object implements the following methods:

• toXML() – returns an XML-encoding of all of the object’s “top-level” attributes (i.e.,
number and character-valued features), with all “deeper” information (e.g., arrays,
embedded objects, etc.) encoded as XLinks. This is the default XML-encoding for the
SOAP and HTTP interfaces. The notion of an Xlink is similar to a pointer or reference in
a programming language; the XML Linking Language (XLink) allows complex elements
to be embedded in XML documents as URLs that can be subsequently deployed to
retrieve the elements themselves.

• toXML() – returns an XML-encoding of all of the object’s “top-level” attributes (i.e.,
number and character-valued features), with all “deeper” information (e.g., arrays,
embedded objects, etc.) encoded as XLinks. This is the default XML-encoding for the
SOAP and HTTP interfaces. The notion of an Xlink is similar to a pointer or reference in
a programming language; the XML Linking Language (XLink) allows complex elements
to be embedded in XML documents as URLs that can be subsequently deployed to
retrieve the elements themselves.

 21

• toXMLDOC() – returns an XML-encoding of all of the object’s attributes; i.e., all XLinks
are filled in one level deep. This method implements the getHeavyXML options used by
the SOAP and HTTP interfaces.

• toXMLProcessor(...) – takes a list of fillin tags specifying which XLinks are to be
selectively expanded in the XML-encoding.

Six additional interfaces are defined in gov.nih.nci.caBIO.bean: Expressable, EVSInterface,
ExpressionLevel, GeneInterface, Ontologable, and Relationable. Several of these interfaces are
implemented by only one or two classes as they represent a software design the caBIO project is
either migrating towards or away from.

The Expressable and GeneInterface interfaces represent shared functionality that will be more
fully implemented in future releases. Currently, only the Gene object implements Expressable.
This interface defines a single method: getExpression(), which returns an array of
ExpressionExperiments containing expression levels for the Gene. But the definition of
“expressable” as an interface also posits an implicit relationship between the Gene class and the
ExpressionExperiment objects in the hierarchy, as each of these implements the method
getExpressables(), which returns an array of Expressable objects.

Gene objects are the effective portal to most of the genomic information provided by the
caBIO data services; organs, diseases, chromosomes, pathways, sequence data, and expression
experiments are among the many objects accessible via a gene. The GeneInterface defines a
protocol of behavior that can be implemented by any class wishing to classify itself as a Gene.
As an interface, it defines a set of methods but does not implement them. Any class that
implements the GeneInterface agrees to implement all of the methods defined in the interface,
thereby agreeing to certain behavior. Currently, the GeneInterface is implemented only by the
EngineeredGene class in the gov.nih.nci.caMOD.bean package.

The EVSInterface has been deprecated and exists for historical reasons and backwards
compatibility; this interface has effectively been replaced by the new gov.nih.nci.evs packages.
The ExpressionLevel interface is implemented by the CGAPExpressionLevel class in the
gov.nih.nci.cabio.util package. This interface supports measures of gene expression levels
specialized for CGAP data, such as the “color” or “expression ratio” observed for the data.

A more complex set of relationships derives from the Ontologable and Relationable
interfaces. The Organ, Disease, CMAPOntology, and GoOntology classes all implement the
Ontologable interface, as each of these object types defines entities occurring in externally
defined ontologies or taxonomies. The Gene Ontology Consortium, for example, defines three
gene ontologies, based on molecular function, biological process, and cellular location of the
gene. Similarly, the CMAP ontology maps genes according to functional classifications. Other
controlled vocabularies, such as those defined by the Enterprise Vocabulary Services at NCI,
define disease and organ taxonomies.

Each instance of a relationship object stores its relationship type (child/parent) and the set of
Ontologable objects participating in that relationship. For example, an Organ representing the
heart might have a parent relationship to two other Organs representing the left and right
ventricles. The parent’s method getChildRelationships() would return this (object-ified)
relationship, and the relationship, in turn, would provide access to the Ontologable children

 22

http://www.geneontology.org/
http://ncicb.nci.nih.gov/core/EVS

stored there. More specifically, all Relationable objects implement the getOntologies() method
for just this purpose.

While the inheritance hierarchy for the domain objects does not reveal these interface
implementations, the hierarchy of SearchCriteria objects (Figure 3.1-2) does. As described in
Chapter 8, the SearchCriteria objects are a critical part of the infrastructure that provides
caBIO’s powerful database search mechanisms.

Most of the domain objects defined in the caBIO API are caBIO domain objects that
specialize in bioinformatics applications and, in particular, gene expression analysis. This
chapter concludes with a catalog of these domain objects. Chapters 4 through 7 describe the new
domain objects introduced in Release 2.0 to provide programmatic interfaces to the EVS
services, the caDSR project, and the GEDP and caMOD databases respectively. The online
JavaDocs pages also provide comprehensive specifications of the objects, interfaces, and
packages that together define the caBIO architecture and services.

3.2 The caBIO Domain Object Catalog
This catalog lists the objects defined in the gov.nih.nci.cabio.bean package. Items in the listing
below should be interpreted as follows:

• Application: This field indicates in what contexts the object is most likely to be used.
• Related domain objects: A second domain object is “related” to the first domain object if

that second object occurs anywhere in the signature of a method for the first object.
• Extends: This field reflects direct inheritance; i.e., the current class is a direct subclass of

that which it extends.
• Implements: This field lists all interfaces implemented by the object.

In cases where no applications, relations, extensions, or interface implementations apply, the
above fields are omitted.

3.2.1 Agent
A therapeutic agent (drug, intervention therapy) used in a clinical trial protocol.
Application: used primarily by CMAP and EVS applications.
Related domain objects: ClinicalTrialProtocol, Target
Extends: PersistentCaBIOBean
Implements: XMLInterface, java.io.Serializable

3.2.2 Anomaly
An irregularity in either the expression of a gene or its structure (i.e., a mutation).
Application: defined and used by the CMAP project.
Related domain objects: Histopathology, Target
Extends: PersistentCaBIOBean
Implements: XMLInterface, java.io.Serializable

3.2.3 Chromosome
An object representing a specific chromosome for a specific taxon; provides access to all known
genes contained in the chromosome and to the taxon.

 23

http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/index.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caBIO/bean/Agent.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caBIO/bean/Anomaly.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caBIO/bean/Chromosome.html

Application: used by CMAP and other applications to reason about the molecular basis of
cancer.
Related domain objects: Gene, Taxon
Extends: PersistentCaBIOBean
Implements: XMLInterface, java.io.Serializable

3.2.4 ClinicalTrialProtocol
The protocol associated with a clinical trial; organizes administrative information about the trial
such as Organization ID, participants, phase, etc., and provides access to the administered
Agents.
Application: used primarily by CMAP.
Related domain objects: Agent, ProtocolAssociation
Extends: PersistentCaBIOBean
Implements: XMLInterface, java.io.Serializable

3.2.5 Clone
An object used to hold information pertaining to I.M.A.G.E. clones; provides access to sequence
information, associated trace files, and the clone’s library.
Application: imported from the CGAP web site databases.
Related domain objects: Sequence, Library, TraceFile, SNP
Extends: PersistentCaBIOBean
Implements: XMLInterface, java.io.Serializable

3.2.6 CMAPOntology
An object providing entry to the CMAP gene ontology, which categorizes genes by function;
provides access to gene objects corresponding to the ontological term, as well as to ancestor and
descendant terms in the ontology tree.
Application: defined and used by CMAP applications.
Related domain objects: CMAPOntologyRelationship, Gene
Extends: PersistentCaBIOBean
Implements: XMLInterface, java.io.Serializable, Ontologable

3.2.7 CMAPOntologyRelationship
An object specifying a child or parent relationship between CMAPOntology objects.
Application: used and defined by CMAP applications.
Related domain objects: CMAPOntology
Extends: PersistentCaBIOBean
Implements: XMLInterface, java.io.Serializable, Relationable

3.2.8 ConceptSearch
Represents a searchable concept term in a controlled vocabulary occurring in the NCI
Metathesaurus; used to find synonym or semantic types for the concept of interest. This object is
now deprecated as it has been replaced by domain objects in the EVS bean package.
Application: used primarily by EVS applications.

 24

http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caBIO/bean/ClinicalTrialProtocol.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caBIO/bean/Clone.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caBIO/bean/CMAPOntology.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/bean/Ontologable.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caBIO/bean/CMAPOntologyRelationship.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/bean/Relationable.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caBIO/bean/ConceptSearch.html

Extends: PersistentCaBIOBean

3.2.9 ConsensusSequence
A specialization of the Sequence class; represents the consensus of a set of contigs, which it also
provides access to.
Application: used by the GAI project to identify SNPs.
Related domain objects: Contig, Gene, Protein, Clone, ExpressionMeasurement
Extends: Sequence
Implements: XMLInterface, java.io.Serializable

3.2.10 Contig
One of the set of overlapping sequence fragments used to assemble a consensus sequence, which
it also provides access to.
Application: Used by the GAI project to identify SNPs.
Related domain objects: Sequence, ConsensusSequence
Extends: PersistentCaBIOBean
Implements: XMLInterface, java.io.Serializable

3.2.11 Disease
Specifies a disease name and ID; also provides access to: ontological relations to other diseases;
clinical trial protocols treating the disease; and specific histologies associated with instances of
the disease.
Application: used by the CMAP project.
Related domain objects: ClinicalTrialProtocol, Histopathology, DiseaseRelationship
Extends PersistentCaBIOBean
Implements: XMLInterface, java.io.Serializable, Ontologable

3.2.12 DiseaseRelationship
An object specifying a child or parent relationship between Disease objects.
Application: used by the CMAP project.
Related domain objects: Disease
Extends: PersistentCaBIOBean
Implements: XMLInterface, java.io.Serializable, Relationable

3.2.13 ESTExperiment
An object representing data from an expression experiment using expressed sequence tags.
Application: caBIO’s EST experiment data are downloaded from the CGAP databases.
Related domain objects: ExpressionExperiment, Gene, Histopathology
Extends: ExpressionExperiment
Implements: XMLInterface, java.io.Serializable

3.2.14 ExpressionExperiment
A virtual class defining the methods and attributes shared by various types of expression
experiments, including ESTExperiment and SAGEExperiment objects.

 25

http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caBIO/bean/ConsensusSequence.html
http://ncicb-prot.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caBIO/bean/Sequence.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caBIO/bean/Contig.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caBIO/bean/Disease.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caBIO/bean/Ontologable.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caBIO/bean/DiseaseRelationship.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caBIO/bean/Relationable.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caBIO/bean/ ESTExperiment.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caBIO/bean/ ExpressionExperiment.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caBIO/bean/ ExpressionExperiment.html

Related domain objects: Gene, Histopathology, ESTExperiment, SAGEExperiment
Extends: PersistentCaBIOBean
Implements: XMLInterface, java.io.Serializable

3.2.15 ExpressionFeature
Associated with a Gene object through the gene’s method getExpressionFeature(); provides
access to the list of organs where the gene is known to be expressed.
Application: Expression information for a gene is extracted from the CGAP databases, which are
based on the information in Unigene (see discussion of data sources in Chapter
15_The_CaBIO_Data).
Related domain objects: Organ, Gene.
Extends: PersistentCaBIOBean
Implements: XMLInterface, java.io.Serializable

3.2.16 ExpressionLevelDesc
Used to capture descriptive, unquantifiable annotations of the observed expression levels.

Application: Created to support caMOD gene expression data.
Extends: PersistentCaBIOBean
Implements: XMLInterface, java.io.Serializable

3.2.17 ExpressionMeasurement
An object representing a structure that is capable of measuring the absolute or relative amount of
a given compound.
Related domain objects: Gene, Sequence
Extends: PersistentCaBIOBean
Implements: XMLInterface, java.io.Serializable

3.2.18 ExpressionMeasurementArray
An array of ExpressionMeasurement objects.
Related domain objects: Gene, Sequence
Extends: PersistentCaBIOBean
Implements: XMLInterface, java.io.Serializable

3.2.19 Gene
The effective portal to most of the genomic information provided by the caBIO data services;
organs, diseases, chromosomes, pathways, sequence data, and expression experiments are among
the many objects accessible via a gene.
Related domain objects: ExpressionFeature, Organ, Disease, Chromosome, Taxon, Sequence,
GeneAlias, GeneHomolog, MapLocation, Protein, SNP, Target, ExpressionMeasurement,
Pathway, GoOntology
Extends: PersistentCaBIOBean
Implements: XMLInterface, java.io.Serializable, Expressable

 26

http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caBIO/bean/ ExpressionFeature.html
http://ncicb-prot.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caBIO/bean/Gene.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caBIO/bean/ExpressionLevelDesc.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caBIO/bean/ ExpressionMeasurement.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caBIO/bean/ ExpressionMeasurementArray.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caBIO/bean/Gene.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caBIO/bean/Expressable.html

3.2.20 GeneAlias
An alternative name for a gene; provides descriptive information about the gene (as it is known
by this alias), as well as access to the Gene object it refers to.
Related Domain Objects: Gene
Extends: PersistentCaBIOBean
Implements: XMLInterface, java.io.Serializable

3.2.21 GeneHomolog
Defined only in relation to another Gene object of interest, the functional equivalent of that gene
in another taxon (i.e., its ortholog). The GeneHomolog is a specialization of the parent Gene
object; in addition to all of the methods provided by the gene interface, the homolog object
provides the percent of sequence similarity of the homolog to the related gene of interest.
Related domain objects: Gene, ExpressionFeature, Organ, Disease, Chromosome, Taxon,
Sequence, GeneAlias, GeneHomolog, MapLocation, Protein, SNP, Target,
ExpressionMeasurement, Pathway, GoOntology
Extends: Gene
Implements: XMLInterface, java.io.Serializable, Expressable

3.2.22 GoOntology
An object providing entry to a Gene object’s position in the Gene Ontology Consortium’s
controlled vocabularies, as recorded by LocusLink; provides access to Gene objects
corresponding to the ontological term, as well as to ancestor and descendant terms in the
ontology tree.
Related domain objects: Gene, GoOntologyRelationship
Extends: PersistentCaBIOBean
Implements: XMLInterface, java.io.Serializable, Ontologable

3.2.23 GoOntologyRelationship
An object specifying a child or parent relationship between GoOntology objects.
Related domain objects: GoOntology
Extends: PersistentCaBIOBean
Implements: XMLInterface, java.io.Serializable, Relationable

3.2.24 Histopathology
An object representing anatomical changes in a diseased tissue sample associated with an
expression experiment; captures the relationship between organ and disease.
Application: used by the CMAP project.
Related domain objects: Anomaly, Organ, Disease, ExpressionExperiment, ESTExperiment,
SAGEExperiment
Extends: PersistentCaBIOBean
Implements: XMLInterface, java.io.Serializable

 27

http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caBIO/bean/GeneAlias.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caBIO/bean/GeneHomolog.html
http://ncicb-prot.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caBIO/bean/Gene.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caBIO/bean/Expressable.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caBIO/bean/GoOntology.html
http://www.geneontology.org/
http://www.ncbi.nlm.nih.gov/LocusLink/
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/bean/Ontologable.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caBIO/bean/GoOntologyRelationship.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caBIO/bean/Relationable.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caBIO/bean/Histopathology.html

3.2.25 Library
An object representing a CGAP library; provides access to information about: the tissue sample
and its method of preparation, the library protocol that was used, the clones contained in the
library, and the sequence information derived from the library.
Application: Extracted from the CGAP databases.
Related domain objects: Clone, Sequence, Tissue, Protocol
Extends: PersistentCaBIOBean
Implements: XMLInterface, java.io.Serializable

3.2.26 MapLocation
Associated with a Gene object, the physical map location of the gene.
Related domain objects: Chromosome, Gene, Taxon.
Extends: PersistentCaBIOBean
Implements: XMLInterface, java.io.Serializable

3.2.27 Organ
A representation of an organ whose name occurs in a controlled vocabulary; provides access to
any Histopathology objects for the organ and, because it is “ontolog-able,” provides access to its
ancestral and descendant terms in the vocabulary.
Related domain objects: Histopathology, OrganRelationship
Extends: PersistentCaBIOBean
Implements: XMLInterface, java.io.Serializable, Ontologable

3.2.28 OrganRelationship
An object specifying a child or parent relationship between Organ objects.
Related domain objects: Organ
Extends: PersistentCaBIOBean
Implements: XMLInterface, java.io.Serializable, Relationable

3.2.29 Pathway
An object representation of a molecular/cellular pathway compiled by BioCarta. Pathways are
associated with specific Taxon objects, and contain multiple Gene objects, which may be targets
for treatment.
Related domain objects: Gene, Taxon, TargetTarget.
Extends: PersistentCaBIOBean
Implements: XMLInterface, java.io.Serializable

3.2.30 Protein
An object representation of a protein; provides access to the encoding gene via its GenBank ID,
the taxon in which this instance of the protein occurs, and references to homologous proteins in
other species.
Related domain objects: Gene, ProteinHomolog,
Extends: PersistentCaBIOBean
Implements: XMLInterface, java.io.Serializable

Taxon.

 28

http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caBIO/bean/Library.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caBIO/bean/MapLocation .html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caBIO/bean/Organ.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caBIO/bean/Ontologable.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caBIO/bean/OrganRelationship.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caBIO/bean/Relationable.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caBIO/bean/Pathway.html
http://www.biocarta.com/

3.2.31 ProteinHomolog
Defined only in relation to another Protein object of interest, the functional equivalent of that
protein in another taxon (i.e., its ortholog). The ProteinHomolog is a specialization of the parent
Protein object; in addition to the methods provided by the parent class, the Homolog object
provides the percent of sequence similarity of the homolog to the related protein of interest.
Related domain objects: Gene, Protein, Taxon.
Extends: Protein
Implements: XMLInterface, java.io.Serializable

3.2.32 Protocol
An object representation of the protocol used in assembling a clone library.
Related domain objects: Library
Extends: PersistentCaBIOBean
Implements: XMLInterface, java.io.Serializable

3.2.33 ProtocolAssociation
An association class relating ClinicalTrialProtocols to Diseases.
Application: used primarily by the CMAP project.
Related domain objects: ConceptSearch, ClinicalTrialProtocol, Disease
Extends: PersistentCaBIOBean
Implements: XMLInterface, java.io.Serializable

3.2.34 ReadSequence
The output of a TraceFile object, an ASCII representation of the nucleotide sequence; a read
sequence is created by running PHRED.
Application: used in the GAI project.
Related domain objects: TraceFile, SNP
Extends: Sequence
Implements: XMLInterface, java.io.Serializable

3.2.35 SAGEExperiment
A specialization of the ExpressionExperiment class, used to represent serial analysis of gene
expression (SAGE) data.
Application: derived from methods developed at NCI by the CGAP project in collaboration with
Duke University.
Related domain objects: ExpressionExperiment, Gene, Histopathology
Extends: ExpressionExperiment
Implements: XMLInterface, java.io.Serializable

3.2.36 Sequence
An object representation of a gene sequence; provides access to the clones from which it was
derived, the ASCII representation of the residues it contains, and the sequence ID.
Related domain objects: Clone, Gene, Protein
Extends: PersistentCaBIOBean

 29

http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caBIO/bean/ProteinHomolog .html
http://ncicb-prot.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caBIO/bean/Protein.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caBIO/bean/Protocol.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caBIO/bean/ProtocolAssociation.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caBIO/bean/ReadSequence.html
http://ncicb-prot.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caBIO/bean/Sequence.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caBIO/bean/SAGEExperiment.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caBIO/bean/ ExpressionExperiment.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caBIO/bean/Sequence.html

Implements: XMLInterface, java.io.Serializable

3.2.37 SNP
A Single Nucleotide Polymorphism; provides access to the clones and trace files from which it
was identified, the two most common substitutions at that position, the offset of the SNP in the
parent sequence, and a confidence score.
Application: identified by the GAI project.
Related domain objects: Clone, TraceFile
Extends: PersistentCaBIOBean
Implements: XMLInterface, java.io.Serializable

3.2.38 Target
A gene thought to be at the root of a disease etiology and targeted for therapeutic intervention.
Application: defined and used by the CMAP project.
Related domain objects: Agent, Anomaly, Gene
Extends: PersistentCaBIOBean
Implements: XMLInterface, java.io.Serializable

3.2.39 Taxon
An object representing the various names (scientific, common, abbreviated, etc.) for a species
associated with a specific Gene, Chromosome, Pathway, Protein, or Tissue object.
Related domain objects: Gene, Chromosome, Pathway, Protein, Tissue
Extends: PersistentCaBIOBean
Implements: XMLInterface, java.io.Serializable

3.2.40 Tissue
A group of similar cells united to perform a specific function.
Related domain objects: Disease, Organ, Protocol, Taxon
Extends: PersistentCaBIOBean
Implements: XMLInterface, java.io.Serializable

3.2.41 TraceFile
The recorded trace file used to identify a SNP, based on the observed intensities for the four
possible bases at each position in the sequence.
Application: made available to caBIO from Washington University.
Related domain objects: Clone, ReadSequence, SNP
Extends: PersistentCaBIOBean
Implements: XMLInterface, java.io.Serializable

 30

http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caBIO/bean/SNP.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caBIO/bean/Target.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caBIO/bean/Taxon.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caBIO/bean/Tissue.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caBIO/bean/TraceFile.html

4.0 THE EVS DOMAIN OBJECTS

 31

The Enterprise Vocabulary Services project is a collaborative effort of the Center for
Bioinformatics and the NCI Office of Communications. The NCI Thesaurus is a biomedical
thesaurus developed by EVS in response to a need for consistent shared vocabularies among the
various projects and initiatives at the National Cancer Institute—as well as in the entire cancer
research community. Controlled vocabularies are important to any application involving
electronic data sharing; two areas where the need is perhaps most apparent are clinical trials data
collection and reporting and more generally, data annotation of any kind. The EVS project also
produces the NCI Metathesaurus, which is based on NLM's Unified Medical Language System
Metathesaurus (UMLS) supplemented with additional cancer-centric vocabulary.

A critical need served by the EVS is the provision of a well designed ontology covering
cancer science. Such an ontology is required for data annotation, inferencing and other functions.
The data to be annotated might be anything from genomic sequences to case report forms to
cancer image data. The Thesaurus covers all of these domains, as it includes vocabularies
pertinent to disease, biomedical instrumentation, anatomical structure, and gene/protein
information – to mention but a few of the included specialties. The NCI Thesaurus has recently
been ranked by the National Center for Vital Health Statistics as one of the two best biomedical
terminologies in the country, and has been nominated as a standard by the Consolidated Health
Informatics initiative, the health-related component of the eGOV initiative
(http://aspe.hhs.gov/sp/nhii/News/hixs.htm). The Thesaurus is updated monthly, keeping abreast
of developments in cancer science.

The NCI Thesaurus is implemented as a Description Logic vocabulary and, as such, is a self-
contained and logically consistent terminology. Unlike the NCI Thesaurus, the purpose of the
NCI Metathesaurus is not to provide unequivocal or even necessarily consistent definitions. Like
the UMLS Metathesaurus itself, the purpose of the NCI Metathesaurus is to provide mappings of
terms across vocabularies. The caBIO objects described in this section provide access to both the
NCI Thesaurus and the NCI Metathesaurus.

In previous releases of the caCORE, the EVS API provided access only to the NCI
Metaphrase server, which hosts the Metathesaurus database. In this release, the API has been
extended to provide access to both the NCI Distributed Terminology Server (DTS), which hosts
the NCI Thesaurus and several other vocabularies, as well as access to NCI Metaphrase.

NCI licenses the Metaphrase and DTS servers from Apelon Inc. Each server has a proprietary
Java API. Because of the proprietary nature of these APIs, these interfaces cannot be made
available to the public. Furthermore, NCI has extended and otherwise modified the Metaphrase
and DTS servers to provide functionality that is not present in the commercial version of these
products. Therefore, NCI developed a public domain open source wrapper that provides full
access to the basic and enhanced capabilities of both servers. This public API is a component of
caBIO in caCORE 2.0.

Before actually describing the caCORE Java API to the EVS, this chapter begins with a brief
overview of the UMLS Metathesaurus, upon which the NCI Metathesaurus is based. This is
followed by a short discussion of description logic, its role in the area of knowledge
representation, and its implementation in the NCI Thesaurus. A sample Java program that uses
the API described here is discussed in Chapter 12 and listed in Appendix B.

32

http://oc.nci.nih.gov/
http://www.nlm.nih.gov/research/umls/
http://www.nlm.nih.gov/research/umls/
http://aspe.hhs.gov/sp/nhii/News/hixs.htm
http://nciterms.nci.nih.gov/
http://ncimeta.nci.nih.gov/

4.1 The UMLS Metathesaurus
As noted above, the NCI Metathesaurus is based on the UMLS Metathesaurus, supplemented

with additional cancer-centric vocabulary. Excellent documentation on the UMLS is available at
the UMLS Knowledge Sources web site at:

http://www.nlm.nih.gov/research/umls/UMLSDOC.HTML

A brief overview of the UMLS Metathesaurus is included here, but it is strongly
recommended that users who wish to gain a deeper understanding refer to the above web site .
Only those features of the UMLS Metathesaurus which are relevant to accessing the NCI
Metathesaurus are described here.

The UMLS Metathesaurus is a unifying database of concepts that brings together terms
occurring in over 100 different controlled vocabularies used in biomedicine. When adding terms
to the Metathesaurus, the UMLS philosophy has been to preserve all of the original meanings,
attributes, and relationships defined for those terms in the source vocabularies, and to retain
explicit source information as well. In addtition, the UMLS editors add basic information about
each concept and introduce new associations which help to establish synonymy and other
relationships among concepts from different sources.

Given the very large number of related vocabularies incorporated in the Metathesaurus, there
are instances where the same concept may be known by many different names, as well as
instances where the same names are intended to convey different concepts. To avoid ambiguity,
the UMLS employs an elaborate indexing system, the central kingpin of which is the concept
unique identifier (CUI). Similarly, each unique concept name or string in the Metathesaurus has
a string unique identifier (SUI).

In cases where the same string is associated with multiple concepts, a numerical tag is
appended to that string to render it unique as well as to reflect its multiplicity. In addition, the
UMLS Metathesaurus editors may create an alternative name for the concept which is more
indicative of its intended interpretation. In these cases, all three names for the concept are
preserved.

Several types of relationships are defined in the UMLS Metathesaurus, and four of these are
captured by the NCI Metaphrase interface:

Broader (RB) The related concept has a more general meaning.
Narrower (RN) The related concept has a more specific meaning.
Synonym (SY) The two concepts are synonymous.
Other related (RO) The relation is not specified but is something other than synonymous,

narrower, or broader.

The UMLS Semantic Network is an independent construct whose purpose is to provide
consistent categorization for all concepts contained in the UMLS Metathesaurus, and to define a
useful set of relationships among these concepts. As of the 2003AB release, the Semantic
Network defined a set of 135 basic semantic types or categories, which could be assigned to
these concepts, and 54 relationships that could hold among these types.

The major groupings of semantic types include organisms, anatomical structures, biologic
function, chemicals, events, physical objects, and concepts or ideas. Each UMLS Metathesaurus

33

http://www.nlm.nih.gov/research/umls/UMLSDOC.HTML

concept is assigned at least one semantic type, and in some cases, several. In all cases, the most
specific semantic type available in the network hierarchy is assigned to the concept.

The NCI Metathesaurus includes most of the UMLS Metathesaurus, with certain proprietary
vocabularies of necessity excluded. In addition, the NCI Metathesuarus includes terminologies
developed at NCI along with external vocabularies licensed by NCI. The local vocabularies
developed at NCI are described in Table 4.1-1. As noted there, a limited model of the NCI
Thesaurus is also accessible via the NCI Metatehsaurus, as the NCI Source. Additional external
vocabularies include MedDRA, SNOMED, ICD-O-3, and other proprietary vocabularies.

The NCI Metathesaurus is available through the Metaphrase interface described in the
NCICB Applications User Manual as well as through the Java API described in this chapter.

Table 4.1-1 NCI local source vocabularies included in the Metathesaurus.

Vocabulary Content Usage

NCI Source Limited model of the NCI Thesaurus Reference terminology for cancer
research applications

NCIPDQ Expanded and re-organized PDQ CancerLit indexing and clinical
trials accrual

NCISEER SEER terminology Incidence reporting

CTEP CTEP terminology Clinical trials administration

MDBCAC Topology and Morphology Cancer genome research

ELC2001 NCBI tissue taxonomy Tissue classification for genetic data
such as cDNA libraries.

ICD03 Oncology classifications Cancer genome research and
incidence reporting

MedDRA Regulatory reporting terminology Adverse event reporting

MMHCC Mouse Cancer Database terminology Mouse Models of Human Cancer
Consortium

CTRM Core anatomy, diagnosis and agent
terminology

Translational research by NCICB
applications

4.2 Knowledge Representations and Description Logic
Knowledge representation has long been a prime focus in artificial intelligence research. This

area of research asks how one can accurately encode the rich and highly detailed world of
information that is required for the application area being modeled and yet, at the same time,
capture the implicit commonsense knowledge. One of the most common approaches to this
problem in the 1970s was to utilize frame-based representations.

The basic idea of a frame is that important objects in our world fall into natural classes, and
that all members of these classes share certain properties or attributes, called slots. For example,
all dogs have four legs, a tail (or vestige of one), whiskers, etc. Restaurants generally have
tables, chairs, eating utensils, and menus. Thus, when we enter a new restaurant or encounter a

34

http://www.meddramsso.com/
http://www.snomed.org/main.html
http://training.seer.cancer.gov/module_icdo3/icdo3_home.html

new dog, we already have a “frame of reference” and some expectations about the properties and
behaviors of these entities.

 Event

when
where

who

Disaster-event

killed
injured

homeless

damage

magnitude

fault

Earthquake

is-a

is-a

Figure 4.2-1 An earthquake in a semantic network of news stories

In a seminal paper by Marvin Minsky published in 1975, he placed the frame representation
paradigm in the context of a semantic network of nodes, attributes, and relations. Figure 4.2-1
shows a simple frame-based representation of an earthquake, as it might be used in a semantic
network of news stories. 3

At the same time that frame-based representations were being explored, a popular alternative
approach was to use (some subset of) first-order predicate logic (FOL)—often implemented as a
Prolog program. While propositional logic allows one to make simple statements about concrete
entities, a complete first-order logic allows one to make general statements about anonymous
elements, with the introduction of variables as placeholders. The example below contrasts the
difference in expressivity between propositional logic and FOL:

Propositional Logic First-order Predicate Logic

All men are mortal.
Socrates is a man.
Socrates is mortal.

 ∀x: Man(x) Mortal(x)
Man(Socrates)

Figure 4.2-2 Propositional versus first-order predicate logic

In other words, in FOL it is possible to express general rules of inference that can be applied
to all entities whose attributes satisfy the left-hand side of the inference operator. Thus,
simply asserting Man(Socrates) entails Mortal(Socrates).

Since logic programming is based on the tenets of classical logic and comes equipped with
automated theorem-proving mechanisms, this approach allowed the development of inference

35

3 This example is excerpted from Artificial Intelligence, by Patrick Winston, Addison-Wesley, 1984.

systems whose soundness and completeness could be rigorously demonstrated. But while many
of these early inference systems were logically sound and complete, they were often not very
useful, as they could only be applied to highly proscribed areas or “toy problems.” The problem
was that a complete first-order predicate logic is itself computationally intractable, as certain
statements may prove undecidable.

Suppose for example that we are trying to establish that some theorem, P(x), is true. The way
a theorem prover works is to first negate the theorem and, subsequently, to combine the negated
theorem (¬P(x)) with stored axioms in the body of knowledge to show that this leads to a logical
contradiction. Ultimately, when the theorem prover derives the conclusion P(x) ∧ ¬P(x), the
program terminates and the theorem is considered proven.

This method of proof by refutation is guaranteed to terminate when P(x) is indeed upheld by
the body of knowledge. The problems arise when the initial theorem is not valid, as its negation
may not produce a logical contradiction, and thus the program may not terminate.

In contrast, the frame representations offered a rich, intuitive means of expressing domain
knowledge, yet they lacked the inference mechanisms and rigor that predicate logic systems
could provide. As suggested by Figure 4.2-1, the frame representation captures a good deal of
implicit knowledge. For example, we expect that all disaster events, including earthquakes, have
information about fatalities and injuries and the extent of loss and property damage. In addition,
we expect that these events will have locations, dates, and individuals associated with them.

Early efforts to apply predicate logics to frame representations in order to make this
information explicit however, soon revealed that the problem was computationally intractable.
This occurred for two reasons: (1) The frame representation was too permissive; more rigorous
definitions were required to make the representation computational; and (2) the intractability of
first-order predicate logic itself.

Several subsets of complete FOL have since been defined and successfully applied to develop
useful computational models capable of significant reasoning. For example, the Prolog
programming language is based on a subset of FOL that severely limits the use of negation. The
family of description logic (DL) systems is a more recent development, and one that is especially
well-suited to the development of ontologies, taxonomies, and controlled vocabularies, as an
important function of a DL is as an auto-classifier.

4.2.1 Description Logic
Description logic can be viewed as a combination of the frame-based approach with FOL. In

the process, both models had to be scaled back to achieve an effective solution. Like frames, the
DL representation allows for concepts and relationships among concepts, including simple
taxonomic relations as well as other meaningful types of association. Certain restrictions
however, are placed on these relations. In particular, any relation that involves class
membership, such as the isa or inverse-isa relations, must be strictly acyclic.

The predicate logic used in a description logic system is also limited in various ways,
depending on the implementation. For example, the most minimal form of a DL does not allow
any form of existential quantification. This limitation allows for a very easily computed solution
space, but the resulting expressivity is severely diminished. The next step up in representational
power allows limited existential quantification but without atomic negation.

36

Indeed, there is today a large family of description logics that have been realized, with
varying levels of expressivity and resulting computational complexities. In general, DLs are
decidable subsets of FOL, and the decidability is due in large part to their acyclicity. The theory
behind these models is beyond the scope of this discussion, and the interested reader is referred
to The Description Logic Handbook, by Franz Baader, et al. (eds.), Cambridge University Press,
1993, ISBN number 0-521-78176-0.

The two main ingredients of a DL representation are concepts and roles. A major distinction
between description logics and other subsets of FOL is its emphasis on set notations. Thus a DL
concept never corresponds to a particular entity but rather to a set of entities, and the notations
used for logical conjunction and disjunction are set intersection and union.

DL concepts can also be thought of as unary predicates in FOL. Thus the DL expression
Person ∩ Young can be interpreted as the set of all children, with the corresponding FOL
expression Person (x) ∧ Young (x). Syntactically then, DL expressions are variable free, with the
understanding that the concepts always reference sets of elements.

A DL role is used to indicate a relationship between the two sets of elements referenced by a
pair of concepts. In general, DL notations are rather terse, and the concept (or set of elements) of
interest is not explicitly represented. Thus, to represent the set of individuals whose children are
all female, we would use: ∀ hasChild.Female. The equivalent expression in FOL might be
something like:

∀x: hasChild(y, x) female(x).

In terms of set theory, a role potentially defines the Cartesian product of the two sets. Roles
can have restrictions, however, which place limitations on the possible relations. A value
restriction limits the type of elements that can participate in the relation; a number restriction
limits the number of such relations an element can participate in.

In addition, each role defines a directed relation. For example, if x is the child of y, y is not
also the child of x. In the above example hasChild, the parent concept is considered the domain
of the relation, and the child is considered the range. Elements belonging to the set of objects
defined by the range concept are also called role fillers. Number restrictions apply to the number
of role fillers that are required or allowed in a relation. For example, a parent can be defined as a
person having at least one child: Person ∩ (≥1 hasChild).

A DL representation is constructed from a ground set of atomic concepts and atomic roles,
which are simply asserted. Defined concepts and defined roles are then derived from these
atomic elements, using the set operations of intersection, union, negation, etc. Most DLs also
allow existential and universal quantifiers, as in the above examples. Note, however, that these
quantifiers always apply to the role fillers only.

The fundamental inference operation in DL is subsumption, and is usually indicated with
subset notation. Concept A is said to subsume B, or A ⊆ B, when all members of concept B are
contained in the set of elements defined by concept A, but not vice versa. That is, if B is a proper
subset of A, then A subsumes B. This capability has far-reaching repercussions for vocabulary
and ontology developers, as it enables the system to automatically classify newly introduced
concepts. Moreover, correct subsumption inferencing can be highly nontrivial, as, in general, this

37

requires examining all of the relationships defined in the system and the concepts that participate
in those relations.

4.3 Description Logic in the NCI Thesaurus
The NCI Thesaurus is currently developed using the proprietary Apelon Inc. Ontylog™

implementation of description logic. Ontylog is distributed as a suite of tools for terminology
development, management, and publishing. Although the underlying inference engine of
Ontylog is not exposed, the implementation has the characteristics of what is called an AL-

(attributive language) or FL- (“Frame Language”) description logic. It does not support atomic
negation but does appear to provide all other basic description logic functionality.

The NCI Thesaurus is edited and maintained in the Terminology Development Environment
(TDE) provided by Apelon. The TDE is an XML-based system that implements the DL model of
description logic based on Apelon’s Ontylog Data Model. The Data Model uses four basic
components: Concepts, Kinds, Properties, and Roles.

As in other DL systems, Concepts correspond to nodes in an acyclic graph, and Roles
correspond to directed edges defining relations between concept members. Each Concept has a
unique Kind. Formally, Kinds are disjoint sets of Concepts and represent major subdivisions in
the NCI Thesaurus.

More concretely, Kinds are used in the Role definitions to constrain the domain and range
values for that Role. Each Role is a directed relation that defines a triple consisting of two
concepts and the way in which they are related. The domain defines the concept that the role
applies to, and the range defines the possible values—in other words, concepts, that can fill that
role. For example, the Role geneEncodes might have its domain restricted to the Gene_Kind and
its range to the Protein_Kind. This Role then, essentially states that Genes encode Proteins.

As in all DLs, all roles are passed from parent to child in the inheritance hierarchy. For
example, a “Malignant Breast Neoplasm” has the role located-in, connecting it to the concept
“Breast.” Thus, since the concept “Breast Ductal Carcinoma” is-a “Malignant Breast Neoplasm,”
it inherits the located_in relation to the “Breast” concept. These lateral nonhierarchical relations
among concepts are referred to as associative or semantic roles — in contrast to the hierarchical
relations that reflect the is-a roles.

In the first-order algebra upon which Ontylog DL is based, every defined relationship also has
a defined inverse relation. For example, if A is contained by B, then B contains A. Inverse
relationships are useful and are expected by human users of ontologies. However, they have a
computational cost. If the edges connecting concept nodes are bi-directional, then the
computation quickly becomes intractable. Therefore in the Ontylog implementation of DL,
inverse relationships are not stored explicitly but computed on demand.

Terminology Creation

and Maintenance
Application

Development

Terminology
Development
Environment

(TDE)

Distributed
Terminology

System
(DTS)

Figure 4.3-1. An overview of the NCI Thesaurus infrastructure

38

Figure 4.3-1 gives an overview of how the NCI Thesaurus is deployed. Apelon provides both
graphical and programmatic interfaces to its Distributed Terminology System and its
Terminology Development Environment.

The graphical interfaces to the DTS are available for browsing at the EVS web sites; the APIs
however are proprietary, and thus not available to the public. The domain objects described in
this chapter have been implemented to provide a public API to the DTS, including the NCI-
specific extensions to the DTS which support functionality such as concept history.

4.4 Concept Edit History in the NCI Thesaurus
One of the primary uses of the NCI Thesaurus is as a resource for defining tags or retrieval

keys for the curation of information artifacts in various NCI repositories. Since these tags are
defined at a fixed point in time, however, they necessarily reflect the content and structure of the
Thesaurus at that time only. Given the rapidly evolving terminologies associated with cancer
research, there is no guarantee that the tags used at the time of curation in the repository will still
have the same definition in subsequent releases of the Thesaurus. In most cases the deprecation
or redefinition of a previously defined tag is not disastrous, but it may compromise the
completeness of the information that can be retrieved.

In order to address this issue, the EVS team has developed a history mechanism for tracing
the evolution of concepts as they are created, merged, modified, split, or retired. (In the NCI
Thesaurus, no concept is ever deleted.) The basic idea is that each time an edit action is
performed on a concept, a record is added to a history table. This record contains information
about relations that held for that concept at the time of the action as well as other information,
such as version number and timestamp that can be used to reconstruct the state when the action
was taken. Table 4.4-1 summarizes the information stored in the history table.

The Reference_Code column captures critical information concerning the impact of the edit
actions on other concepts. This field contains the concept code of a second concept either
participating in or affected by the editor’s action. The value will always be null if the action is
Create or Modify.

Table 4.4-1 The NCI Thesaurus concept history table

Column Name Description

History_ID Unique consecutive number for use as the database primary
key

Concept_Code The concept code for the concept currently being edited
Action Edit Action: {Create, Modify, Split, Merge, Retire}
Baseline_Date Date of NCI Thesaurus Baseline (see discussion below)
Reference_Code The concept code for a second concept impacted by the action

Capturing the history data for a Split, Merge, or Retire action is more complicated. In a Split,

a concept is redefined by partitioning its defining attributes between two concepts, one of which
retains the original concept's code and one that is newly created. This action is taken when
ambiguities in the original concept's meaning require clarification by narrowing its definition.

39

http://ncicb.nci.nih.gov/core/EVS

In the case of a Split, three history records will be created: one for the newly created concept,
(with a null Reference_Code), and two for the original concept that is being split. In the first of
these two records, the Reference_Code is the code for the new concept; in the second it is the
code of the split concept.

History_id:

History_id: 7625
Concept_code: C111
Action create
Baseline_date 11/5/2002
Reference_code null

Original concept

History_id:
Concept_code:
Action
Baseline_date

 152345
 C23115
 create
 7/12/2003

 152346
 C111
 split
 7/12/2003

Reference_code C23115

History_id:
Concept_code:
Action
Baseline_date
Reference_code null

New concept

152347
Concept_code: C111
Action split
Baseline_date 7/12/2003
Reference_code C111

Figure 4.4-1 History records for the split action

For Merge actions, the situation is similar to a Split. In this case, two ambiguous concepts
must be combined, and only one of the original concepts is retained. Again there will be three
history records created: two for the concept that will be retired during the merge, and one for the
"winning" concept. The Reference_Code in the history record for the "winning" concept will be
the same as the Concept_Code; i.e., the concept points to itself as a descendant in the Merge
action. The Reference_Code will be null in one of the entries for the retiring concept, while the
second entry will have the code of the "winning" concept; thus, this Reference column points to
the concept into which the concept in the Concept_Code column is being merged.

Finally, if the action is Retire, there will be as many history entries as the concept has parent
concepts. The Reference column in these entries will contain the concept code of the parent
concepts, one parent concept per history entry. The motivation for this is that end-users with
documents coded by such retired concepts may find a suitable replacement among the concept's
parents at the time of retirement.

The new EVS APIs support concept history queries, and for programmatic consistency, a
minimal history is added to all vocabularies served from the DTS that are not edited by the EVS
group. Concepts in vocabularies that are not edited by EVS will have a single history entry
associated with them—a Create action with date “May 1, 2003.”

In the case of the NCI Thesaurus, concept history tracking has been ongoing internally since
December 2002. However, for the purpose of publication in the DTS, a specific baseline has
been selected to serve as "time zero" for concept history. This baseline is (internal) version
03.08c, which immediately preceded the NCI Thesaurus Version 2.0 released in caCORE 2.0.
All of the concepts in this baseline have a Create action associated with them, dated “August 12,
2003”, the date of the 03.08c build.

4.5 The caBIO EVS API
The UML Class diagram in Figure 4.5-1 provides an overview of the caBIO EVS domain

object classes, with the class attributes and operators suppressed to emphasize the general

40

organization. The central class is Concept, with most of the other classes organizing themselves
around this entity.

History
1..*

BaseLineDate

1..*
1..1

0..*

ConceptUniqueIdentifier

1..*

EvsProperties

1..*
Definition

Concept

Source

Property
MetaThesaurusConcept DescLogicConcept

0..*
subConcepts,
superConcepts

-descendants -ancestors1..1

Role

1..*

0..*

SemanticType

Figure 4.5-1 The caBIO EVS API domain object classes

The Concept class is an abstract class and contains several private attributes, including:

• name: a string representation of the name for the concept;
• definition: the authoritative definition for the concept;
• semanticTypes: a list of SemanticTypes for the concept (see discussion below);
• sources: a list of vocabulary Sources containing that concept;
• synonyms: a list of string aliases for the concept; and
• CUI: the ConceptUniqueIdentifier.

All of these attributes are accessible via the public get methods listed in the EVS Javadocs.
Four of these attributes—definition, semanticTypes, sources, and CUI, reference other class
objects as depicted in the diagram.

The SemanticType is a simple class whose attributes include name and id; some example
names for semantic types are: “Body Location or Region,” “Research Device,” “Cell Function,”
etc. These names are the semantic types encoded for the associated concept in the UMLS
Metathesaurus (see Section 4.1). All concepts in the UMLS Metathesaurus are associated with
one or more semantic types, which broadly indicate the kind of information embodied by the
concept. The semantic types and their relations are used to characterize where the concept occurs
in various vocabularies and what relations may hold for that concept.

All concepts in the NCI Metathesaurus have at least one source, and some concepts may have
several. In contrast, each concept in the NCI Thesaurus has exactly one source. In addition to

41

having a name attribute, a Source object may have a definition, as well as a description and an
abbreviation or acronym associated with it.

For NCI Metathesaurus concepts, the CUI, or ConceptUniqueIdentifier, is either the UMLS id
for the concept, or the local id. In either case, the CUI is a string that uniquely identifies the
concept. All concept identifiers begin with the letter C; those whose second character is also a
letter are local identifiers used at NCI.

Other relations to Concept in the Class diagram derive from the applicable operations for the
class, such as getSubConcepts() and getSuperConcepts(). These methods return Concept objects
that are specializations and generalizations, respectively, of the current concept. Like the caBIO
domain objects, the Concept class implements the XMLInterface described in the previous
section, and is associated with a SearchCriteria object called ConceptSearchCriteria.

Two subordinate classes in Figure 4.5-1 are derived from Concept: DescLogicConcept and
MetathesaurusConcept. Like the Concept class, each of these derived classes implements
XMLInterface and has an associated search criteria object specialized for it.

The MetaThesaurusConcept class inherits most of its attributes from the parent Concept class,
adding just one additional attribute: preferredName. In most cases the value of this attribute is
the same as name. The DescLogicConcept class adds several new attributes to those inherited
from the Concept class. The properties and roles attributes define links to Property and Role
objects. Both of these constructs serve to capture the DL encoding of the NCI Thesaurus
concepts. Two additional attributes, creationDate and retired provide access to history and
status information for the concept.

The History class is defined independently of the DescLogicConcept class, but makes
reference to instances of these elements via their associated concept codes. Figure 4.5-1 reflects
this indirect referencing with dashed lines.

The EVS API diverges somewhat from the other caCORE domain models in its search
mechanisms, as described in the next section. While the other APIs have direct access to their
databases, the EVS API does not. Since all EVS queries are passed through the proprietary APIs
provided by Apelon, the search and retrieval capabilities are effectively proscribed by the
features implemented by these third-party tools.

4.6 The EVS Search Paradigm
Figure 4.6-1 depicts the configuration used in accessing the EVS vocabularies. As indicated

there, each of the two servers has a somewhat different interface. The Metaphrase interface,
which serves the NCI Metathesaurus users, provides access to the complete concept in a single
query. The DTS interface however, which serves the NCI Thesaurus users, provides access to
only one feature per query. Thus, in order to retrieve an NCI Thesaurus concept—with all of its
attributes fully populated—a large number of atomic queries would need to be issued, with each
requiring its own database lookup

Java clients accessing the NCI Thesaurus and Metathesaurus vocabularies using the caCORE
2.0 domain objects communicate their requests to these proprietary APIs via the open source

42

APIs, which are included in the jar files of the caCORE 2.0 distribution.4 The two data sources
can be accessed via the DescLogicConcept and MetaThesaurusConcept objects. Both classes
inherit from the Concept class, as described in the previous section.

NCI
Thesaurus

NCI
Metathesaurus

Proprietary
Apelon APIs

Open
Source APIs

Java EVS
client

METAPHRAS

DTS

DescLogic
Concept

MetaThesaurus
Concept

Figure 4.6-1 Middleware Interfaces to the EVS Databases

Working closely with the EVS user community, a decision was made to avoid the overhead of
issuing multiple queries for the retrieval of a single description logic concept. The design
solution uses a kind of “lazy evaluation” in its interface to the NCI Thesaurus: attributes of the
retrieved description logic concepts are not populated until they are explicitly accessed.

As a result of this design decision, the DescLogicConcept search() method returns a light-
weight object, where only a few of the object’s attributes are populated. While all of the other
attributes are still defined, they are valueless, and any method which accesses them will return
the null value. This information is of course still available, but must be accessed via explicit
method calls to the DTS interface. Users who wish to retrieve a “heavyweight object” for a
description logic concept—i.e., one whose attributes are fully populated—must instead use the
convenience method getConceptByName().

In contrast, the Metathesaurus interface does not require this design, as a single query to the
proprietary interface returns the complete concept. These heavyweight objects can be obtained
directly via the MetaThesaurusConcept’s generic search() method.

In both cases, the heavyweight objects provide direct access to all of the concepts’ attributes.
The basic workflow in the EVS API is to define various search parameters, such as the name of
the vocabulary to be searched, the search term to which concept names should be matched, and
the number of results to be returned, and then call the appropriate methods for executing the
search using either a DescLogicConcept or MetaThesaurusConcept. The following sub-sections
provide examples of this workflow.

4 The open sources interfaces are included only in the jar file for the full installation of the caBIO server – they

are not in the distrbution for the client installation

43

4.6.1 Description Logic Concepts
Similar to other caBIO domain objects, the DescLogicConcept class has a generic search()

method which takes a DescLogicConceptSearchCriteria as its sole argument. Two attributes
must be defined for the search criteria object before it can be used—the searchTerm and the
vocabularyName:
 //Instantiate DescLogicSearchCriteria
 DescLogicConceptSearchCriteria dlcsc = new DescLogicConceptSearchCriteria();

 //Instantiate DescLogicConcept
 DescLogicConcept dlc = new DescLogicConcept();

 //Set input parameters
 dlcsc.setSearchTerm(“gen*”); //mandatory
 dlcsc.setVocabularyName("NCI_Thesaurus"); //mandatory
 dlcsc.setLimit(10); //optional default is 100

 //Call the method in DescLogicConcept passing dlcsc
 Concept[] conceptArray = dlc.search(dlcsc);

The searchTerm can be generalized to include wildcard matching by inserting an asterisk
where appropriate. In the above example, the search will retrieve all concepts in the NCI
Thesaurus whose concept name begins with the string “gen”. If no asterisks occur in the search
term then only exact matches will be retrieved.

The call to the Concept object’s search() method returns an array of lightweight Concept
objects whose names contain the specified search term. The only attribute that these Concept
objects will have populated in this case is name. Once the name is obtained however, it becomes
possible to use this to invoke other methods, such as getConceptByName(). Alternatively, if the
user already knows the name, this method can be invoked directly as in:
 DescLogicConceptSearchCriteria dlcsc = new DescLogicConceptSearchCriteria ();
 DescLogicConcept dlc = new DescLogicConcept();
 dlcsc.setSearchTerm(“gene”);
 dlcsc.setVocabularyName("NCI_Thesaurus");
 dlc = dlcsc.getConceptByName(dlcsc);

The DescLogicConcept returned in this case is now a fully-populated heavyweight object,
providing direct access to all of the attributes for the associated NCI Thesaurus concept.

Given the exact concept name, several convenience methods also become available, including
getConceptCodeByName(), getPropertiesByConceptName(), and getRolesByConceptName(). In
the following example, an “empty” DescLogicConcept – one that has been instantiated but is not
associated with any specific concept – is used to anonymously invoke these methods:
 DescLogicConceptSearchCriteria dlcsc = new DescLogicConceptSearchCriteria ();
 DescLogicConcept dlc = new DescLogicConcept();
 dlcsc.setSearchTerm(“gene”);
 dlcsc.setVocabularyName("NCI_Thesaurus");
 String conceptCode = dlc.getConceptCodeByName(dlcsc);
 Property[] properties = dlc.getPropertiesByConceptName(“gene”);
 Role[] roles = dlc.getRolesByConceptName(“gene”);

Referring back to our earlier description of the DTS interface to the NCI thesaurus, we see
that each of the above invocations corresponds to a single query. In contrast, the heavyweight
method getConceptByName(), which returns a fully-populated object, entails a sequence of
queries. The DescLogicConcept class also defines parameter-free methods which are applicable
to such heavyweight objects, such as getProperties().

44

Property and Role are simple classes used to hold the tag-value pairs associated with a
description logic concept. One such example property is the concept’s preferred name. The
associated Property object for the Gene concept would return ”Preferred_Name” for the
getName() method and “Gene” for the getValue() method. Similarly, the Role objects implement
getName() and getValue() methods. As described in Section 4.2.1, roles define the non-
hierarchical relations that hold among concepts.

Another convenience method that requires only the vocabulary name and concept code is the
isRetired() method, which returns true when the concept is no longer in use:
 DescLogicConceptSearchCriteria dlcsc = new DescLogicConceptSearchCriteria ();
 DescLogicConcept dlc = new DescLogicConcept();
 dlcsc.setSearchTerm(“gene”);
 dlcsc.setVocabularyName("NCI_Thesaurus");
 String conceptCode = dlc.getConceptCodeByName(dlcsc);
 boolean retired = dlc.isRetired(“NCI_Thesaurus”,“gene”);

The use of concept editing history in the EVS was described in Section 4.4; access to this
information is provided via the History object, and specifically, through the methods which
access the concepts’ ancestors and descendants. The ancestor and descendant relations
associated with History objects provide information concerning how a concept has evolved over
time.

Note that ancestors and descendants do not refer to the relations between nodes occurring in
the Thesaurus’s tree-structured concept hierarchy. Parent/child relations in the concept hierarchy
are accessed as superconcept/subconcept relations. Thus, while a superconcept refers to a second
more general concept, an ancestor captures information about that same concept as it was
published in a previous release of the NCI Thesaurus

 A History object’s methods can be invoked directly without involving any intermediate
search criteria or concept objects. The key convenience method in the History object is the
getDescendants() method. This method provides access to the descendants of a concept code or
concept name and can be invoked as follows:

History hist = new History();
String[] descendantsArray =
 = hist.getDescendants(“NCI_Thesaurus”,“Gene”,true,”1/1/2000”,”1/1/2003”);

The input parameters used above in the getDescendants() method are: the vocabulary name,
the concept name (or code), a flag indicating how the search should be performed, and the
starting and ending dates for the NCI Thesaurus releases. In this case, the flag’s value of true
indicates that only active descendant concepts should be returned. The descendantsArray returns
a String array of all the descendant concept names of “Gene” between the timelines “1/1/2000”
and “1/1/2003”.

4.6.2 MetaThesaurus Concepts
The MetaThesaurusConcept class provides access to the NCI Metathesaurus data source. The

procedure for calling a method is similar to that of a DescLogicConcept. But in this case, the
generic search() method returns a fully-populated heavyweight object:
 //Instantiate SearchCriteria
 MetaThesaurusConceptSearchCriteria mtcsc = new

MetaThesaurusConceptSearchCriteria();

45

 //Instantiate Concept
 MetaThesaurusConcept mtc = new MetaThesaurusConcept();

 //Set input parameters
 mtcsc.setSearchTerm(“gen*”); // mandatory
 mtcsc.setLimit(10); // optional default is 100

 //Call the method in MetaThesaurusConcept passing mtcsc
 Concept[] conceptArray = mtc.search(mtcsc);

Unlike the DTS server which provides access to several vocabularies including the NCI
Thesaurus, the Metaphrase server provides access to the NCI Metathesaurus only. Thus it is not
necessary to define a vocabulary name. Also, since the server returns a complete concept on a
single query, each Concept in the resulting conceptArray is a fully-populated heavyweight
object. These Concept objects provide direct access to information such as the
ConceptUniqueIdentifier, Definition, Source and SemanticType. From the above result each
object can be retrieved as:

 //Retrieve each Concept object
 Concept conceptObject = (Concept)ConceptArray[0];

 //Get Source array
 Source[] sourceArray = conceptObj.getSources();

 //Get Concept unique identifier
 ConceptUniqueIdentifier conceptUID =

conceptObj.getConceptUniqueIdentifier();

 //Get Definitions
 Definition[] definitionArray = conceptObj.getDefinitions();

 //Get Source of a each definition from the above definitionArray
 Source defintionSource = definitionArray[0].getDefinition()

Sample code demonstrating how to use each method in the EVS Java API is included in both
Appendix B of this guide as well as in the caCORE 2.0 distribution package. For non-Java
developers, a SOAP API is also available. The details on using this interface are discussed in
Section 8.6 and in Section 13.4.

4.7 The EVS Domain Object Catalog
This catalog lists the objects defined in the gov.nih.nci.evs.bean package; the fields listed here

should be interpreted as follows:

• Application: Indicates in what contexts the object is most likely to be used.
• Related domain objects: A second domain object is “related” to the first domain object if

that second object occurs anywhere in the signature of a method for the first object.
• Extends: Reflects direct inheritance; i.e., the current class is a direct subclass of that

which it extends.

In cases where no applications, relations, or extensions apply, those fields are omitted. The
only interface implemented by the EVS domain objects is java.io.Serializable.

4.7.1 BaseLineDate
Reflects the release date of the NCI Thesaurus when this definition went public.

46

http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/EVS/bean/BaseLineDate.html

Application: defined and used by the EVS project for maintaining historical context information.
Related domain objects: DescLogicConcept
Extends: java.lang.Object

4.7.2 Concept
Some “thing” in the knowledge domain, such as a disease, an organ, or a location. More
formally, describes the properties of a collection of individuals and can be interpreted as a unary
predicate.

Application: defined and used by the EVS.
Related domain objects: DescLogicConcept, MetathesaurusConcept, SemanticType
Extends: java.lang.Object

4.7.3 ConceptUniqueIdentifier
An alphanumeric string associated with a concept that uniquely identifies the concept.

Application: defined and used by the UMLS and by EVS.
Extends: java.lang.Object

4.7.4 Definition
An authoritative definition of a concept.

Application: defined and used by the EVS.
Extends: java.lang.Object

4.7.5 DescLogicConcept
A description logic concept represented in the NCI Thesaurus.

Application: defined and used by the EVS.
Related domain objects: Concept, History, SemanticType
Extends: Concept

4.7.6 EvsProperties
An object used to store connection properties (host, port) for an EVS session.

Application: defined and used by the EVS.
Related domain objects: DescLogicConcept, MetathesaurusConcept, SemanticType
Extends: java.lang.Object

4.7.7 History
A history record associated with a description logic concept in the NCI Thesaurus; used to track
concept identities and definitions over multiple releases.

Application: defined and used by the EVS.
Related domain objects: DescLogicConcept, BaseLineDate
Extends: java.lang.Object

4.7.8 MetaThesaurusConcept
A concept in the NCI Metathesaurus.

Application: defined and used by the EVS.

47

http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/EVS/bean/Concept.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/EVS/bean/ConceptUniqueIdentifier.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/EVS/bean/Definition.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/EVS/bean/DescLogicConcept.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/EVS/bean/EvsProperties.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/EVS/bean/History.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/EVS/bean/MetaThesaurusConcept.html

Related domain objects: Concept, SemanticType
Extends: Concept

4.7.9 Property
A feature or attribute of a description logic concept.

Application: defined and used by the EVS.
Related domain objects: DescLogicConcept
Extends: java.lang.Object

4.7.10 Role
A relationship defined between two description logic concepts in the NCI Thesaurus.

Application: defined and used by the EVS.
Related domain objects: DescLogicConcept, MetathesaurusConcept, SemanticType.
Extends: java.lang.Object

4.7.11 SemanticType
A categorization used to broadly characterize the type of information represented by a concept.

Application: defined and used by the EVS and UMLS.
Related domain objects: MetathesaurusConcept
Extends: java.lang.Object

4.7.12 Source
The named source for a concept definition.

Application: defined and used by the EVS.
Related domain objects: EVSProperties, Definition.
Extends: java.lang.Object

4.8 Downloading the NCI Thesaurus
The NCI Thesaurus is can be downloaded in several formats, including simple tab-delimited

ASCII format, Apelon's proprietary Ontylog XML format, and OWL format (the Web Ontology
Language). The ASCII- and XML-formatted files are available for download at the NCICB
download site, as ThesaurusV2_0Flat.zip and ThesaurusV2_0XML.zip. The OWL formatted
version is available at http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl. Users who prefer to
use FTP for download can go to the caCORE FTP site.

The format of the ASCII flat file is extremely simple. For each concept, the download file
includes the following information:

1. The concept code: all terms have the “C” prefix, followed by its integer index;
2. The concept name: this name may contain embedded punctuation and spaces;
3. A pipe-delimited list of parent concepts, as identified in the NCI Thesaurus by isa

relations;
4. A pipe-delimited list of synonyms, the first of which is the preferred name; and
5. One of the NCI definitions for the term—if one exists.

48

http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/EVS/bean/Property.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/EVS/bean/Role.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/EVS/bean/SemanticType.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/EVS/bean/Source.html
http://www.w3.org/TR/2003/CR-owl-features-20030818/
http://ncicb.nci.nih.gov/download/
http://ncicb.nci.nih.gov/download/
http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl
ftp://ftp1.nci.nih.gov/pub/cacore/

Each of these separate types of information is tab-delimited; within a given category, the
individual entries are separated by pipes (“|”). Only the third and fourth categories, i.e., the
parent concepts and synonyms, have multiple entries requiring the pipe separators. Note that
while much of the information available from the interactive Metaphrase server is included in the
download, any information outside the NCI Thesaurus description logic vocabulary (e.g.,
Diagnosis, Laboratory, Procedures, etc.) is not.

For example, the flat file download for the term “Mercaptopurine” is as follows:

C6 Mercaptopurine Immunosuppressants|Purine Antagonists
 Mercaptopurine|1,3-AZP|1,7-Dihydro-6H-purine-6-thione|3H-Purine-6-thiol|6
Thiohypoxanthine|6 Thiopurine|6-MP|6-Mercaptopurine|6-Mercaptopurine
Monohydrate|6-Purinethiol|6-Thiopurine|6-Thioxopurine|6H-Purine-6-thione,
1,7-dihydro- (9CI)|6MP|7-Mercapto-1,3,4,6-tetrazaindene|AZA|Alti-
Mercaptopurine|Azathiopurine|BW 57-323H|CAS
50442|Flocofil|Ismipur|Leukerin|Leupurin|MP|Mercaleukim|Mercaleukin|Mercap|Me
rcaptina|Mercapto-6-purine|Mercaptopurinum|Mercapurin|Mern|NCI-C04886|NSC
755|Puri-Nethol|Purimethol|Purine-6-thiol (8CI)|Purine-6-thiol
Monohydrate|Purine-6-thiol, Monohydrate|Purinethiol|Purinethol|U-4748|WR-2785
 An anticancer drug that belongs to the family of drugs called
antimetabolites.

Users who have access to the Apelon Ontylog software may wish to download the XML
encoded file. All other users who prefer to use an encoded format rather than the simple ASCII
form should download the OWL encoding of the NCI Thesaurus, which is described below.

4.8.1 The OWL Encoding of the NCI Thesaurus
OWL, as specified and proposed by the World Wide Web Consortium (W3C), is an emerging

standard for the representation of semantic content on the web. Building on the earlier
groundwork laid by XML, the Resource Description Framework (RDF) and RDF schema; and
subsequently, by DAML+OIL, OWL represents the culmination of what has been learned from
these previous efforts.

While XML provides surface syntax rules and XML Schema provides methods for validating
a document’s structure, neither of these can in itself impose semantic constraints on how a
document is interpreted. RDF provides a data model for specifying objects (resources) and their
relations, and RDF Schema allows one to associate properties with the individual resources as
well as taxonomic relations among the objects. Yet even these extensions could not provide the
breadth and depth of representation needed to encode nontrivial real-world information. OWL
adds vocabulary for describing arbitrary nonhierarchical relations between classes, cardinality
constraints, resource equivalences, richer typing of properties, and enumerated classes.

A major focus of the W3C is the establishment of the The Semantic Web—a far-reaching
infrastructure whose purpose is to provide a framework whereby autonomous self-documenting
agents and web services can exchange meaningful information without human intervention.
OWL is the first step towards realizing this vision. As a result of collaborative efforts with Dr.
James Hendler and the University of Maryland, the NCI Thesaurus is now available for
download in OWL format; this section describes the mapping of the NCI Thesaurus to OWL.

The mapping of the NCI Thesaurus into OWL format proceeds via the Ontylog XML
elements declared in Apelon's Ontylog DTD. The four basic elements are Kinds, Concepts,
Roles, and Properties, where:

49

http://www.w3.org/TR/2003/CR-owl-features-20030818/
http://www.w3.org/
http://www.w3.org/2001/sw/

• Kinds are the top-level super classes in the Thesaurus; they enumerate the different
possible categories of all concepts, and include such things as Anatomy, Biological
Processes, Chemicals and Drugs, etc. Each NCI Thesaurus Kind is converted to an
owl:Class.

• An NCI Thesaurus Concept describes a specific concept under one of the Kind categories.
Each NCI Thesaurus Concept is converted to an owl:Class.

• Roles capture how concepts relate to one another. Generally, Roles have restricted
domains and ranges, that limit the sets of concepts which can participate in the Role
according to their categories—i.e., Kinds. The "defining roles" within a concept definition
provide these local restrictions on the ranges of roles. Each NCI Thesaurus Role is
converted to an owl:ObjectProperty.

• NCI Thesaurus Properties encode the attributes that pertain to a class; they contain
metadata that describes the class, but not its instantiations or subclasses. Each NCI
Thesaurus Property is converted to an owl:AnnotationProperty.

The bulk of the Thesaurus comprises concept definitions; this is also where the most complex
semantics occur. Each concept in the Thesaurus has three main types of associated data: defining
concepts, defining roles, and properties. A "defining concept" is essentially a super class; the
defined concept in OWL has an rdfs:subClassOf relationship to the defining concept.

The defining roles and properties are mapped as described above; the owl:AnnotationProperty
is actually a subclass of rdf:Property, and, like rdfs:comment and rdfs:label, can be attached to
any class, property or instance. This allows properties from the Thesaurus to be associated
directly with a concept’s corresponding class, without violating the rules of OWL.

In addition to any explicitly named properties, each element in the Thesaurus also has a
uniquely defined “code” and “id” attribute associated with it. These are used as unique
identifiers in the Apelon development software, and, as such, are not defined explicitly as roles
or properties. In mapping these identifying attributes to OWL, we have treated these as special
cases of the explicit property elements, and just like other properties in the Thesaurus, they are
mapped as owl:AnnotationProperties. Table 4.7-1 summarizes the mapping of elements in the
Ontylog DTD to OWL elements.

Ontylog Name Conversion
In mapping to OWL, all Ontylog concept names must be converted to proper RDF identifiers

(rdf:id) following the RDF naming rules. This is achieved by removing any spaces in the original
names and substituting all illegal characters with underscores. Names that begin with numbers
are also prefixed with underscores to make them legal. The original concept name however, is
preserved as an rdfs:label. The following steps summarize the conversion of names:

1. Any “+” characters are replaced with the text “plus.”

2. All role names are prefixed with an “r” to ensure that roles and properties with the same
name do not clash.

3. Any characters that are not alphanumeric, or one of “-” and “_,” are replaced with an
underscore (“_”).

4. All names with leading digits are prefixed with an underscore.

50

5. Multiple adjacent underscores in the corrected name are replaced with a single
underscore.

Table 4.8-1 Ontylog DTD to OWL conversions

Ontylog Element Owl Element Comment
kindDef owl:Class
roleDef owl:ObjectProperty
propertyDef owl:AnnotationProperty
conceptDef owl:Class

name* rdf:ID Applies to the name subelement of kindDef,
roleDef, propertyDef, and conceptDef.*

name rdfs:label

Because the conceptDef name contains some
useful semantics, the original form is retained as
an rdfs:label. No other name elements are
retained in rdfs:label.

code owl:AnnotationProperty
Defined as an owl:AnnotationProperty with
rdf:ID=”code”. Code values remain the same for
each concept.

id owl:AnnotationProperty
Defined as an owl:AnnotationProperty with
rdf:ID=”ID”. ID values remain the same for each
concept.

definingConcepts rdfs:subClassOf
The concept subelement of definingConcepts is
mapped to the rdf:resource attribute of the
rdfs:subClassOf element.

domain rdfs:domain
range rdfs:range

definingRoles / role / name owl:onProperty

definingRoles are converted to owl restrictions on
properties. The name child element of
definingRoles/role is taken as the rdf:resource
attribute of the owl:onProperty element.

definingRoles / role / value owl:someValuesFrom

definingRoles are converted to owl restrictions on
properties. The value child element of
definingRoles/role is taken as the rdf:resource
attribute of the owl:someValuesFrom element.

* name Ontylog elements are converted to rdf:ID as described in the Ontylog Name Conversion section.
namespaceDef and namespace elements are not mapped to OWL.

Additional information about the Ontylog encoding is available in the Ontylog DTD, which
can be downloaded from the NCICB EVS FTP site, along with the zipped ASCII flat file and the
Ontylog XML encoding. The current OWL translation of the NCI Thesaurus contains over
500,000 triples and is available in zipped format from the FTP site, as well as in unzipped format
at http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl, the mindswap web site for download or
online viewing.

51

http://ncicb.nci.nih.gov/NCICB/core/EVS/EVSpublicLFS/
http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl
http://www.mindswap.org/2003/CancerOntology/

4.9 Mapping of the Gene Ontology to Ontylog
As of the caCORE 2.0 release, the NCI DTS now provides access to the Gene OntologyTM

Consortium’s (GO) controlled vocabulary. The GO ontologies are widely used—most likely due
to their simplicity of design and their potential for automated transfer of biological annotations,
from model organisms to more complex organisms based on sequence similarities. GO
comprises three independent controlled vocabularies (ontologies) encoding biological process,
molecular function, and cellular components for eukaryotic genes. GO terms are connected via
two relations, is-a and part-of, that define a directed acyclic graph. Although concepts in the
ontologies were initially derived from only three model systems (yeast, worm, and fruitfly), the
goal was to encode concepts in such a way that the information is applicable to all eukaryotic
cells. Thus, species-specific anatomies are not represented, as this would not support a unifying
reference for species-divergent nomenclatures.

Each month NCI will load the latest version of GO into a test instance of the DTS server, and,
following validation in the Ontylog environment, will promote it to a production server for
programmatic access by NCI applications. NCI converts GO into the Ontylog XML
representation (necessary for import into the DTS server) via a stylesheet transformation
followed by some post-processing to satisfy Ontylog constraints. It is NCI’s intent that the
version of GO on the DTS server will not be more than a month behind the current version
available from http://www.geneontology.org. However, it might be necessary to skip releases if
unforeseen complications arise.

The tables in this section summarize the encoding of GO elements into Ontylog.

Table 4.9-1 Ontylog elements used for GO mapping

Ontylog Entity Instance Name (and optional description)

namespaceDef GO

kindDef GO_Kind

RoleDef part-of: This role is unused; however, the software requires that at
least one role be declared.

propertyDef Preferred_Name

propertyDef Synonym

propertyDef DEFINITION

propertyDef
dbxref: complex property containing two XML-marked up GO
entities: “go:database_symbol,” and “go:reference,” using tags
“database_symbol” and “reference,” respectively.

propertyDef
part-of: complex property containing two XML-marked up GO
entities: “go:name” and “go:accession,” using tags “go-term” and
“go-id,” respectively.

The go:name stored in Preferred_Name is as declared in GO. However, the go:name used in
the Ontylog name might have been modified during the conversion process (by appending
underscores) to make the Ontylog name unique.

52

http://www.geneontology.org/

Table 4.9-2 Mapping of GO term to Ontylog conceptDef

GO term
element

conceptDef
element

(propertyDef)

go:accession code
go:name name
go:isa definingConcepts
go:name property Preferred_Name
go:synonym property Synonym
go:definition property DEFINITION
go:part-of property part-of
go:dbxref property dbxref

53

5.0 THE caDSR DOMAIN OBJECTS

54

The Cancer Data Standards Repository at NCI is part of a larger effort associated with the
11179 standard defined by the ISO (International Organization for Standardization) and IEC
(International Electrotechnical Commission). The purpose of the ISO/IEC 11179 is to regularize
the vocabularies used in representing and annotating shared electronic data. A more complete
desccription of the caDSR is provided in the NCICB Applications User Manual, where several
web-based interface tools to the repository are also described. This chapter describes the Java
API to the repository and introduces the Java classes which participate in this programmatic
interface. The first two sections provide a brief review of the ISO/IEC 11179 standard and its
realization as an Oracle database at NCI.

5.1 Modeling Metadata: The ISO/IEC 11179 Standard
Regardless of the application domain, any particular data item must have associated with it a

variable name or tag, a conceptualization of what the item signifies, a value, and an intended
interpretation of that value. For example, an entry on a case report form may be intended to
capture the patient’s place of birth, and the corresponding value may be tagged electronically as
Patient_placeOfBirth. But what is the intended concept? Is the data element designed to capture
the country, the city, or the specific hospital where the person was born? Assuming that the
intended concept is country, how is the resulting value to be represented electronically? Possible
representations might include the full name of the country, a standard two- or three-letter
abbreviation, a standard country code, or perhaps a specific encoding unique to the application.

Metadata is “data about data,” and refers to just this type of intentional information that must
be made explicit in order to ensure that electronically exchanged data can be correctly
interpreted. The purpose of the ISO/IEC standard is to define a framework and protocols for how
such metadata can be specified, consistently maintained, and shared across diverse domains. The
caDSR conforms to this standard; while it was developed specifically for the support of clinical
trials data, usage of the caDSR is not limited to clinical applications.

The ISO/IEC 11179 standard defines a fairly complex model, and even the notion of metadata
itself can be somewhat abstruse as it is a rather abstract concept. To facilitate understanding the
model, this discussion uses a divide-and-conquer approach, and defines two very general types
of components:

1. Information components whose purpose is to represent content; and
2. Organizational and administrative components whose purpose is to manage the

repository.

This partitioning is not intrinsic to the ISO/IEC 11179, and indeed, some of the components do
not neatly fit into the separate categories. Nevertheless, it provides a useful framework.

The fundamental information component in the ISO/IEC 11179 model is the data element,
which constitutes a single unit of data considered indivisible in the context in which it is used.
Another way of saying this is that a data element is the smallest unit of information that can be
exchanged in a transaction between cooperating systems. More specifically, a data element is

55

http://metadata-stds.org/11179/

used to convey the value of a selected property of a defined object5, using a particular
representation of that value.

A critical notion in the metadata model is that any concept represented by a data element must
have an explicit definition that is independent of any particular representation. In order to
achieve this in the model, the ISO/IEC 11179 standard specifies the following four components:

1. A DataElementConcept consists of an object and a selected property of that object;

2. The ConceptualDomain is the set of all intended meanings for the possible values of an
associated DataElementConcept;

3. The ValueDomain is a set of accepted representations for these intended meanings; and

4. A DataElement is a combination of a selected DataElementConcept and a ValueDomain.

A simple example should help to clarify these definitions:

DataElement

DataElementConcept:

ObjectClass: Hair
Property: Color

ValueDomain:

1, 2, …, 10

ConceptualDomain:

blonde, brunette, auburn, …

Figure 5.1-1 Representing data in the ISO/IEC 11179 model

Figure 5.1-1 shows a DataElement that might be used to represent hair color. The associated
DataElementConcept uses the ObjectClass Hair and the Property Color to define the intended
concept. The intended meanings for this data element are the familiar hair colors blonde,
brunette, etc., but the ValueDomain uses a numeric representation that is mapped to these
intended meanings. Both the DataElementConcept and the ValueDomain are components of the
DataElement, and each references the same ConceptualDomain, which is defined outside the
DataElement. Important principles of this design are:

• The DataElementConcept (DEC) is used to signify a concept independent of representation.

• The ValueDomain (VD) specifies a set of representational values independent of meaning.

• The DataElement (DE) combines a specific object and property with a value representation.

• The ConceptualDomain (CD) specifies the complete set of value meanings for the concept
and allows the interpretation of the representation.

5 The term object is used here in the sense defined by the ISO/IEC 11179 (see definition in Table 5.2-1)—and

does not have any literal correspondence to a caBIO Java object.

56

Figure 5.1-2 uses a UML Class diagram to show the cardinality constraints that hold for these
relations. Each DataElement must specify exactly one DataElementConcept and one
ValueDomain, in order to fully specify the data element. Similarly, each DataElementConcept
and ValueDomain must specify exactly one ConceptualDomain. Conversely, a
ConceptualDomain may be associated with any number of ValueDomains and any number of
DataElementConcepts. Figure 5.1-3 shows an example of this, using the color property of
different geometric objects as DataElementConcepts, and alternate color representations for the
ValueDomains.

abstract

concrete

Representation

Perception

Conceptual
Domain

Data Element
Concept

1..1

0..*

0..* 1..1
Data Element Value Domain

0..* 0..*

1..1

1..1

Figure 5.1-2 Abstract and concrete components of the data representation

A constraint not shown in any of these figures is that it is not possible to reuse the same
DataElementConcept-ValueDomain pair to define a new DataElement, as this defines a logical
redundancy. Thus, the “0..*” cardinality constraints implied by Figure 5.1-2 are not quite as
open-ended as they imply. Specifically,

• a DataElement specifies exactly one DataElementConcept and one ValueDomain;
• a DataElementConcept specifies exactly one ConceptualDomain;
• a ValueDomain specifies exactly one ConceptualDomain;
• a ConceptualDomain may be associated with any number of ValueDomains;
• a ConceptualDomain may be associated with any number of DataElementConcepts;
• a DataElementConcept may be associated with as many DataElements as there are

ValueDomains (i.e. alternate representations) associated with the ConceptualDomain; and
• a ValueDomain may be associated with as many DataElements as there are

DataElementConcepts associated with the ConceptualDomain.

 DataElementConcept-

 DataElementConcept -

ConceptualDomain:
{red, green, blue, cyan,…}

DataElementConcept-1
Object:square
Property: color

ValueDomain-1:
12-digit RGB

2
Object:triangle
Property: color

3
Object:circle

Property: color

ValueDomain-2:
{0..255}

ValueDomain-3:
Hex encoding

Data Element-2

DataElement-1

Data Element-3

Figure 5.1-3 Many-to-one mappings of information elements in the metadata model

57

Many additional information components collaborate with these four core elements to provide
the ISO/IEC 11179 infrastructure for content representation. These are described in the caDSR
model in the next section, along with the organizational and administrative components that are
used to document, classify, and in general, manage the information components.

5.2 The caDSR Metamodel
Figure 5.2-1 again shows the four elements discussed thus far, but this time in the context of

other components that collectively define the infrastructure for content representation.

0..*

ing +specify

+having

1..1

+representin

+contained in
0..*

+containing
1..*

1..1

0..1

0..*
ValueDomain

0..* +related

DataElementConceptRelationship

Qualifier

ValueDomainPermissibleValue

NonEnumeratedValueDomain

+comprises

+used in
1..1

0..*

+contains

+contained in
2..n

0..*

+comprises

+used in
1..*

1..1

ValueMeaning

EnumeratedValueDomain

PermissibleValue

ConceptualDomain

Representation

+represented by

0..1
0..1

DataElement

+representing

+represented by

1..1

1..1

+expressing

+expressed by

0..*

0..*

1..*

1..1

1..1

0..*

ObjectClass
Property

DataElementConcept

Figure 5.2-1 Information component infrastructure in the metamodel

58

All of the components in Figure 5.2-1 that are highlighted in light gray must be administered.
Pragmatically, this means that there is a formal protocol for creating these components; that
there is an approval process in place for accepting newly proposed elements; and that there is a
designated authority in charge of stewarding the component. Technically, this means that each of
the highlighted components is derived from a parent class named AdministeredComponent.
Table 5.2-1 provides definitions for the new components introduced in Figure 5.2-1.

Table 5.2-1 Information components in the caDSR metamodel

Component Name Definition

ConceptualDomain The set of all valid value meanings of a Data Element Concept
expressed without representation.

DataElement A unit of data for which the definition, identification,
representation, and permissible values are specified by means of
a set of attributes.

DataElementConcept A concept that can be represented in the form of a data element,
independent of any particular representation.

DataElementConceptRelationship An affiliation between two instances of Data Element Concepts.

EnumeratedValueDomain A value domain expressed as a list of all permissible values.

NonenumeratedValueDomain A value domain expressed by a generative rule or formula; for
example: “all even integers less than 100.”

ObjectClass A set of ideas, abstractions, or things in the real world that can
be identified with explicit boundaries and meaning and whose
properties and behavior follow the same rules.

PermissibleValue The exact names, codes, and text that can be stored in a data
field in an information management system.

Property A characteristic common to all members of an Object Class. It
may be any feature naturally used to distinguish one individual
object from another. It is conceptual and thus has no particular
associated means of representation.

Qualifier A term that helps define and render a concept unique. For
example, given the ObjectClass household and the Property
annual income, a Qualifier could be used to indicate
previous year.

Representation Mechanism by which the functional and/or presentational
category of an item may be conveyed to a user. Examples: 2-
digit country code, currency, YYYY-MM-DD, etc.

ValueDomain A set of permissable values for a data element.

ValueDomainPermissibleValue The many-to-many relationship between value domains and
permissible values; allows one to associate a value domain to a
permissible value.

ValueMeaning The significance or intended meaning of a permissible value.

59

An AdministeredComponent is literally a component for which administrative information
must be recorded. It may be a DataElement itself or one of its associated components
(Representation, ValueDomain, DataElementConcept, ConceptualDomain, ObjectClass, or
Property) that requires explicit specifications for reuse in or among enterprises—an
AdministeredComponent is a generalization for all of the descendant components that are
highlighted in Figure 5.2-1. Table 5.2-2 lists the class attributes of an AdministeredComponent.

Table 5.2-2 Class attributes of an AdministeredComponent

Attribute Name Type

id String required

preferredName String required

preferredDefinition String required

longName String required

version Float required

workflowStatusName String required

workflowStatusDescription String required

latestVersionIndicator Boolean required

beginDate Date required

endDate Date required

deletedIndicator Boolean optional

changeNote String optional

unresolvedIssue String optional

origin String optional

dateCreated Date required

dateModified Date required

registration String optional

The attributes listed in Table 5.2-2 tell only half the story; additional critical information
about an AdministeredComponent derives from its associations with the organizational and
administrative components depicted in Figure 5.2-2. Of these components, the only element that
is also itself an administered component is the ClassificationScheme.

Two “regions” are outlined in Figure 5.2-2: (1) the Naming and Identification region (upper
right), and (2) the Classification region (lower left). The ReferenceDocument component is not
included in either region. Each AdministeredComponent may be associated with one or more
ReferenceDocuments that identify where and when the component was created and provide
contact information for the component’s designated registration authority.

60

The purpose of the Naming and Identification region is to manage the various names by
which components are referenced in different contexts. Many components may be referenced by
different names depending on the discipline, locality, and technology in which they are used. In
addition to the name attributes contained in the component itself (preferredName, longName), an
administered component may have any number of alternative Designations. Each Designation is
associated with exactly one Context reflecting its usage.

0..*

+classifying

ClassificationScheme

ClassificationSchemeItem

ClassSchemeClassSchemeItem

1..*

1..1

1..*

1..1

0..1

1..1 0..*

1..*

1..1

ReferenceDocument

AdministeredComponent

0..*

1..1 0..*

1..1

0..*
1..*

+grouped by

Context

+described by

+havin

+classified by

+havin

+describing

Designation

Figure 5.2-2 Administrative and organizational components of the caDSR metamodel

The Classification region is used to manage classification schemes and the administered
components that are in those classification schemes. Classification is a very fundamental and
powerful way of organizing information to make the contents more accessible. Abstractly, a
classification scheme is any set of organizing principles or dimensions along which data can be
organized. In the ISO/IEC 11179 model, a ClassificationScheme may be something as simple as
a collection of keywords or as complex as an ontology. The classification scheme element in
Figure 5.2-2 is highlighted in light gray to reflect that it is an administered component.

Classification schemes that define associations among components can greatly assist
navigation through a large network of elements; the associations may describe simple
subsumption hierarchies or more complex relations such as causal or temporal relations. In
particular, classification schemes with inheritance can enhance self-contained definitions by
contributing the definition of one or more ancestors.

The ClassificationScheme component serves as a container-like element that collects the
ClassificationSchemeItems participating in the scheme. In addition, the ClassificationScheme
component identifies the source of the classification system and contains an indicator specifying
that the scheme is alphanumeric, character, or numeric.

A ClassificationSchemeItem may be a node in a taxonomy, a term in a thesaurus, a keyword
in a collection, or a concept in an ontology—in all cases, it is an element that is used to classify
administered components. It is quite natural for an administered component that is used in
different contexts to participate in several classification schemes. Classification schemes may

61

coexist and a classified component may have a different name in each one, since each scheme is
from a different context.

The ClassSchemeClassSchemeItem in the caDSR model is not a component of the ISO/IEC
11179 metamodel, but serves an important role in the implementation of the many-to-many
mappings between ClassificationSchemeItems and ClassificationSchemes. This component is
used to associate a set of classification scheme items with a particular classification scheme, and
to store details of that association such as the display order of the items within that scheme.

In addition to the caDSR components corresponding to elements of the ISO/IEC 11179
metamodel, the caDSR model defines a collection of domain-specific elements for capturing
clinical trials data. All of the components described up to this point provide the infrastructure for
managing shared data. The clinical trials components exercise the representational power of the
metamodel, and are used to specify how clinical trials data should be captured and exchanged.

0..*
+contained in

1..*

 +containing

1..*

0..*

 Question

1..*

0..*

1..*

+contaning

1..1

0..*
+used in

+comprises

CaseReportForm

ProtocolFormsSet

 Module

 ValidValue

+contained in

0..*
+contained in

 +containing

 ProtocolFormsTemplate

Figure 5.2-3 Components in the caDSR metamodel for clinical trials data

All of the components in Figure 5.2-3 are hightlighted in light gray, as they are
AdministeredComponents designed for use in NCI-sponsored clinical trials. Note that because
these elements are not part of the ISO-11179 specification, they are not technically speaking,
ISO administered components. This caDSR design decision was made to ensure that these shared
data elements could be stewarded and controlled adequately.

NCI-sponsored programs can populate the registry with instances of these components as
needed to specify the metadata descriptors needed for that program. Programs currently
participating in this effort include:

• The Cancer Therapy Evaluation Project (CTEP)

62

http://ctep.cancer.gov/

• Specialized Programs of Research Excellence (SPOREs)
• The Early Detection Research Network (EDRN)
• The Division of Cancer Prevention (DCP)
• The Cancer Imaging Program (CIP)
• The Division of Cancer Epidemiology and Genetics (DECG)
• The Cancer Bioinformatics Infrastructure Objects Project (caBIO)

Table 5.2-3 Components in the caDSR metamodel for clinical trials data

Component Name Component Description
CaseReportForm (CRF) A questionnaire that is a collection of data elements used to document

patient information stipulated in the protocol. A CRF is used by
clinicians to record information about patients’ visits in a clinical
trial.

Question The text that accompanies a data element on a CRF; used to clarify
the information being requested.

Module A logical grouping of data elements on a CRF.
ProtocolFormsSet A specific clinical trial protocol document and its collection of

associated CRFs. Clinical trial protocols, along with their associated
CRFs, stipulate the execution of clinical trials. A protocol is uniquely
identify by a protocol ID, protocol version, and Context name.

ProtocolFormsTemplate A boilerplate collection of components (modules, questions and valid
values) to be included in a Case Report Form. The template form is
not associated with any particular clinical trial.

ValidValue An allowable value for a data element (question) on a CRF.

5.3 The caDSR API

The previous section described three broad categories of component in the caDSR metamodel
and presented each of these independently, thus implying that there are no dependencies among
these groupings. Figure 5.3-1 brings these components together and exposes the associations
actually occurring between components in different categories.

As in the previous diagram, all components highlighted in gray are descendants of the
AdministeredComponent class. We emphasize, however, that some of these elements—i.e., those
supporting clinical trials specific data—are not defined in the ISO/IEC 11179 standard, but are
nevertheless implemented as subclasses of the AdministeredComponent class in the caDSR
implementation for pragmatic reasons.

 Because so many components are AdministeredComponent subclasses, we use color coding
instead of the standard UML generalization notation (a line ending in an open triangle) to
indicate this. Other superclass-subclass relations, such as the ValueMeaning class derived from
PermissibleValue, do however use the standard UML notation.

The three categories of components are also outlined in the figure: administrative and
organizational components are in the upper left, clinical trials components are in the upper right,
and information components are centered underneath these two.

63

http://spores.nci.nih.gov/
http://www3.cancer.gov/prevention/cbrg/edrn/
http://www3.cancer.gov/prevention/
http://www3.cancer.gov/bip/
http://dceg.cancer.gov/

Figure 5.3-2 summarizes the caDSR API class hierarchy. At the most abstract level, a single
distinguished object called the DomainObject class is the ancestor to all other classes. At the
next level, the AdministeredComponent class is defined, along with all other classes which do
not represent elements requiring administration. Among the AdministeredComponent subclasses,
only the ValueDomain class has further specialization, i.e., the EnumeratedValueDomain and
NonEnumeratedValueDomain classes.

ProtocolFormsTemplate

 Question

ProtocolFormsSet

CaseReportForm

 Module

 ValidValue

AdministeredComponen

ContexDesignation

ClassificationSchemeIte

ReferenceDocumen

ClassificationSchem

ClassSchemeClassSchemeIte

DataElementConcept

Property

 ObjectClass

DataElementConceptRelationship

Qualifier

NonEnumeratedDomain

ValueMeanin

PermissibleValue

ConceptualDomain

Representation

DataElement

ValueDomain

EnumeratedDomain

Value

Figure 5.3-1 The caDSR domain objects in the caCORE Java API

This discussion was intended to provide a descriptive overview of the domain objects
included in the caCORE API to the caDSR. More detailed modeling information can be found on
the caDSR Rose Web Publisher pages, and more concrete specifications are available on the
JavaDocs pages. Sample code that exercises the Java API is described in Section 12.3 and listed
in Appendix C. Section 5.5 summarizes the classes described here.

64

http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/index.html

DomainObject

AdministeredComponent

Context

DataElementConceptRelationship Qualifier

ValueDomainPermissibleValue

PermissibleValue

ClassSchemeClassSchemeItem

ClassificationSchemeItem

ValueMeaningDesignation

ReferenceDocument

Property ValueDomain

ConceptualDomain

DataElement

Module

ValidValue

Representation

CaseReportForm

ProtocolFormsTemplate

ClassificationScheme

DataElementConcept

ObjectClass

ProtocolFormsSet

Question

NonEnumeratedValueDomain

EnumeratedValueDomain

Figure 5.3-2 The caDSR API class hierarchy

65

5.4 Downloading the caDSR
The caDSR repository and admin tool, along with Java source code for the CDE Curation

Tool and the CDE Browser, are available for download from the NCICB download site. Step-by-
step instructions are provided there, along with the data files and source code.

The installation guides include:

• caDSR_2.0_Install_Guide.doc
• CDE Curation Tool V2.0 Installation.doc
• Install_CDBrowser_2.0_9ias.txt (versions for Unix and Windows NT)
• Install_CDBrowser_2.0_On_OC4J.txt (versions for Unix and Windows NT)

The caDSR repository/admin tool install requires the prior installation and configuration of
the Oracle Relational Database Management System (RDBMS) (8.1.7 or higher) and Oracle 9ias
Release 9.0.2.2.3. Both the CDE Curation Tool and the CDE Browser require that you have
previously downloaded and installed the caDSR repository/admin tool. The CDE Browser
requires either Oracle 9ias 9.0.2.2.3 or Oracle OC4J 902. The CDE Curation tool also requires
the following components to successfully install the tool:

• JDK 1.4.1_02 or higher
• Tomcat 4.1.18 or equivalent J2EE container
• Oracle 9i client software

5.5 The caDSR Domain Object Catalog
This catalog lists the objects defined in the gov.nih.nci.cadsr.bean package. Items in the

listing below should be interpreted as follows:

• Application: This field indicates whether or not the object is a component defined in the
ISO/IEC 11179 model, an object introduced to support a specific application area, or an
object introduced by the caDSR for general implementation purposes.

• Related domain objects: A second domain object is “related” to the first domain object if
that second object occurs anywhere in the signature of a method for the first object.

• Extends: This field reflects direct inheritance; i.e., the current class is a direct subclass of
that which it extends.

• Implements: This field lists all interfaces implemented by the object.

In cases where no applications, relations, extensions, or interface implementations apply, the
above fields are omitted. Note that the terms “related” and “extends” are very narrowly defined
here and refer explicitly to the Java implementation. For example, although a CaseReportForm
may “contain” Questions, the class definition does not include any methods that specify a
Question as either one of its input or output parameters. Thus, a Question is not “related” to a
CaseReportForm object. This actually reflects the information hiding in use, as Questions are
contained in CaseReportForm objects only indirectly, via ProtocolFormsTemplate objects.

5.5.1 AdministeredComponent
Literally, a component for which administrative information must be recorded.

Application: A component of the ISO/IEC 11179 model, implemented in caDSR.
Extends: DomainObject

66

http://ncicb.nci.nih.gov/download/
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caDSR/bean/AdministeredComponent.html

Implements: java.io.Serializable

5.5.2 CaseReportForm
A questionnaire that is a collection of data elements used to document patient information
stipulated in the protocol.

Application: Used in clinical trials applications.
Related domain objects: , , , ,

ClassificationSchemeItem Context Designation ProtocolFormsSet

ReferenceDocument
Extends: AdministeredComponent
Implements: XMLInterface, java.io.Serializable

5.5.3 ClassificationScheme
Any set of organizing principles or dimensions along which data can be organized. A
classification scheme may be a simple collection of keywords or a complex ontology.

Application: A component of the ISO/IEC 11179 model, implemented in caDSR.
Related domain objects: ClassificationSchemeItem, ClassSchemeClassSchemeItem, Context,
Designation, ReferenceDocument
Extends: AdministeredComponent
Implements: XMLInterface, java.io.Serializable

5.5.4 ClassificationSchemeItem
An item or category in a classification scheme used to classify other components; for example, a
node in a taxonomy.

Application: A component of the ISO/IEC 11179 model, implemented in caDSR.
Related domain objects: CaseReportForm, ClassificationSchemeItem,
ClassSchemeClassSchemeItem, ConceptualDomain, DataElementConcept, DataElement,
EnumeratedValueDomain, Module, NonEnumeratedValueDomain, ObjectClass, Property,
ProtocolFormsSet, Question, Representation, ValidValue
Extends: DomainObject
Implements: XMLInterface, java.io.Serializable

5.5.5 ClassSchemeClassSchemeItem
Used to associate a set of classification scheme items with a particular classification scheme, and
to store details of that association such as the display order of the items within that scheme.

Application: Defined and used by the caDSR project for implementation purposes.
Related domain objects: ClassificationScheme, ClassificationSchemeItem
Extends: DomainObject
Implements: XMLInterface, java.io.Serializable

5.5.6 ConceptualDomain
The set of all possible Valid Value meanings of a Data Element Concept expressed without
representation.

Application: A component of the ISO/IEC 11179 model, implemented in caDSR.

67

http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caDSR/bean/ClassificationScheme.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caDSR/bean/ClassificationSchemeItem.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caDSR/bean/ClassSchemeClassSchemeItem.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caDSR/bean/ConceptualDomain.html

Related domain objects: DataElementConcept, Designation, EnumeratedValueDomain,
NonEnumeratedValueDomain, ReferenceDocument, ValueMeaning
Extends: AdministeredComponent
Implements: XMLInterface, java.io.Serializable

5.5.7 Context
A designation or description of the application environment or discipline in which a name is
applied or from which it originates.

Application: A component of the ISO/IEC 11179 model, implemented in caDSR.
Related domain objects: DataElementConcept, DataElement, Designation,
EnumeratedValueDomain, Module, NonEnumeratedValueDomain, ObjectClass, Property,
ProtocolFormsSet, ProtocolFormsTemplate, Question, Representation, ValidValue
Extends: DomainObject
Implements: XMLInterface, java.io.Serializable

5.5.8 DataElement
A unit of data for which the definition, identification, representation, and permissible values are
specified by means of a set of attributes.

Application: A component of the ISO/IEC 11179 model, implemented in caDSR.
Related domain objects: ClassificationSchemeItem, Context, DataElementConcept, Designation,
EnumeratedValueDomain, NonEnumeratedValueDomain, Question, ReferenceDocument
Extends: AdministeredComponent
Implements: XMLInterface, java.io.Serializable

5.5.9 DataElementConcept
A concept that can be represented in the form of a data element and described independent of
any particular representation.

Application: A component of the ISO/IEC 11179 model, implemented in caDSR.
Related domain objects:DataElementConceptRelationship, Property, Qualifier

Extends: AdministeredComponent
Implements: XMLInterface, java.io.Serializable

5.5.10 DataElementConceptRelationship
A description of the affiliation between two occurrences of Data Element Concepts.

Application: A component of the ISO/IEC 11179 model, implemented in caDSR.
Related domain objects: DataElementConcept
Extends: DomainObject
Implements: XMLInterface, java.io.Serializable

5.5.11 Designation
A name by which an Administered Component is known in a specific context, user database, or
application. Also a placeholder to track the usage of Administered Components by different
Contexts.

Application: A component of the ISO/IEC 11179 model, implemented in caDSR.

68

http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caDSR/bean/Context.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caDSR/bean/DataElement.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caDSR/bean/DataElementConcept.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caDSR/bean/DataElementConceptRelationship.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caDSR/bean/Designation.html

Extends: gov.nih.nci.caDSR.bean.DomainObject
Implements: XMLInterface, java.io.Serializable

5.5.12 DomainObject
An abstract class that serves as the parent or ancestor to all other classes in the caDSR bean
package.

Application: An implementation class in the caDSR model.
Related domain objects: CaseReportForm, ClassificationScheme, ConceptualDomain, Context,
DataElement, DataElementConcept, EnumeratedValueDomain, Module,
NonEnumeratedValueDomain, ObjectClass, Property, ProtocolFormsSet,
ProtocolFormsTemplate, Question, Representation, ValidValue

Extends: java.lang.Object

5.5.13 EnumeratedValueDomain
A value domain expressed as a list of all permissible values.

Application: A component of the ISO/IEC 11179 model, implemented in caDSR.
Related domain objects: ClassificationSchemeItem, Context, DataElement, Designation
Extends: ValueDomain
Implements: XMLInterface, java.io.Serializable

5.5.14 Module
A collection of data elements logically grouped on a CRF.

Application: Used in clinical trials applications.
Related domain objects ClassificationScheme, Context, Designation, Question,
ReferenceDocument
Extends: AdministeredComponent
Implements: XMLInterface, java.io.Serializable

5.5.15 NonenumeratedValueDomain
A value domain expressed by a generative formula or range of allowed values.

Application: A component of the ISO/IEC 11179 model, implemented in caDSR.
Related domain objects: ClassificationSchemeItem, ConceptualDomain, Context, DataElement,
Designation, Qualifier, ReferenceDocument, Representation
Extends: ValueDomain
Implements: XMLInterface, java.io.Serializable

5.5.16 ObjectClass
A set of ideas, abstractions, or things in the real world that can be identified with explicit
boundaries and meaning and whose properties and behavior follow the same rules.

Application: A component of the ISO/IEC 11179 model, implemented in caDSR.
Related domain objects: ClassificationSchemeItem, Context, DataElementConcept, Designation,
ReferenceDocument
Extends: AdministeredComponent
Implements: XMLInterface, java.io.Serializable

69

http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caDSR/bean/DomainObject.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caDSR/bean/EnumeratedValueDomain.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caDSR/bean/Module.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caDSR/bean/NonenumeratedValueDomain.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caDSR/bean/ObjectClass.html

5.5.17 PermissibleValue
The exact names, codes, and text that can be stored in a data field in an information management
system.

Application: A component of the ISO/IEC 11179 model, implemented in caDSR.
Related domain objects:EnumeratedValueDomain, ValueDomainPermissibleValue,
ValueMeaning
Extends: DomainObject
Implements: XMLInterface, java.io.Serializable

5.5.18 Property
A characteristic common to all members of an Object Class. It may be any feature that humans
naturally use to distinguish one individual object from another. It is conceptual and thus has no
particular associated means of representation by which property can be communicated.

Application: A component of the ISO/IEC 11179 model, implemented in caDSR.
Related domain objects: ClassificationSchemeItem, Context, DataElementConcept, Designation,
ReferenceDocument
Extends: AdministeredComponent
Implements: XMLInterface, java.io.Serializable

5.5.19 ProtocolFormsSet
A specific clinical trial protocol document and its collection of associated CRFs. Clinical trial
protocols, along with their associated CRFs, stipulate the execution of clinical trials.

Application: Used in clinical trials applications.
Related domain objects: CaseReportForm, ClassificationSchemeItem, Context, Designation,
ReferenceDocument
Extends: AdministeredComponent
Implements: XMLInterface, java.io.Serializable

5.5.20 ProtocolFormsTemplate
A boilerplate collection of elements (modules, questions, valid values) to be included in a CRF.

Application: Used in clinical trials applications.
Related domain objects: ClassificationSchemeItem, Context, Designation, ReferenceDocument
Extends: AdministeredComponent
Implements: XMLInterface, java.io.Serializable

5.5.21 Qualifier
A term that helps define and render a concept unique; criterion that further defines or describes
an aspect (object class, property, representation) of a DataElementConcept or ValueDomain.

Application: A component of the ISO/IEC 11179 model, implemented in caDSR.
Related domain objects: DataElementConcept, EnumeratedValueDomain,
NonEnumeratedValueDomain
Extends: DomainObject
Implements: XMLInterface, java.io.Serializable

70

http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caDSR/bean/PermissibleValue.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caDSR/bean/Property.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caDSR/bean/ProtocolFormsSet.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caDSR/bean/ProtocolFormsTemplate.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caDSR/bean/Qualifier.html

5.5.22 Question
The actual text of the data element as specified on a Case Report Form of a Protocol.

Application: Used in clinical trials applications.
Related domain objects: ClassificationSchemeItem, Context, DataElement, Designation,
Module, ReferenceDocument, ValidValue
Extends: AdministeredComponent
Implements: XMLInterface, java.io.Serializable

5.5.23 ReferenceDocument
A place to document additional information about Administered Components that is not readily
stored elsewhere.

Application: A component of the ISO/IEC 11179 model, implemented in caDSR.
Related domain objects: CaseReportForm, ClassificationScheme, ConceptualDomain,
DataElement, DataElementConcept, EnumeratedValueDomain, Module,
NonEnumeratedValueDomain, ObjectClass, Property, ProtocolFormsSet,
ProtocolFormsTemplate, Question, Representation, ValidValue
Extends: DomainObject
Implements: java.io.Serializable

5.5.24 Representation
Mechanism by which the functional and/or presentational category of an item may be conveyed
to a user. Component of a Data Element Name that describes how data are represented (i.e., the
combination of a ValueDomain, data type, and, if necessary, a unit of measure or a character
set). The Representation occupies the last (rightmost) position in the DataElement name.

Application: A component of the ISO/IEC 11179 model, implemented in caDSR.
Related domain objects: ClassificationSchemeItem, Context, Designation,
EnumeratedValueDomain, NonEnumeratedValueDomain, ReferenceDocument
Extends: AdministeredComponent
Implements: XMLInterface, java.io.Serializable

5.5.25 ValidValue
The allowable values for a given data element (question) on a CRF.

Application: Used in clinical trials applications.
Related domain objects: ClassificationSchemeItem, Context, Designation, Question,
ReferenceDocument, ValueDomainPermissibleValue
Extends: AdministeredComponent
Implements: XMLInterface, java.io.Serializable

5.5.26 ValueDomain
A set of permissable values for a data element.

Application: A component of the ISO/IEC 11179 model, implemented in caDSR.
Related domain objects: CaseReportForm, ClassificationScheme, ClassificationSchemeItem,
ClassSchemeClassSchemeItem, ConceptualDomain, Context, DataElementConcept,
DataElement, Designation, EnumeratedValueDomain, Module, NonEnumeratedValueDomain,

71

http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caDSR/bean/Question.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caDSR/bean/ReferenceDocument.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caDSR/bean/Representation.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caDSR/bean/ValidValue.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caDSR/bean/ValueDomain.html

ObjectClass, Property, ProtocolFormsSet, ProtocolFormsTemplate, Qualifier, Question,
ReferenceDocument, Representation, ValidValue
Extends: AdministeredComponent
Implements: XMLInterface, java.io.Serializable

5.5.27 ValueDomainPermissibleValue
Captures the many-to-many relationships between value domains and permissible values and
allows one to associate a value domain to a permissible value.

Application: A component of the ISO/IEC 11179 model, implemented in caDSR.
Related domain objects: EnumeratedValueDomain, PermissibleValue, ValidValue
Extends: DomainObject
Implements: XMLInterface, java.io.Serializable

5.5.28 ValueMeaning
The significance associated with an allowable/permissible value.

Application: A component of the ISO/IEC 11179 model, implemented in caDSR.
Related domain objects: ConceptualDomain, PermissibleValue
Extends: DomainObject
Implements: XMLInterface, java.io.Serializable

72

http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caDSR/bean/ValueDomainPermissibleValue.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caDSR/bean/ValueMeaning.html

6.0 THE caMOD DOMAIN OBJECTS

73

Animal models that mimic the course of human cancers can provide critical insight to the
molecular etiology of the associated disease processes. Most cancers result from a complex of
disorders involving multiple biologic pathways. Murine (rat and mouse) models can be used to
study these disorders—both in isolation and in combination. These models can be manipulated
by a variety of techniques, including genetic engineering, chemical treatment, and exposure to
carcinogenic levels of radiation, to produce

• underexpression of tumor suppressor genes;
• overexpression of oncogenes;
• impaired immune functions;
• induced tumors; and
• mutagenized strains with germline mutations of relevant genes.

Each such treatment or combination of treatments yields strain-specific differences in
lifespan, tumor location, histology, and time of onset. Careful manipulation of these factors can
be applied to selectively model many aspects of human cancers and potentially, to shed light on
the differential roles played by the affected genes in each strain.

The NCI Mouse Models of Human Cancers Consortium (MMHCC) is a collaborative
program designed to derive and characterize mouse models, and to generate resources,
information, and innovative approaches to the application of these models in cancer research. It
is the goal of the consortium to make information and materials concerning animal models of
human cancer as widely available as possible to the entire cancer research community.

In order to achieve this goal the MMHCC has initiated the development of three web-based
resources:

• The Emice web site
• The Cancer Models Database (caMOD)
• The Cancer Images Database (caIMAGE)

This chapter describes an application programming interface to the Cancer Models Database
at NCI. The database contains information about animal models that has been contributed by the
broader research community, including the consortium members. Many of the developed strains
are available from the MMHCC Repository at NCI-Frederick, from the Jackson Laboratory in
Maine, or directly from the principal investigators.

The NCICB Applications User Manual provides a broader discussion of both the caMOD and
caIMAGE databases, and includes detailed instructions on how to use the web interfaces to these
resources.

6.1 The Mouse Models of Human Cancers Consortium
Although initially driven by the MMHCC, the Cancer Models Database was designed to

represent the full range of possible cancer models—not just murine models. Currently, the
database stores information on murine models only, but the foundations and infrastructure to
extend this to all animal models has been inplemented.

In order to achieve this flexibility and yet maintain data accessibility, the model requires the
explicit specification of various parameters and identifying characteristics. This section describes
the type of information that is submitted and maintained for each model. The web interface
presents these different types of information as a collection of separate web pages. This structure

74

http://www.nih.gov/science/models/mouse/resources/hcc.html
http://emice.nci.nih.gov/
http://cancermodels.nci.nih.gov/
http://cancerimages.nci.nih.gov/
http://web.ncifcrf.gov/researchresources/mmhcc/default.asp
http://jaxmice.jax.org/library/models/

is not intrinsic to the API implementation, but provides a useful framework for discussion. Table
6.1-1 describes some of the information available on these web pages.

Table 6.1-1 The web interface information pages for the Cancer Models Database

Web Page Description

General Information Provides an overview of the experimental design, phenotype
and availability of the model; elements on this page include:
model descriptor (name), official nomenclature, genotype,
principal investigator’s laboratory, location where the model
is available, species, genetic background, experimental
design, phenotype, sex distribution of phenotype, breeding
notes, and record release date.

Genetic Description Information about transgenes, targeted mutations, and
targeted transgenes.

Carcinogenic
Interventions

Information about chemicals/drugs used, relevant growth
factors, hormones, radiation treatments, viral agents, and
surgical procedures. This page also contains information on
xenografts and allografts.

Publications Used to specify any citations associated with the generation
of the model, phenotype, therapeutic experiments, or cell
lines and experiments conducted on those cell lines.

Histopathology Used to capture information about the organ where the
tumor/lesion arises, the diagnosis, and other tumor-related
data like time of onset, tumor incidence, and any genetic
aberrations observed in the lesion.

Therapeutic Approaches Cites any therapeutic trials associated with the model.

Cell Lines Used to capture the name of the cell line, the organ of origin,
and experiments conducted with the cell line that was
generated from the model.

Images Provides links to any image data associated with the model.

Microarray Provides links to any microarray data associated with the
model.

The caMOD web interface provides both simple and advanced search methods based on these
stored characteristics. The simple search form retrieves models based on the principal
investigator’s name, the model descriptor (model name), the site of the lesion or tumor, and/or
the species. The advanced search mode extends the basic search and includes options for
searching on the genetic description, carcinogenic agents, phenotype, cell lines, therapeutic
approaches, and microarray data associated with the model.

6.2 The caMOD API
Figure 6.2-1 features the PersistentCaMODBean class at the center of a broad, shallow

hierarchy of classes defined in the gov.nih.nci.caMOD.bean package. Like the caBIO domain

75

objects defined in Chapter 3, all of the classes in Figure 6.2-1 have associated search criteria
objects, which can be deployed to retrieve stored instances of these classes satisfying the
specified attributes. And like all search criteria objects, these objects can be nested to develop
complex and precise queries. In this case however, the search criteria objects are defined in the
search package.

Promoter

Transgene

PersistentCaMODBean

TargetedModification

EnvironmentalFactor

EngineeredGene

Therapy

TreatmentSchedule

Xenograft

RepositoryInfo

Role

PublicationStatus

RegulatoryElement

PartyRole

Phenotype

Publication

SexDistribution

SegmentType

RegulatoryElementType

Image

InducedMutationOrgan

Organization Person

Party

Availability

AnimalModel

CarcinogenicIntervention

CellLine

Conditionality

ContactInfo

Disease

GeneDelivery

GeneticAlteration

GeneFunction

GenomicSegment

Figure 6.2-1 The caMOD class hierarchy

The associated search criteria classes are likewise derived from a central parent class in the
gov.nih.nci.common.search package called.SearchCriteria. A similar hierarchy is defined, with
all classes descending from SearchCriteria, with the exception of the PromoterSearchCriteria,
TransgeneSearchCriteria, OrganizationSearchCriteria and PersonSearchCriteria classes. Like
their associated domain objects, these classes are one level deeper in the hierarchy.

Figure 6.2-2 shows a partial class diagram for the domain objects contained in the
gov.nih.nci.caMOD.bean package. The AnimalModel class sits at the center, as all of the other
classes are either direct or indirect attributes of the model. For each relation emanating from
AnimalModel, the AnimalModel class defines a get method, e.g., getHistopathologies(),
getInducedMutations(), getCarcinogenicInterventions(), getGenomicSegments(), getPhenotype(),
etc. In addition, for those methods which return an array of elements, an auxiliary method to
determine the size of the array is provided, e.g., getHistopathologiesCount().

76

SexDistribution

ExpressionLevelDesc

Nomenclatur

PartyRole 1..

1..

0..
0..

1..

EVSOntology1

Transgene

0..

1

1
1

1

0..

0..1

1
1..

1

1

1
1

Taxo

1

0..

0..

0..1

0..1

0..1

0..

0..

0..

1

1

0..

0..

0..1

1

1

Phenotype

Role TreatmentSchedul

1 10..1

Party
0..0.. 1..

Person Organization

ContactInf Agent

PublicationStatus

RepositoryInfo

Publication

CellLine

IntegrationType

SegmentType

Availability

MicroArrayData

RegulatoryElement

ExpressionFeature

Conditionality

terventionCarcinogenicIn JaxInf
InducedMutation

Image

GenomicSegmen

Xenograft

axon

#hostTaxo

#originT

#evsOrganTerm

TargetedModification

GenotypeSummar

RegulatoryElementType
PromoteGene

GeneDelivery

AnimalModel

#construct

#conditionedBy

GeneFunction

EngineeredGene

#levelDesc

#mutatedGen

#evsOrganTerm

#evsOrganTerm

Therapy

0..

0..

0.. 0..
1

0..

1

1

0.. 1

1

1..

0..

Figure 6.2-2 The UML Class diagram for the caMOD Domain Objects

The diagram has been simplified by eliminating the relationship labels where they correspond
directly to the class names. For example, the class PartyRole has a relation named “party” that
associates it with an instance of class Party. In cases where the relation names cannot be
inferred from the class names, the labels are made explicit. For relations that have arities greater
than one (such as 0..*), the named relation is pluralized, as in EngeneeredGene’s relation to
Gene, “genes.”

Two colors are used to highlight classes in the diagram that are not defined in the caMOD
bean package. Classes highlighted in gray are defined in the gov.nih.nci.caBIO.bean package.
The inclusion of the three gene-related classes reflects the close collaboration among gene-
related objects defined in the caBIO and caMOD packages.

The EVSOntology class (highlighted in yellow) is defined in the gov.nih.nci.common.domain
package, and is used by the caMOD classes to access organ names curated in the EVS
vocabularies.

77

Several lightweight classes are not included in either of the above figures; these are the
classes that are used to track the status of models in the database, and each of these implements
the ApprovalStatus interface. The status of a model is used to encode the various stages it passes
through before becoming accessible to the public. Although these classes are defined in the
caMOD bean package, they are direct subclasses of java.lang.Object.

6.3 The caMOD Domain Object Catalog

This catalog lists the objects defined in the gov.nih.nci.caMOD.bean package. Items in the
listing below should be interpreted as follows:

• Related MMHCC domain objects: A second MMHCC domain object is “related” to the
first domain object if that second object occurs anywhere in the signature of a method for
the first object.

• Other related domain objects: The same as above, but in this case the second domain
object is defined outside the gov.nih.nci.caMOD.bean package.

• Extends: This field reflects direct inheritance; i.e., the current class is a direct subclass of
that which it extends.

• Implements: This field lists all interfaces implemented by the object.

In cases where no relations, extensions, or interface implementations apply, the above fields
are omitted.

6.3.1 AnimalModel
A strain of animals used to study the various types of cancer.

Related caMOD domain objects: Availability, CarcinogenicIntervention, CellLine,
GenomicSegment, Image, InducedMutation, JaxInfo, MicroArrayData, PartyRole, Phenotype,
Publication, RepositoryInfo, TargetedModification, Therapy, Transgene, Xenograft
Other related objects: gov.nih.nci.cabio.bean.Taxon, gov.nih.nci.cabio.bean.Histopathology
Extends: PersistentCaMODBean
Implements: XMLInterface, java.io.Serializable

6.3.2 Availability
The availability status of a developed strain from the MMHCC Repository, the Jackson
Laboratory, or directly from the principal investigator.

Extends: PersistentCaMODBean
Implements: XMLInterface, java.io.Serializable

6.3.3 CarcinogenicIntervention
A treatment (chemical or drug administration, radiation, etc) applied to an animal model to
induce a disease state.

Related caMOD domain objects: EnvironmentalFactor, GeneDelivery, TreatmentSchedule
Extends: PersistentCaMODBean
Implements: XMLInterface, java.io.Serializable

78

http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caMOD/bean/AnimalModel.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caMOD/bean/Availability.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caMOD/bean/CarcinogenicIntervention.html

6.3.4 CellLine
A cell line generated from a particular strain of animal model.

Related caMOD domain objects: Publication
Other related objects: gov.nih.nci.common.domain.EVSOntology
Extends: PersistentCaMODBean
Implements: XMLInterface, java.io.Serializable

6.3.5 CompleteNotScreened
Used to indicate the status of a model which has been submitted but not yet screened.

Extends: java.lang.Object
Implements: ApprovalStatus, java.io.Serializable

6.3.6 Conditionality
Indicates if a transgene or targeted modification is time- or tissue-specific.

Extends: PersistentCaMODBean
Implements: XMLInterface, java.io.Serializable

6.3.7 ContactInfo
Contact information for the person who submitted data for the selected model.

Related caMOD domain objects: Party
Extends: PersistentCaMODBean
Implements: XMLInterface, java.io.Serializable

6.3.8 EditorApproved
Used to indicate the status of a model that has been approved by an editor.

Extends: java.lang.Object
Implements: ApprovalStatus, java.io.Serializable

6.3.9 EditorAssigned
Used to indicate the status of a model that has been assigned to an editor but not yet approved.

Extends: java.lang.Object
Implements: ApprovalStatus, java.io.Serializable

6.3.10 EditorMoreInfo
Used to indicate the status of a model that has been assigned to an editor who has requested
additional information.

Extends: java.lang.Object
Implements: ApprovalStatus, java.io.Serializable

79

http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caMOD/bean/CellLine.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caMOD/bean/CompleteNotScreened.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caMOD/bean/Conditionality.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caMOD/bean/ContactInfo.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caMOD/bean/EditorApproved.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caMOD/bean/EditorAssigned.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caMOD/bean/EditorMoreInfo.html

6.3.11 EngineeredGene
A gene sequence that has been genetically modified to induce a desired state in an animal model.

Related caMOD domain objects: Conditionality, GeneFunction, GenomicSegment,
GenotypeSummary, Image
Other related objects: gov.nci.nih.gov.cabio.bean.Gene,
gov.nci.nih.gov.cabio.bean.ExpressionFeature
Extends: PersistentCaMODBean
Implements: XMLInterface, java.io.Serializable

6.3.12 EnvironmentalFactor
A chemical, radiation, or hormone treatment, or other environmental factor that initiates or
supports development of neoplasis in the animal model.

Extends: PersistentCaMODBean
Implements: XMLInterface, java.io.Serializable

6.3.13 GeneDelivery
The method of introducing a modified gene to the recipient animal.

Related caMOD domain objects: EngineeredGene
Other related objects: gov.nih.nci.common.domain.EVSOntology
Extends: PersistentCaMODBean
Implements: XMLInterface, java.io.Serializable

6.3.14 GeneFunction
The known or hypothesized function of a gene.

Extends: PersistentCaMODBean
Implements: XMLInterface, java.io.Serializable

6.3.15 GeneticAlteration
Genetic alterations found in the diseased tissue other than the engineered genetic changes.

Extends: PersistentCaMODBean
Implements: XMLInterface, java.io.Serializable

6.3.16 GenomicSegment
A region or set of regions of a genome including chromosome, gene, breakpoint etc. The size of
a genomic segment varies from a fraction of a gene to a region containing many genes
surrounded by non-coding sequences, and can be as large as a chromosome.

Related caMOD domain objects: EngineeredGene, IntegrationType, SegmentType
Extends: PersistentCaMODBean
Implements: XMLInterface, java.io.Serializable

80

http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caMOD/bean/EngineeredGene.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caMOD/bean/EnvironmentalFactor.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caMOD/bean/GeneDelivery.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caMOD/bean/GeneFunction.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caMOD/bean/GeneticAlteration.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caMOD/bean/GenomicSegment.html

6.3.17 GenotypeSummary
Summary of genotype information for a particular model

Related caMOD domain objects: Nomenclature
Extends: PersistentCaMODBean
Implements: XMLInterface, java.io.Serializable

6.3.18 Incomplete
Used to indicate the status of a model which has not yet been completed.

Extends: java.lang.Object
Implements: ApprovalStatus, java.io.Serializable

6.3.19 Image
Images and image annotations associated with animal models.

Related caMOD domain objects: Availability
Extends: PersistentCaMODBean
Implements: XMLInterface, java.io.Serializable

6.3.20 InducedMutation
A mutation in a gene caused by exposure to chemicals, radiation or other types of mutagens. By
definition, an induced mutation is inherited by the next generation.

Related caMOD domain objects: EnvironmentalFactor, EngineeredGene
Extends: PersistentCaMODBean
Implements: XMLInterface, java.io.Serializable

6.3.21 IntegrationType
Location of the integration of the engineered gene, e.g. “random” or “targeted”.

Related caMOD domain objects: GenomicSegment, Transgene
Extends: PersistentCaMODBean
Implements: XMLInterface, java.io.Serializable

6.3.22 JaxInfo
Information associated with an animal model in The Jackson Laboratory; for example: stock
number, strain name, etc.

Extends: PersistentCaMODBean
Implements: XMLInterface, java.io.Serializable

6.3.23 MicroArrayData
Gene expression data from microarray experiments using cells or tissues from an animal model.

Related caMOD domain objects: Availability
Extends: PersistentCaMODBean
Implements: XMLInterface, java.io.Serializable

81

http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caMOD/bean/GenotypeSummary.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caMOD/bean/Incomplete.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caMOD/bean/Image.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caMOD/bean/InducedMutation.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caMOD/bean/IntegrationType.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caMOD/bean/JaxInfo.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caMOD/bean/MicroArrayData.html

6.3.24 ModificationType
The type of gene modification in the target gene, such as the Null modification, amino acid
substitution, deletion, insertion, misense, nonsense, point mutation, etc.

Related caMOD domain objects: TargetedModification
Extends: PersistentCaMODBean
Implements: XMLInterface, java.io.Serializable

6.3.25 Nomenclature
Official nomenclature name of the animal model, following the recommendations of the
International Committee on Standardized Genetic Nomenclature for Mice; nomenclature is also
applicable to rats starting in 2001.

Extends: PersistentCaMODBean
Implements: XMLInterface, java.io.Serializable

6.3.26 Organization
The institution (university, institute, laboratory) where a contributing scientist works.

Extends: Party
Implements: XMLInterface, java.io.Serializable

6.3.27 Party
A Person or group of persons (Organization) having a designated relationship (PartyRole) to
parts of the MMHCC data with explicit access permissions.

Related caMOD domain objects: ContactInfo, PartyRole
Extends: PersistentCaMODBean
Implements: XMLInterface, java.io.Serializable

6.3.28 PartyRole
The PartyRole is used to map designated MMHCC users to the read/write access privileges
associated with MMHCC data.

Related caMOD domain objects: AnimalModel, Party, Role
Extends: PersistentCaMODBean
Implements: XMLInterface, java.io.Serializable

6.3.29 Person
An individual involved in the deposition, review, and/or approval of data in MMHCC.

Extends: Party
Implements: XMLInterface, java.io.Serializable

6.3.30 Phenotype
The physical appearance or otherwise observable characteristics of a model animal.

Related caMOD domain objects: SexDistribution

82

http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caMOD/bean/ModificationType.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caMOD/bean/Nomenclature.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caMOD/bean/Organization.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caMOD/bean/Party.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caMOD/bean/PartyRole.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caMOD/bean/Person.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caMOD/bean/Phenotype.html

Extends: PersistentCaMODBean
Implements: XMLInterface, java.io.Serializable

6.3.31 Promoter
A region of DNA sequence upstream of the coding region to which RNA polymerase will bind
and initiate replication.

Related caMOD domain objects: RegulatoryElement
Other related domain objects: gov.nih.nci.cabio.bean.Taxon
Extends: RegulatoryElement
Implements: XMLInterface, java.io.Serializable

6.3.32 Publication
Publications describing the animal model itself or experiments in which the animal model was
used

Related caMOD domain objects: PublicationStatus
Extends: PersistentCaMODBean
Implements: XMLInterface, java.io.Serializable

6.3.33 PublicationStatus
Status regarding a scientific paper, e.g., “unpublished”, “submitted”, “published”.

Extends: PersistentCaMODBean
Implements: XMLInterface, java.io.Serializable

6.3.34 RegulatoryElement
A region of DNA sequence controlling the transcription/expression of a gene.

Related caMOD domain objects: Promoter, RegulatoryElementType,
Other related domain objects: gov.nih.nci.cabio.bean.Taxon
Extends: PersistentCaMODBean
Implements: XMLInterface, java.io.Serializable

6.3.35 RegulatoryElementType
The type of regulation imposed by the element, e.g., suppressor, promoter, etc.

Extends: PersistentCaMODBean
Implements: XMLInterface, java.io.Serializable

6.3.36 RepositoryInfo
A RepositoryInfo object contains information about the availability of a particular model from
the MMHCC repository. Data submitters to the cancer models database can indicate that their
model should be submitted to the repository for acceptance for acceptance.

Extends: PersistentCaMODBean
Implements: XMLInterface, java.io.Serializable

83

http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caMOD/bean/Promoter.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caMOD/bean/Publication.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caMOD/bean/PublicationStatus.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caMOD/bean/RegulatoryElement.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caMOD/bean/RegulatoryElementType.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caMOD/bean/RepositoryInfo.html

6.3.37 ReviewerApproved
Used to indicate the status of a model that has been approved by a reviewer.

Extends: java.lang.Object
Implements: ApprovalStatus, java.io.Serializable

6.3.38 ReviewerAssigned
Used to indicate the status of a model that has been assigned to a reviewer but not yet approved.

Extends: java.lang.Object
Implements: ApprovalStatus, java.io.Serializable

6.3.39 ReviewerRejected
Used to indicate the status of a model that has been rejected by the assigned reviewer.

Extends: java.lang.Object
Implements: ApprovalStatus, java.io.Serializable

6.3.40 Role
Role that a person or organization plays; for example, submitter, reviewer, screener, etc.

Related caMOD domain objects: PartyRole
Extends: PersistentCaMODBean
Implements: XMLInterface, java.io.Serializable

6.3.41 ScreenerApproved
Used to indicate the status of a model that has been approved by a screener.

Extends: java.lang.Object
Implements: ApprovalStatus, java.io.Serializable

6.3.42 ScreenerAssigned
Related caMOD domain objects:
Extends: PersistentCaMODBean
Implements: ApprovalStatus, java.io.Serializable

6.3.43 ScreenerRejected
Related caMOD domain objects:
Extends: PersistentCaMODBean
Implements: ApprovalStatus, java.io.Serializable

6.3.44 SegmentType
Genetic segment type such as chromosome, contig, CpG islands, repetitive DNA (e.g. Alu,
LINE, SINE etc.), gene, breakpoint etc. (see GenomicSegment).

Extends: PersistentCaMODBean
Implements: XMLInterface, java.io.Serializable

84

http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caMOD/bean/ReviewerApproved.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caMOD/bean/ReviewerAssigned.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caMOD/bean/ReviewerRejected.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caMOD/bean/Role.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caMOD/bean/ScreenerApproved.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caMOD/bean/ScreenerAssigned.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caMOD/bean/ScreenerRejected.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caMOD/bean/SegmentType.html

6.3.45 SexDistribution
The observerable distribution of phenotypes between sexes.

Extends: PersistentCaMODBean
Implements: XMLInterface, java.io.Serializable

6.3.46 TargetedModification
Modification of a specific gene (versus one randomly selected) by a genetic engineering
technology called gene targeting through homologous recombination; usually achieved using
gene targeting vectors.

Related caMOD domain objects: EngineeredGene
Extends: PersistentCaMODBean
Implements: XMLInterface, java.io.Serializable

6.3.47 Therapy
A defined treatment protocol for testing the efficacy of the treatment on an engineered animal
model.

Related caMOD domain objects: TreatmentSchedule,
Other related domain objects: gov.nih.nci.cabio.bean.Agent
Extends: PersistentCaMODBean
Implements: XMLInterface, java.io.Serializable

6.3.48 Transgene
A foreign gene that has been integrated into the genome of an animal.

Related caMOD domain objects: IntegrationType, RegulatoryElement
Other related domain objects: gov.nih.nci.cabio.bean.Taxon
Extends: EngineeredGene
Implements: GeneInterface, XMLInterface, java.io.Serializable

6.3.49 TreatmentSchedule
The dosage and regimen for treating cancer in an animal model.

Extends: PersistentCaMODBean
Implements: XMLInterface, java.io.Serializable

6.3.50 Xenograft
A surgical graft of tissue from one species onto or into individuals of unlike species, genus or
family.

Other related domain objects: gov.nih.nci.common.domain.EVSOntology,
gov.nih.nci.cabio.bean.Taxon
Extends: PersistentCaMODBean
Implements: XMLInterface, java.io.Serializable

85

http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caMOD/bean/SexDistribution.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caMOD/bean/TargetedModification.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caMOD/bean/Therapy.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caMOD/bean/Transgene.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caMOD/bean/TreatmentSchedule.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caMOD/bean/Xenograft.html

7.0 THE caCORE MAGE-OM API

86

7.1 The GEDP Project
The recently completed draft human genome sequence indicates that the human genome

comprises only about 30,000 genes—just twice the number as the fly or worm. Yet with these
30,000 genes the human genome generates approximately 90,000 proteins, due to alternative
splicing of the original nucleotide sequences. Only a fraction of these genes and their products
are currently associated with known function, however, and the further elucidation of their roles
in disease processes has become a central focus in today’s research.

Microarray technology can provide valuable clues to function via the study of variable
expression levels in different cells at various times and while undergoing different processes. For
example, increased expression of a gene in a disease state may implicate that gene in the etiology
of the disease, while underexpression may indicate that the gene normally provides protection
against the disease. More generally, the study of up- and down-regulation of any particular gene
among different tissues, and even among individual cells within a tissue, can provide important
insight to function.

In the past, molecular biologists were only able to detect and analyze the expression of one or
a few genes in one experiment. With the advent of DNA microarray technology, it is now
possible to monitor the expression of almost every gene in a given genome on a single chip, and
a typical microarray experiment will yield millions of data points.

The massive amount of microarray data being generated today presents a significant
challenge for analysis, storage, and exchange of data. The Gene Expression Data Portal (GEDP),
which is part of the NCICB’s cancer array informatics project (caARRAY), was developed to
address this problem. GEDP is not only a repository for secure storage of researchers’
microarray data, it also functions as a depot for the exchange of pre- and post-publication data.
The NCICB Applications User Manual describes in greater detail the various user interfaces and
analysis tools that are available on the GEDP web sites. This chapter describes the caCORE
MAGE-OM application programming interface to the GEDP.

Due to the many complex parameters and variables that must be used in microarray
experiments—both before and after data collection—the technology itself has spearheaded new
and more rigorous requirements for scientific data sharing. In particular, the ever-present need
for agreed-upon standards in representation and content has become critical. Thus, in reporting
the results of a microarray experiment, it is equally important that the researcher specify just how
and under what conditions these results were obtained.

The MIAME standard (minimal information for the annotation of a microarray experiment)
provides a template for supplemental information and data that must be provided to achieve
reproducible and machine-readable microarray expression data. This standard was arrived at by a
consensus of hundreds of scientists in cooperation with the Microarray Gene Expression Data
(MGED) Society. While the standard is still evolving, even today many journals endorse it—and
indeed, some require it for publication.

The electronic sharing of microarray data is further enhanced by an agreed-upon exchange
format known as MAGE-ML, for the XML-encoding of MicroArrayGeneExpression data.
MAGE-ML is in turn based on an object model (the MAGE-OM), which captures the
specifications of the MIAME standard. While the MIAME standard specifies a framework for

87

http://dc.nci.nih.gov/informatics
http://www.mged.org/Workgroups/MIAME/miame.html
http://www.mged.org/
http://www.mged.org/Workgroups/MAGE/mage-ml.html
http://www.mged.org/Workgroups/MAGE/mage-om.html

data reporting, it is the MAGE-OM that captures the logical relations among the terms defined in
the standard.

The data model that defines the GEDP database at NCI is derived from the MAGE-OM, but is
not identical to it, as the MAGE-OM is still evolving. Like MAGE-OM, the GEDP data model
supports all DNA arrays, including spotted and synthesized arrays, and oligo-nucleotide and
cDNA arrays—independent of image analysis and/or data normalization methods. The MAGE-
OM API to the GEDP database described in Figure 7.1-1 implements a transparent MAGE
interface to the GEDP data.

GEDP

MAGE

MAGE-OM

mageom.jar

Java client

MAGE server

Figure 7.1-1 The caCORE MAGE-OM API to GEDP

7.2 The caCORE MAGE-OM API
The MAGE-OM API is a set of java objects that adhere to the object model defined by the

OMG as Gene Expression v1.0 on 2003-02-03.6 The MGED Society web site found at
http://www.mged.org/Workgroups/MAGE/mage.html is also a good source for supplemental
material on the MAGE object model.

The caCORE MAGE-OM API objects access data in the GEDP database via remote method
invocations issued to a dedicated MAGE server at NCI. There are two primary types of objects
defined in the API: (1) MAGE-OM-compliant objects, and (2) custom MAGE-OM Impl
(implementation) objects. The MAGE-compliant objects are implemented as Java interfaces,
which the custom MAGE-OM Impl objects implement as concrete java classes.

These interface objects should always be used when strict adherence to the OMG Gene
Expression definition is required. Even in these cases, however, the Impl classes must first be
deployed to extract the data from the GEDP. Once the data have been extracted, the application

88

6 See http://www.omg.org/technology/documents/formal/gene_expression.htm.

http://www.mged.org/Workgroups/MAGE/mage.html

can use just the interface objects to comply with the standards. Alternatively, the Impl objects
can be used directly, as this will provide access to several convenient methods and attributes that
are not defined in the OMG specification. These enhancements were added to improve both
performance and ease of access to certain attributes. Figure 7.2-1 is a high-level view of the API
architecture from the java client’s perspective.

MAGE-OM
compliant
Objects

(as interfaces)

Custom
MAGE-OM

Impl
Objects

MAGE Server

(mage-server.nci.nih.gov)

NCI Server

Client java program

NCI MAGE DB

NCI GEDP DB

RMI

View Of

Figure 7.2-1 A high-level view of the MAGE-OM API from a client perspective

A few small examples here illustrate usage of the MAGE-OM API objects. More detailed
information is available with the JavaDocs at:

ncicb.nci.nih.gov/content/coreftp/MAGE-OM1-0_JavaDocs/index.html

The first example obtains the list of BioAssay components used in a specific experiment (with
an id of 25), and prints out whether or not each bioassay is derived or measured. Note that in this
example, there is no attempt to first find an experiment with Id 25; a new ExperimentImpl object
is simply instantiated with that Id.

In the second example, a SearchCriteria object is enlisted to search for experiments. The
caBIO search criteria objects were initially introduced in Chapter 2 and Chapter 3; Chapter 8
discusses these objects and their search mechanisms in more depth. Suffice it for now to say that
all of the caBIO domain object classes—that is, all of the classes implemented to represent
scientific objects from specific domains—have associated search criteria objects that can be
deployed to extract instances of those objects from the databases.

In most cases, the user sets specific criteria, such as “id = 25,” for filtering out irrelevant
instances. In this example, however, the resulting query to the database will retrieve all
experiments, as no selection criteria were specified. Once the results are collected in the
Experiment[] array, an iterative loop prints the experiment Ids to the screen.

89

7.2.1 Example 1:

 ExperimentImpl experiment=null;
 try {
 experiment = new ExperimentImpl(new Long(25));
 } catch(Exception e) {
 System.out.println("Error getting experiment:" + e.getMessage());
 e.printStackTrace();
 }

 BioAssayImpl[] bioassays = null;
 try{
 bioassays = experiment.getBioAssaysImpl();
 }catch (Exception e){
 System.out.println("Error getting bioassays from experiment:" +
 e.getMessage());
 e.printStackTrace();
 }

if(bioassays.length > 0)
 System.out.println("Experiment: " + experiment.getId() +
 " returned " + bioassays.length + " bioassays.");}

 for(int y = 0; y < bioassays.length; y++) {
 if(bioassays[y] instanceof MeasuredBioAssay) {
 System.out.println(“Bioassay #” + y + “ is measured, id=” +
 bioassays[y].getId());
 }else if (bioassays[y] instanceof DerivedBioAssay){
 System.out.println(“Bioassay #” + y + “ is derived, id=” +
 bioassays[y].getId());
 }else{
 System.out.println(“Bioassay #” + y + “ is unknown type?!?”);
 }
 }

7.2.2 Example 2:

 //get all experiments by using an empty search criteria

 ExperimentImplSearchCriteria criteria = new ExperimentImplSearchCriteria();

 ExperimentImpl exp = new ExperimentImpl();

 SearchResult results=null;

 try {

 results = exp.search(criteria);

 }catch (ManagerException me){

 System.out.println("Search problem: " + me);

 }
 Experiment[] experiments = (Experiment[])results.getResultSet();

 for (int i=0; i<100; i++){

 System.out.println("Exp#" + i + " = " + experiments[i].getId());

 }

7.3 Installing a MAGE-OM Java Client
To use the NCI MAGE-OM API, you will first need to download the mageom.jar support file

from NCI from the NCICB Download site. This jar file contains all of the classes listed in the
MAGE JavaDocs pages at NCI. Because remote method invocation (RMI) is used, you will also
need to specify a java.policy file. This policy file controls RMI security for your local machine.

90

http://ncicb.nci.nih.gov/download/

A sample policy file is provided on the downloads page. This sample is totally permissive,
however, as it opens up all access to your client machine. You may want to verify with your
network security experts the proper java.policy settings for your site. After the jar file has been
downloaded, remember to add the jar file to the classpath for compilation as well as execution.

A sample client program called MageTest.java is also discussed in Chapter 12. The source
code can be found at the downloads page, and its listing is also included in Appendix E. To
compile this program use:

javac –classpath mageom.jar MageTest.java

To then execute the compiled program use:
 java -classpath "mageom.jar;." \
 -Djava.security.policy=java.policy MageTest <experiment Id>

This example takes an experiment Id as an argument; try using 2915 or 3005 as the Id to be sure
you get a hit.

7.4 The caBIO Bridge to MAGE
One of the most important features of the caCORE MAGE API is its potential to integrate the

microarray data stored in the GEDP with other types of information maintained by other
databases at NCI. This potential has only begun to be explored; this first release of the MAGE
API provides a bridge between the caBIO domain objects and the MAGE-OM API via the Gene
and ReporterImpl objects defined in those packages, respectively. For example, given a
ReporterImpl object, the following method will display related gene information:

public static void getCabioGeneInfo(ReporterImpl theReporter) {
try {

Long theId = theReporter.getId();
if (theId == null) return;

GeneSearchCriteria caCrit = new GeneSearchCriteria();
caCrit.setExpressionMeasurementId(theId);
gov.nih.nci.caBIO.bean.SearchResult caRes =

(new Gene()).search(caCrit);
 Gene[] caGenes = (Gene[]) caRes.getResultSet();

 for (int ig = 0; ig < caGenes.length; ig++) {

System.out.println(
 "caBIO Gene #" + ig + " id = " + caGenes[ig].getId());

System.out.println(
 "caBIO Gene #" + ig + " nam= " + caGenes[ig].getName());
 }
} catch (Exception e) {
 System.out.println("Error getting cabio gene info”);
 e.printStackTrace();
}

}

The bridge between these two domains is obtained by setting the ExpressionMeasurementId
attribute of the GeneSearchCriteria object to the “id” feature of the ReporterImpl object. A more
complete example incorporating this method is listed in Appendix F. Note that in the complete
example, the getCabioGeneInfo() method is invoked in two places. In the first case, the input
argument is a MeasuredBioAssayDataImpl object; in the second case, the input parameter is a
DerivedBioAssayDataImpl object. As both of these are different types of reporter objects, they
are subclasses to the ReporterImpl class and, thus, can be used in this context.

91

8.0 SEARCH CRITERIA OBJECTS AND THE caCORE APIs

92

The caCORE infrastructure comprises an n-tiered architecture, as depicted in Figure 8-1. The
architecture and APIs are provided by caBIO. Thus, caBIO represents the system architecture
and public programming interfaces to caCORE. At the backend are various local databases, flat
files, and URLs to external databases and public web sites. At the front end is a Presentation
Layer providing APIs capable of supporting a wide variety of programming languages. At the
heart of the caCORE architecture are the classes that comprise the caBIO Object Layer. To this
point most of these discussions have been concerned with the various domain objects in the bean
packages. This chapter turns to the SearchCriteria objects that are associated with these domain
objects.

Although the complete caCORE implementation includes a number of packages, this
discussion is limited to the bean, das, manager, servlet, search, util, and webservices packages
that together implement the APIs. The focus in particular is on the driving force behind these
APIs—the Search/Retrieve paradigm, and how the caBIO search criteria objects are used to
realize the underlying design.

caBIO Architecture

Clients Presentation Layer Object Layer
Data

Sources

Browsers

Other
Apps

HTML/
HTTP

XML/
HTTP

SOAP

Java Apps

Web Server

Servlet
Container

JSPs

Servlets

UI Bean

XML Builder

XSLT Engine

SOAP Engine

XML
D

DTDs

XSL

RMI

DAS

Flat
Files

NCICB
Database

Domain
Objects

 Object
Managers

JDBC

HTTP

FTP

Data
Access
Objects

Search
Criteria
Objects

EVS

caDSR

API

MAGE-
OM

Figure 8-1 The caBIO architecture

As depicted in Figure 8-1, the classes in the object layer fall into four primary groupings: (1)
domain objects that represent terminological, bioinformatic, clinical, microarray, and cancer
image data, (2) the search criteria objects associated with these domain objects, (3) managerial
objects supporting the infrastructure, and (4) data access objects interfacing to the backend data
sources.

93

Java applications send requests directly to the Object Layer using RMI, effectively bypassing
the Presentation Layer. All other applications require some type of interface, such as the SOAP
Engine or the Java server pages (JSPs) provided by the Presentation Layer. The next section
considers first how the Java API operates, as these same processes must execute on the backend
of all other interfaces.

8.1 The Java API Search/Retrieve Paradigm
The driving force behind the caCORE design is a data-mining paradigm, and the basic

operation is a database search and retrieval, using a newly instantiated domain object as the
target to be populated with the data that are returned. All of the domain objects are contained in
the bean packages. In addition to the methods that are particular to the individual classes, all
domain objects also inherit the search() method. Each domain object has an associated search
criteria object, which is the sole argument to the domain object’s search() method. For example,
corresponding to the Gene domain object, there is a GeneSearchCriteria object, and the syntax
of the Gene’s search method is:

myGene.search(myGeneSearchCriteria)

Each search criteria object has attributes that are used to constrain the search and define the
type of information that will be returned in the result set. The desired values for a query are
defined using an appropriate setXxx() method of the search criteria object. For example, the
sequence of statements:

 Gene myGene = new Gene();
 GeneSearchCriteria myGeneSearchCriteria = new GeneSearchCriteria();
 MyGeneSearchCriteria.setSymbol("pTEN");
 SearchResult result = myGene.search(myGeneSearchCriteria);

is effectively equivalent to the following SQL query:
Select Gene from <database table> where symbol = ‘PTEN’

Many object-specific attributes are settable for the SearchCriteria objects associated with
specific domain objects. For example, the GeneSearchCriteria object includes methods for
specifying the desired gene symbol, chromosome id, organism, etc.

In addition to attributes that are particular to the associated domain objects, the object-specific
search criteria classes inherit methods and attributes from a generic SearchCriteria object that
constrain how the information will be returned. Table 8.1-1 lists some of the more important
inherited methods.

Table 8.1-1. Common methods implemented by all SearchCriteria objects

Method Description

setMaxRecordset() Sets the maximum number of result objects to return (default 1,000)

setOrderBy() Sets the order by clause for the SQL

setReturnCount() Specifies that the number of objects found should be included in the search
result (default false)

94

setReturnObjects() Specifies that the objects themselves should be included in the search
result (default true)

setStartAt() Sets the number of the first member of the result array

The return value of a domain object’s search() method is always an object of type
SearchResult, whose attributes and methods approximately mirror the attributes and methods of
the generic SearchCriteria object. For example, the SearchResult object has a method getCount()
that returns the number of objects that matched the specified criteria. This method’s return value
is only defined, however, when the associated SearchCriteria object specifies that the number of
objects found should be included in the search result.

Similarly, the SearchResult object’s method getResultSet() returns an array of objects only if
the SearchCriteria specifies that the objects themselves should be included in the search result.
Setting this last option to false is useful in situations where the only information that is needed is
the count of objects satisfying the criteria, and not the objects themselves. By default,
setReturnCount() is false and setReturnObjects() is true, unless these options are explicitly reset
using these methods.

The SearchResult object’s methods getStartsAt() and getEndsAt() return the array index of the
first and last objects in the result array, respectively. While these methods might seem at first to
be gratuitous, they are actually a critical part of the caBIO API design, which provides a
“throttling” mechanism to limit the number of results returned on any single query. By default,
the maximum number is 1000, but, as indicated here, this can be reset to a smaller or larger
number as desired.

These same mechanisms are implemented in the subsequent API layers providing interfaces
to other programming languages. Given the enormous amount of currently available
bioinformatic data and their exponential rate of growth, this ability to receive large amounts of
data in bursts is indispensable.

Several additional methods further facilitate situations where a very large set of objects match
the search criteria. The SearchResult object’s method hasMore() returns true when further
results are available that are not included in the current SearchResult. In this case, the
SearchResult object’s method getNextCriteria() can be used to return a new SearchCriteria
object whose starting index picks up where the previous result set left off. Alternatively, the user
can use the setStartAt() method to control the starting index of the result set.

Other methods provided by the generic SearchCriteria object provide means of determining
whether or not a specific criterion has been defined, removing previously set criteria, and/or
adding new criteria to the current collection.

8.1.1 Constructing More Complex Queries
By default, all of the domain object-specific attributes which have been set for a search

criteria object are treated as a logical conjunction. For example, if both the setGoOntologyId()
and setKeyword() methods have been applied to a GeneSearchCriteria object, then only those
genes satisfying both of these criteria will be returned.

95

This is accomplished using a CriteriaElement helper class defined in the util package. For
example, the expressions:

MyGeneSearchCriteria.setSymbol("pTEN");
MyGeneSearchCriteria.setKeywords("mouse");

are interpreted as
MyGeneSearchCriteria.setSymbol("pTEN",

gov.nih.caBIO.util.CriteriaElement.AND)
MyGeneSearchCriteria.setSymbol("pTEN",

gov.nih.caBIO.util.CriteriaElement.AND)

This default behavior can however, be overridden, using the CriteriaElement’s OR element in
place of AND. By default, all searches will be performed in a case-inensitive manner. So in the
above example, the search strings “pten”, “PTEN”, and “pTeN” would all produce the same
results. The CriteriaElement helper class also provides to override this behavior:

MyGeneSearchCriteria.setSymbol("pTEN",
gov.nih.caBIO.util.CriteriaElement.CASESENSITIVE);

This will force the search engine to return only case sensitive matches.

SearchCriteria objects can also be embedded in one another to specify more complex queries,
via the putSearchCriteria() method. For example, to extract the set of all pathways containing
the gene PTEN, one can:

1. Create a GeneSearchCriteria(), myGenesCriteria.
2. Invoke: myGenesCriteria.SetSymbol(“PTEN”).
3. Create a PathwaySearchCriteria(), myPathsCriteria.
4. Invoke myPathsCriteria.putSearchCriteria(myGenesCriteria).
5. Create a Pathway domain object, myPathway.
6. Invoke myPathway.search(myPathsCriteria).

The result of step 6 will produce an array of pathways containing the PTEN gene. This
example demonstrates another feature of the caBIO design: Each domain object also serves as a
factory for creating multiple instances of that object. Reviewing the steps outlined above allows
one to generalize the factory process as follows:

1. Instantiate a new domain object of the desired type.

2. Create a new SearchCriteria for that object, and set its attributes.

3. Execute the domain object’s search() method on that SearchCriteria, and store the results
in a generic SearchResult object.

4. Invoke the getResultSet() method on the SearchResult object and typecast its return value
to an array of the same type as the original domain object.

Advanced users may want to take advantage of the enhanced search capabilities which are
defined in the search packages. These are somewhat complicated, and a separate chapter (10) is
provided for that discussion. Included in the new objects, features, and methods defined in the
advanced search interface is an extension of the putSearchCriteria() called putCriteria(). This is
also a method implemented by the search criteria classes, and can be used to “put” an array of
criteria values, as in:

List geneNames = new ArrayList();

96

geneNames.add("PTEN");
geneNames.add("TP53");
geneNames.add("BRCA1");
GeneSearchCriteria gsc = new GeneSearchCriteria();
gsc.putCriteria("name", geneNames);

The usage of this method is demonstrated further in Chapter 10; the remainder of this chapter
considers how the basic domain object/search criteria paradigm is implemented and how it is
used by the various Java clients and interfaces.

8.2 How the caBIO Search Paradigm Operates
The installation of the caBIO software for a Java client (see Chapter 11) includes a Java

archive file (cabio.jar) defining all of the domain objects as well as the protocols and server
information required to issue RMI requests to the caBIO servers. The logistics of retrieving data
for a Java client are as follows. First, the Java client application declares a new instance of the
object type of interest. For example, the client executes the statement:

Gene myGene = New Gene();

This instantiation of the new Gene object alerts the GeneManager on the caBIO server, and
causes a proxy for that manager to become resident on the client machine for the duration of the
application. All RMI requests on the Gene object from that point forward will be handled by the
protocols defined for the manager and proxy objects.

XML
Descriptors

SOAP
Engine

COREManager
GeneManager
CloneManager

…

Gene
Library
Tissue
Clone

…

GeneService
LibraryService
TissueService
CloneService

…

webservices bean net managers db

RM

Data
Access
Objects

Java
clients

Gene
Library
Tissue
Clone

…

bean

JSPs
Servlets

Tomcat

Other
clients

Figure 8.2-1 The logical deployment of the caBIO packages for data retrieval

If a subsequent request such as myGene.getSequences() is issued, the instantiation of the
resulting Sequence objects will in turn be handled by a remote SequenceManager and a local
proxy. A logical view of the caBIO object managers is available in the caBIO Object Model
pages, and their specifications can be viewed on the JavaDocs pages. By virtue of the object
managers, the network details of the communication to the caBIO server are abstracted away
from the Java developer. Figure 8.2-1 is an alternative representation of the caBIO architecture,
emphasizing how some of the Java packages are deployed to implement the different APIs.

A general rule of thumb for all domain objects is that only those attributes represented by
primitive data types (e.g., integer, string, float, etc.) are returned directly with a retrieved object.

97

http://ncicb.nci.nih.gov/content/coreftp/rose/caBIO2-0/root.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/index.html

For more complex types such as objects and arrays, access to these entities is provided, but the
objects themselves are not. Instead, the “containing” object provides methods for retrieving these
embedded objects recursively. Thus, for example, a Gene object provides a method called
getSequences() to retrieve its associated genomic sequences once the Gene itself has been
obtained.

Similar mechanisms for returning only top-level information — with the option of drilling
down further where desired — are implemented in the SOAP and HTTP interfaces described
below. The SOAP and HTTP interfaces also provide mechanisms for controlling the number of
objects returned for a single query, corresponding to the SearchCriteria object’s methods
setMaxRecordset() and setStartAt().

An important difference between the Java API and other interfaces to caBIO is that only Java
applications have direct access to the domain objects and their methods, as they are defined in a
local jar file.

8.3 The SOAP API
caBIO’s SOAP API is provided for non-Java applications written in languages such as Perl,

C, Python, etc. SOAP is a lightweight XML-based protocol for the exchange of information in a
decentralized, distributed environment. It consists of an envelope that describes the message and
a framework for message transport. caBIO uses the open-source Apache SOAP package, in
combination with Jakarta Tomcat, to provide its web services to users.

It is up to the application developer to select and install a SOAP client for the development
environment. Chapter 13 provides a more in-depth discussion of the SOAP API, and includes an
example of using SOAP::Lite for Perl. This section considers how the SOAP services also
implement a Search/Retrieve paradigm, using the Java search criteria objects on the backend.

All SOAP requests issued by clients are formatted as XML documents that are posted to the
caBIO server at a listening port reserved for SOAP requests. All of the caBIO domain objects are
capable of serializing themselves to XML, and the response returned by the server is also an
XML document. These domain objects, however, do not directly receive the SOAP requests, as
they are first parsed by objects in the Presentation Layer.

Specifically, the caBIO SOAP server receives requests from the remote SOAP client, and
forwards these to an appropriate class in the webservices package. Each SOAP web service
defined in the webservices package has methods mirroring those defined for a corresponding
domain object in the bean package. For example, the SOAP GoOntologyService has
methods called getChildRelationships(), getParentRelationships(), getHomoSapienGenes(), and
getMouseGenes(), corresponding to the GoOntology domain object’s methods of the same name.

The SOAP service classes inherit methods from a single parent class—
WebCriteriaInterpreter, whose two methods are readInCriteria() and searchObjects(). Each of
these methods takes two arguments:

(1) a hashtable of tag/value pairs, and
(2) a string specifying the object type to search for.

The return value of readInCriteria() is a SearchCriteria object; the return value of
searchObjects() is a SearchResult object. Thus, the SOAP service classes in the webservices
package can use the parent class’s methods, in combination with their own method

98

specializations, to transform the incoming HTTP requests to equivalent Java method invocations
that can be passed on to domain and search criteria objects in the bean package.

Once the results of the search have been obtained from the back-end data sources, the domain
objects’ toXML() methods are applied to return XML-encoded responses to the SOAP service
classes in the webservices package. There, the service classes can forward these responses to the
SOAP server, which, in turn, forwards these as strings to the SOAP client.

The SOAP API provides a throttling mechanism that is similar to that described above for the
Java API. In the SOAP API, this is achieved by using the XML Linking Language (XLink),
which effectively provides a way of embedding “pointers” in the XML output, thus reducing the
amount of information returned. As with the Java API, all attributes represented by simple data
types (i.e., numbers and strings) are included directly in the SOAP output. More complex data
types, such as structured objects and arrays, are returned as XLinks providing URLs where the
data can be fetched recursively.

Two additional parameters can be included in the SOAP request, however, which specify that
the XML-encoded response should also expand either all or only selected XLinks. These
additional parameters are returnHeavyXML, which takes the values 0/1, and fillInObjects, which
takes a list of comma-separated arguments specifying the Xlink tags that should be expanded.
The returnHeavyXML, when set to true, opens up all of the embedded XLinks one level deep.
Specific instructions on how to use these parameters are provided in Chapter 13.

8.4 The HTTP Interface
The Hypertext Transfer Protocol provides a non-programmatic interface for accessing caBIO

data. Using the HTTP interface does not require any additional software other than a web
browser such as Internet Explorer or Netscape Communicator. Like the SOAP API, the HTTP
interface uses the domain and search criteria objects in the Object Layer to communicate with
the backend data sources. The HTTP interface forwards its requests as URLs to a Java servlet
running in the Presentation Layer, called getXML. The getXML servlet is defined in caBIO’s
servlet package, and has methods that receive requests from HTTP clients, forward messages to
the respective domain objects for processing, and return the results as XML-encoded responses
to the HTTP clients.

The HTTP request parameters correspond to methods in the respective search criteria object
associated with the domain object being queried. One can narrow down a search by using as
many parameters as required. The XML output returned from an HTTP request is similar to the
XML output from a SOAP client request. The XML output received by the HTTP client also
embeds XLinks to limit the amount of information returned in a single response.

As with the SOAP API, the HTTP interface allows the user to further expand these XLinks by
using returnHeavyXML and fillInObjects as additional parameters in the HTTP request. The
number of top-level objects returned can also be controlled by specifying values for StartAt and
EndAt in the HTTP request or, alternatively, by using the ResultCount parameter. Details and
examples of using the HTTP interface are provided in Chapter 14.

8.5 Summary of Search Controls in the Different APIs
The SOAP and HTTP interfaces are described in more detail in subsequent chapters, but it is

useful at this point to compare the generic controls that are available in these interfaces with

99

those provided by the Java API. Table 8.1-1 summarized the generic methods for controlling the
results in the Java API. In the SOAP and HTTP interfaces, attributes, specified as <tag=value>
pairs, are used in place of methods. Table 8.5-1 summarizes the attribute names that control
various aspects of the results for the different interfaces.

Table 8.5-1 Attributes controlling the way reuslts are returned

Functionality Attribute Value type Java SOAP HTTP
Starting element startAt Integer
 resultStart Integer
Number of results maxRecordset Integer
 resultCount
Drill down (all) fillInAllObjects Boolean
 returnHeavyXML Boolean

Drill down (selective) fillInObjects List of
objects

Ordering of results orderBy String

As described in Chapter 14, the HTTP interface currently provides two different protocols for
issuing an HTTP request. The operation= syntax, which was introduced in caCORE 1.0,
conforms to the SOAP syntax in its attribute names; the new query= syntax conforms to the Java
API attributes. The HTTP operation= syntax is deprecated, and in future releases of caCORE,
the SOAP attributes will also conform to the Java API attributes.

8.6 The caBIO SearchCriteria Catalog
As described in Section 8.1, it is possible to set the desired attributes of one SearchCriteria

object and, subsequently, embed that object in a second SearchCriteria object using the
putSearchCriteria() method.

However, not all SearchCriteria are “compatible” with one another. Table 8.6-1 lists the
search criteria objects implementing the putSearchCriteria() along with the related search
criteria objects that can be used as arguments to that method.

Table 8.6-1 caBIO putSearchCriteria arguments

SearchCriteria #1 (accepts) SearchCriteria #2
AgentSearchCriteria ClinicalTrialProtocolSearchCriteria, TargetSearchCriteria
AnomalySearchCriteria TargetSearchCriteria, HistopathologySearchCriteria,

VocabularySearchCriteria
ChromosomeSearchCriteria TaxonSearchCriteria, GeneSearchCriteria
ClinicalTrialProtocolSearchCriteria AgentSearchCriteria, DiseaseSearchCriteria,

ProtocolAssociationSearchCriteria
CloneSearchCriteria LibrarySearchCriteria, SequenceSearchCriteria,

SNPSearchCriteria
CMAPOntologyRelationshipSearchCriteria CMAPOntologySearchCriteria
CMAPOntologySearchCriteria GeneSearchCriteria,

CMAPOntologyRelationshipSearchCriteria,

100

SearchCriteria #1 (accepts) SearchCriteria #2
CMAPOntologySearchCriteria

DiseaseRelationshipSearchCriteria DiseaseSearchCriteria
DiseaseSearchCriteria HistopathologySearchCriteria,

ClinicalTrialProtocolSearchCriteria,
DiseaseRelationshipSearchCriteria, DiseaseSearchCriteria

ExpressionFeatureSearchCriteria OrganSearchCriteria
ExpressionMeasurementArraySearchCriteria ExpressionMeasurementSearchCriteria
ExpressionMeasurementSearchCriteria GeneSearchCriteria, SequenceSearchCriteria,

ExpressionMeasurementArraySearchCriteria
GeneAliasSearchCriteria GeneSearchCriteria
GeneHomologSearchCriteria GeneSearchCriteria
GeneSearchCriteria ChromosomeSearchCriteria,

CMAPOntologySearchCriteria,
ExpressionFeatureSearchCriteria,
GoOntologySearchCriteria, GeneAliasSearchCriteria,
GeneHomologSearchCriteria,
MapLocationSearchCriteria, OrganSearchCriteria,
PathwaySearchCriteria, ProteinSearchCriteria,
SequenceSearchCriteria, SNPSearchCriteria,
TargetSearchCriteria, TaxonSearchCriteria

GoOntologyRelationshipSearchCriteria GoOntologySearchCriteria
GoOntologySearchCriteria GeneSearchCriteria,

GoOntologyRelationshipSearchCriteria,
GoOntologySearchCriteria

HistopathologySearchCriteria TissueSearchCriteria, ProtocolSearchCriteria
MapLocationSearchCriteria TaxonSearchCriteria, GeneSearchCriteria,

ProteinHomologSearchCriteria
OrganRelationshipSearchCriteria OrganSearchCriteria
OrganSearchCriteria OrganRelationshipSearchCriteria, OrganSearchCriteria,

GeneSearchCriteria, ExpressionFeatureSearchCriteria
PathwaySearchCriteria TaxonSearchCriteria, GeneSearchCriteria
ProteinHomologSearchCriteria ProteinSearchCriteria
ProtocolAssociationSearchCriteria ClinicalTrialProtocolSearchCriteria
ProtocolSearchCriteria LibrarySearchCriteria
SequenceSearchCriteria CloneSearchCriteria
SNPSearchCriteria GeneSearchCriteria, CloneSearchCriteria
TargetSearchCriteria AgentSearchCriteria, AnomalySearchCriteria,

GeneSearchCriteria
TaxonSearchCriteria GeneSearchCriteria
TissueSearchCriteria TaxonSearchCriteria, ProtocolSearchCriteria,

LibrarySearchCriteria

101

Column 1 in Table 8.6-1 lists those SearchCriteria that support the putSearchCriteria()
method; column 2 lists the secondary SearchCriteria objects that can be provided as arguments.
This list is dynamic and new entries are added as necessary.

For example, the following code snippet will retrieve all pathways containing genes whose
symbols match the string “vegf”:

// define the criteria for the genes we are interested in:
GeneSearchCriteria GeneCriteria = new GeneSearchCriteria();
GeneCriteria.setSymbol("vegf");

PathwaySearchCriteria PathCriteria = new PathwaySearchCriteria();
PathCriteria.PutSearchCriteria(GeneCriteria);

// create a pathway object and invoke its search method:
Pathway myPath = new Pathway();
SearchResult result = MyPath.Search(PathCriteria);
if (result != null){
 Pathway[] myPaths = (Pathway[]) result.getResultSet();

// ... do something interesting with the paths
}

8.6.1 The caBIO SearchCriteria-Attribute Map

For convenience, this section summarizes the object-specific settable attributes of the various
search criteria, which can be used to narrow the search for an associated class of objects. Each of
these attributes is a private data member of the class, but is settable via the set method of the
same name. In addition to these object-specific attributes, each search criteria object also
implements the setOrderBy() method, which controls the order in which the results are returned.

AgentSearchCriteria

clinicalTrialProtocolId java.lang.Long
comment java.lang.String
evsId java.lang.String
isCMAPAgent java.lang.Boolean
name java.lang.String
source java.lang.String
targetId java.lang.Long
therapyId java.lang.Long

AnomalySearchCriteria
anomalyDescription java.lang.String
contextCode java.lang.Long
HistopathologyId java.lang.Long
organId java.lang.Long
targetId java.lang.Long

name java.lang.String

// now define the criteria for pathways, and embed the gene criteria:

agentNSCNumber java.lang.Long

ChromosomeSearchCriteria

102

ClinicalTrialProtocolSearchCriteria
agent java.lang.String
agentId java.lang.Long
conceptId java.lang.String
ctepName java.lang.String
diseaseCategory java.lang.String
diseaseId java.lang.Long
diseaseName java.lang.String
documentNumber java.lang.String
imtCode java.lang.Long
leadOrganizationId java.lang.String
leadOrganizationName java.lang.String
nihAdminCode java.lang.String

phase java.lang.String
piName java.lang.String
protocolAssociationId java.lang.Long
title java.lang.String
treatmentFlag java.lang.String

CloneSearchCriteria
geneId java.lang.Long
name java.lang.String
sequenceId java.lang.Long
snpId java.lang.Long
verified java.lang.Boolean

CMAPOntologySearchCriteria
CMAPChildId java.lang.Long
CMAPGeneId java.lang.Long

CMAPOntologyId java.lang.Long
CMAPParentId java.lang.Long
includeBoth java.lang.Boolean
includeParents java.lang.Boolean
includeChildren java.lang.Boolean
relationshipParentId java.lang.Long
relationshipChildId java.lang.Long
relationshipType java.lang.Long

CMAPOntologyRelationshipSearchCriteria
relationshipChildId java.lang.Long
relationshipParentId java.lang.Long
relationshipType java.lang.String

pdqIdentifier java.lang.String

CMAPName java.lang.String

103

ConsensusSequenceSearchCriteria
consensusSequenceType java.lang.String

geneId java.lang.Long
proteinId java.lang.Long
refGeneId java.lang.Long

ContigSearchCriteria
name java.lang.String
sequenceId java.lang.Long

DiseaseSearchCriteria
diseaseId java.lang.Long
histopathologyId java.lang.Long
geneId java.lang.Long
includeBoth java.lang.Boolean
includeParents java.lang.Boolean
includeChildren java.lang.Boolean
relationshipParentId java.lang.Long

relationshipType java.lang.Long

DiseaseRelationshipSearchCriteria
relationshipChildId java.lang.Long
relationshipParentId java.lang.Long
relationshipType_attribute java.lang.String

EstExperimentSearchCriteria
contextId java.lang.Long
expressionFeatureId java.lang.Long
gene java.lang.String
geneId java.lang.Long
organ java.lang.String
proteinId java.lang.Long
taxonId java.lang.Long
threshold java.lang.Float

ExpressionExperimentSearchCriteria
expressionFeatureId java.lang.Long
gene java.lang.String
geneId java.lang.Long
organ java.lang.String
proteinId java.lang.Long
taxonId java.lang.Long
threshold java.lang.Float
type java.lang.String

contigId java.lang.Long

relationshipChildId java.lang.Long

type java.lang.String

104

ExpressionFeatureSearchCriteria
expressionLevelDescId java.lang.Long
geneId java.lang.Long

ExpressionLevelDescSearchCriteria
name java.lang.String

accessionNumber java.lang.String
expressionMeasurementArrayId java.lang.Long
geneId java.lang.Long
name java.lang.String
sequenceId java.lang.Long

ExpressionMeasurementArraySearchCriteria
accessionNumber java.lang.String
expressionMeasurementId java.lang.Long
name java.lang.String

GeneSearchCriteria
allPathwayId java.lang.Long
bcId java.lang.String
chromosomeId java.lang.Long
cloneName java.lang.String

cytogenicLocation java.lang.String
expressedPathwayId java.lang.Long
expressionMeasurementId java.lang.Long
genBankAccessionNumber java.lang.String
geneKeyword java.lang.String
geneNameKeyword java.lang.String
goOntologyHomoSapienId java.lang.Long
goOntologyId java.lang.Long
goOntologyMouseId java.lang.Long
keyword java.lang.String
mutatedGenePathwayId java.lang.Long
organism java.lang.String
overExpressedPathwayId java.lang.Long
PathwayId java.lang.Long

targetId java.lang.Long
taxonId java.lang.Long
tissueType java.lang.String
underExpressedPathwayId java.lang.Long
unigeneClusterId java.lang.String
uniqueIdentifier java.lang.String

GeneAliasSearchCriteria
description java.lang.String

ExpressionMeasurementSearchCriteria

cMAPOntologyId java.lang.Long

symbol java.lang.String

105

geneId java.lang.Long
type java.lang.String

GeneHomologSearchCriteria
geneId java.lang.Long

GoOntologySearchCriteria
geneId java.lang.Long

includeParents java.lang.Boolean
includeChildren java.lang.Boolean
relationshipParentId java.lang.Long
relationshipChildId java.lang.Long
relationshipType java.lang.Long

GoOntologyRelationshipSearchCriteria
relationshipChildId java.lang.Long
relationshipParentId java.lang.Long
relationshipType_attribute java.lang.String

HistopathologySearchCriteria
animalModelId java.lang.Long
comments java.lang.String
dataType java.lang.String
diseaseId java.lang.Long

metastasisOf java.lang.Long
microscopicDescription java.lang.String
organId java.lang.Long
relationalOperation java.lang.String
survivalInfo java.lang.String
tumorIncidenceRate java.lang.Float
tumorType java.lang.String

LibrarySearchCriteria
geneId java.lang.Long
libraryGroup java.lang.String
libraryName java.lang.String
libraryProtocol java.lang.String
organism java.lang.String
sortOrder java.lang.String

tissueName java.lang.String
tissuePreparation java.lang.String
tissueType java.lang.String

MapLocationSearchCriteria
geneId java.lang.Long
location java.lang.String

includeBoth java.lang.Boolean

grossDescription java.lang.String

tissueHistology java.lang.String

106

type java.lang.String

OntologySearchCriteria
includeBoth java.lang.Boolean
includeChildren java.lang.Boolean
includeParents java.lang.Boolean
name java.lang.String
relationshipParentId java.lang.Long
relationshipChildId java.lang.Long

OrganSearchCriteria
anomalyId java.lang.Long
expressionFeatureId java.lang.Long
diseaseId java.lang.Long
histopathologyId java.lang.Long
geneId java.lang.String
includeBoth java.lang.Boolean
includeChildren java.lang.Boolean
includeParents java.lang.Boolean
name java.lang.String
relationshipParentId java.lang.Long
relationshipChildId java.lang.Long
relationshipType java.lang.Long

OrganRelationshipSearchCriteria

relationshipParentId java.lang.Long
relationshipType java.lang.String

PathwaySearchCriteria
bioProcessId java.lang.Long
context java.lang.String
displayValue java.lang.String
geneId java.lang.Long
name java.lang.String
pathwayDescription java.lang.String
pathwayDiagram java.lang.String
taxonId java.lang.Long

ProteinSearchCriteria
accessionNumber java.lang.String
description java.lang.String

ProteinHomologSearchCriteria
proteinId java.lang.Long

ProtocolSearchCriteria
name java.lang.String

relationshipType java.lang.Long

relationshipChildId java.lang.Long

geneId java.lang.Long

107

ProtocolAssociationSearchCriteria
clinicalTrialProtocolId java.lang.Long
protocolId java.lang.Long

ReadSequenceSearchCriteria
CloneId java.lang.Long
GeneId java.lang.Long
proteinID java.lang.Long
ReadSequenceId java.lang.String
refGeneId java.lang.Long
tracefileID java.lang.Long

RelationshipChildId java.lang.Long
RelationshipParentId java.lang.Long
relationshipType java.lang.String

SAGEExperimentSearchCriteria
contextId java.lang.Long
expressionFeatureId java.lang.Long
gene java.lang.String
geneId java.lang.Long
organ java.lang.String
proteinId java.lang.Long
taxonId java.lang.Long
threshold java.lang.Float
type java.lang.String

SequenceSearchCriteria

accessionNumberVersion java.lang.String
cloneId java.lang.Long
contigId java.lang.Long
expressionMeasurementId java.lang.Long
geneId java.lang.Long
isRefSeq java.lang.Boolean
refGeneId java.lang.Long
returnDNA java.lang.Boolean
sequenceType java.lang.String

SNPSearchCriteria
geneId java.lang.Long

TargetSearchCriteria
agentId java.lang.Long
anomalyDescription java.lang.String

cancerType java.lang.String
conceptID java.lang.Long

RelationshipSearchCriteria

accessionNumber java.lang.String

anomalyId java.lang.Long

108

geneId java.lang.Long

TaxonSearchCriteria
abbreviation java.lang.String
animalModelId java.lang.Long
chromosomeId java.lang.Long
commonName java.lang.String
isPreferred java.lang.Boolean
name java.lang.String
regulatoryElementId java.lang.Long
scientificName java.lang.String
strainId java.lang.Long
xenograftId java.lang.Long

libraryId java.lang.Long

TraceFileSearchCriteria
cloneId java.lang.Long
name java.lang.String
snpId java.lang.Long

8.7 The EVS SearchCriteria Catalog
The caBIO EVS API contains only three search criteria classes: ConceptSearchCriteria,

DescLogicConceptSearchCriteria, and MetathesaurusConceptSearchCriteria, where the latter
two are subclasses of the ConceptSearchCriteria class. Given the simplicity of this design, and
the orthogonality of the two descendant classes, the putSearchCriteria() methods are not
applicable in the EVS domain.

8.7.1 The EVS SearchCriteria-Attribute Map
The listing below summarizes the settable attributes for the three EVS search criteria.

ConceptSearchCriteria
allSource gov.nih.nci.evs.Source[]
limit java.lang.Int
searchTerm java.lang.String

DescLogicConceptSearchCriteria
allSource gov.nih.nci.evs.Source[]
limit java.lang.Int
searchTerm java.lang.String
source gov.nih.nci.evs.Source
conceptCode java.lang.String
initialDate gov.nih.nci.evs.BaseLineDate
property gov.nih.nci.evs.Property
role gov.nih.nci.evs.Role
vocabularyName java.lang.String

TissueSearchCriteria

source gov.nih.nci.evs.Source

109

MetathesaurusConceptSearchCriteria
allSource gov.nih.nci.evs.Source[]
limit java.lang.Int
searchTerm java.lang.String

code java.lang.Boolean
score java.lang.Boolean
semanticType gov.nih.nci.evs.SemanticType
shortResult java.lang.Boolean

8.8 The caDSR SearchCriteria Catalog
Table 8.8-1 lists the caDSR search criteria objects that implement the putSearchCriteria()

method and the arguments which these objects accept.

Table 8.8-1 caDSR putSearchCriteria arguments

source gov.nih.nci.evs.Source

SearchCriteria #1 (accepts) SearchCriteria #2
CaseReportFormSearchCriteria ClassificationSchemeItemSearchCriteria,

ContextSearchCriteria, DesignationSearchCriteria,
ReferenceDocumentSearchCriteria

ClassificationSchemeItemSearchCriteria CaseReportFormSearchCriteria,
ClassSchemeClassSchemeItemSearchCriteria,
ClassificationSchemeSearchCriteria,
ConceptualDomainSearchCriteria,
DataElementConceptSearchCriteria,
DataElementSearchCriteria,
EnumeratedValueDomainSearchCriteria,
ModuleSearchCriteria,
NonenumeratedValueDomainSearchCriteria,
ObjectClassSearchCriteria, PropertySearchCriteria,
ProtocolFormsSetSearchCriteria,
ProtocolFormsTemplateSearchCriteria,
QuestionSearchCriteria,
RepresentationSearchCriteria,
ValidValueSearchCriteria

ClassificationSchemeSearchCriteria ClassSchemeClassSchemeItemSearchCriteria,
ContextSearchCriteria, DesignationSearchCriteria,
ReferenceDocumentSearchCriteria

ClassSchemeClassSchemeItemSearchCriteria ClassificationSchemeItemSearchCriteria,
ClassificationSchemeSearchCriteria,
ClassSchemeClassSchemeItemSearchCriteria

ConceptualDomainSearchCriteria ClassificationSchemeItemSearchCriteria,
DataElementConceptSearchCriteria,
DesignationSearchCriteria,
EnumeratedValueDomainSearchCriteria,
NonenumeratedValueDomainSearchCriteria,
ReferenceDocumentSearchCriteria,

110

SearchCriteria #1 (accepts) SearchCriteria #2
ValueMeaningSearchCriteria

ContextSearchCriteria CaseReportFormSearchCriteria,
ClassificationSchemeSearchCriteria,
DataElementConceptSearchCriteria,
DataElementSearchCriteria,
DesignationSearchCriteria,
EnumeratedValueDomainSearchCriteria,
ModuleSearchCriteria,
NonenumeratedValueDomainSearchCriteria,
ObjectClassSearchCriteria, PropertySearchCriteria,
ProtocolFormsSetSearchCriteria,
ProtocolFormsTemplateSearchCriteria,
QuestionSearchCriteria,
RepresentationSearchCriteria,
ValidValueSearchCriteria

DataElementConceptRelationshipsSearchCriteria DataElementConceptSearchCriteria,
ParentDataElementConceptSearchCriteria

DataElementConceptSearchCriteria DataElementConceptRelationshipSearchCriteria,
DataElementSearchCriteria,
ObjectClassSearchCriteria,
ObjectClassQualifierSearchCriteria,
PropertySearchCriteria

DataElementSearchCriteria ClassificationSchemeItemSearchCriteria,
ContextSearchCriteria, DesignationSearchCriteria,
NonenumeratedValueDomainSearchCriteria,
QuestionSearchCriteria,
ReferenceDocumentSearchCriteria

DesignationSearchCriteria CaseReportFormSearchCriteria,
ClassificationSchemeSearchCriteria,
ConceptualDomainSearchCriteria,
ContextSearchCriteria,
DataElementConceptSearchCriteria,
DataElementSearchCriteria,
EnumeratedValueDomainSearchCriteria,
ModuleSearchCriteria,
NonenumeratedValueDomainSearchCriteria,
ObjectClassSearchCriteria, PropertySearchCriteria,
ProtocolFormsSetSearchCriteria,
ProtocolFormsTemplateSearchCriteria,
QuestionSearchCriteria,
RepresentationSearchCriteria,
ValidValueSearchCriteria

EnumeratedValueDomainSearchCriteria ClassificationSchemeItemSearchCriteria,
ConceptualDomainSearchCriteria,
ContextSearchCriteria, DataElementSearchCriteria,
DesignationSearchCriteria,
PermissibleValueSearchCriteria,

111

SearchCriteria #1 (accepts) SearchCriteria #2
QualifierSearchCriteria,
ReferenceDocumentSearchCriteria,
RepresentationSearchCriteria,
ValueDomainPermissibleValueSearchCriteria

ModuleSearchCriteria ClassificationSchemeItemSearchCriteria,
ContextSearchCriteria, DesignationSearchCriteria,
QuestionSearchCriteria,
ReferenceDocumentSearchCriteria

NonenumeratedValueDomainSearchCriteria ClassificationSchemeItemSearchCriteria,
ConceptualDomainSearchCriteria,
ContextSearchCriteria, DataElementSearchCriteria,
DesignationSearchCriteria, QualifierSearchCriteria,
ReferenceDocumentSearchCriteria,
RepresentationSearchCriteria

ObjectClassSearchCriteria ClassificationSchemeItemSearchCriteria,
ContextSearchCriteria,
DataElementConceptSearchCriteria,
DesignationSearchCriteria,
ReferenceDocumentSearchCriteria

PermissibleValueSearchCriteria EnumeratedValueDomainSearchCriteria,
ValueDomainPermissibleValueSearchCriteria,
ValueMeaningSearchCriteria

PropertySearchCriteria ClassificationSchemeItemSearchCriteria,
ContextSearchCriteria,
DataElementConceptSearchCriteria,
DesignationSearchCriteria,
ReferenceDocumentSearchCriteria

ProtocolFormsSetSearchCriteria CaseReportFormSearchCriteria,
ClassificationSchemeItemSearchCriteria,
ContextSearchCriteria, DesignationSearchCriteria,
ReferenceDocumentSearchCriteria

ProtocolFormsTemplateSearchCriteria ClassificationSchemeItemSearchCriteria,
ContextSearchCriteria, DesignationSearchCriteria,
ReferenceDocumentSearchCriteria

QualifierSearchCriteria EnumeratedValueDomainSearchCriteria,
NonenumeratedValueDomainSearchCriteria,
DataElementConceptSearchCriteria

QuestionSearchCriteria ClassificationSchemeItemSearchCriteria,
ContextSearchCriteria, DataElementSearchCriteria,
DesignationSearchCriteria, ModuleSearchCriteria,
ReferenceDocumentSearchCriteria,
ValidValueSearchCriteria

ReferenceDocumentSearchCriteria CaseReportFormSearchCriteria,
ClassificationSchemeSearchCriteria,
ConceptualDomainSearchCriteria,
DataElementConceptSearchCriteria,

112

SearchCriteria #1 (accepts) SearchCriteria #2
DataElementSearchCriteria,
EnumeratedValueDomainSearchCriteria,
ModuleSearchCriteria,
NonenumeratedValueDomainSearchCriteria,
ObjectClassSearchCriteria, PropertySearchCriteria,
ProtocolFormsSetSearchCriteria,
ProtocolFormsTemplateSearchCriteria,
QuestionSearchCriteria,
RepresentationSearchCriteria,
ValidValueSearchCriteria

RepresentationSearchCriteria ClassificationSchemeItemSearchCriteria,
ContextSearchCriteria, DesignationSearchCriteria,
EnumeratedValueDomainSearchCriteria,
NonenumeratedValueDomainSearchCriteria,
ReferenceDocumentSearchCriteria

ValidValueSearchCriteria ClassificationSchemeItemSearchCriteria,
ContextSearchCriteria, DesignationSearchCriteria,
QuestionSearchCriteria,
ReferenceDocumentSearchCriteria,
ValueDomainPermissibleValueSearchCriteria

ValueDomainPermissibleValueSearchCriteria EnumeratedValueDomainSearchCriteria,
PermissibleValueSearchCriteria,
ValidValueSearchCriteria

ValueMeaningSearchCriteria ConceptualDomainSearchCriteria,
PermissibleValueSearchCriteria

8.8.1 The caDSR SearchCriteria-Attribute Map
This section summarizes the object-specific settable attributes for the various caDSR search

criteria. Each of these attributes is a private data member of the class, but is settable via the set
method of the same name.

AdministeredComponentSearchCriteria
beginDate java.util.Date
changeNote java.lang.String
dateCreated java.util.Date
dateModified java.util.Date
deletedIndicator java.lang.Boolean
endDate java.util.Date
latestVersionIndicator java.lang.Boolean
longName java.lang.String
origin java.lang.String
preferredDefinition java.lang.String
preferredName java.lang.String
publicId java.lang.Long
unresolvedIssue java.lang.String

113

version java.lang.String
workflowStatusDescription java.lang.String
workflowStatusName java.lang.String

CaseReportFormSearchCriteria∗
displayName java.lang.String

ClassificationSchemeItemSearchCriteria
comments java.lang.String
dateCreated java.util.Date
dateModified java.util.Date
description java.lang.String
name java.lang.String
type java.lang.String

ClassificationSchemeSearchCriteria*
labeltypeflag java.lang.String

ClassSchemeClassSchemeItemSearchCriteria
dateCreated java.util.Date
dateModified java.util.Date
displayOrder java.lang.Integer
label java.lang.String

ConceptualDomainSearchCriteria*
dimensionality java.lang.String

ContextSearchCriteria
dateCreated java.util.Date
dateModified java.util.Date
description java.lang.String
designationId java.lang.String
languageName java.lang.String
name java.lang.String

DataElementConceptRelationshipsSearchCriteria
dateCreated java.util.Date
dateModified java.util.Date
description java.lang.String
name java.lang.String

DataElementConceptSearchCriteria*

DataElementSearchCriteria*

DesignationSearchCriteria

type java.lang.String

version java.lang.Float

∗ Also inherits all attributes from AdministeredComponentSearchCriteria

114

dateCreated java.util.Date
dateModified java.util.Date
languageName java.lang.String
name java.lang.String
type java.lang.String

EnumeratedValueDomainSearchCriteria §

displayOrder java.lang.Integer

NonenumeratedValueDomainSearchCriteria §

ObjectClassSearchCriteria*
definitionSource java.lang.String

PermissibleValueSearchCriteria
beginDate java.util.Date
dateCreated java.util.Date
dateModified java.util.Date
endDate java.util.Date
highValueNumber java.lang.String
lowValueNumber java.lang.String
value java.lang.String

PropertySearchCriteria*
definitionSource java.lang.String

approvedBy java.lang.String
approvedDate java.lang.Date
changeNumber java.lang.String
changeType java.lang.String
leadOrganizationName java.lang.String
phase java.lang.String
protocolId java.lang.String
reviewedBy java.lang.String
reviewedDate java.lang.Date
type java.lang.String

ProtocolFormsTemplateSearchCriteria*

QualifierSearchCriteria
comments java.lang.String
dateCreated java.util.Date

ModuleSearchCriteria*

ProtocolFormsSetSearchCriteria*

dateModified java.util.Date
description java.lang.String

§ Also inherits attributes from ValueDomainSearchCriteria, which in turn inherits from

AdministeredComponentSearchCriteria.

115

name java.lang.String

QuestionSearchCriteria*
displayOrder java.lang.Integer

ReferenceDocumentSearchCriteria
dateCreated java.util.Date
dateModified java.util.Date
displayOrder java.lang.Integer
docText java.lang.String
languageName java.lang.String
name java.lang.String
organizationId java.lang.String
rdtlName java.lang.String
type java.lang.String
url java.lang.String

RepresentationSearchCriteria*
definitionSource java.lang.String

ValidValueSearchCriteria
displayOrder java.lang.Integer

ValueDomainPermissibleValueSearchCriteria
dateCreated java.util.Date
dateModified java.util.Date

ValueDomainSearchCriteria
characterSetName java.lang.String
dataTypeName java.lang.String
decimalPlace java.lang.Integer
formatName java.lang.String
highValueNumber java.lang.String
lowValueNumber java.lang.String
maximumLengthNumber java.lang.Integer
minimumLengthNumber java.lang.Integer
uomName java.lang.String

ValueMeaningSearchCriteria
beginDate java.util.Date
comments java.lang.String
dateCreated java.util.Date
dateModified java.util.Date
description java.lang.String
endDate java.util.Date
shortMeaning java.lang.String

116

8.9 The caMOD SearchCriteria Catalog
Table 8.9-1 lists the caDSR search criteria objects that implement the putSearchCriteria()

method and the arguments which these objects accept.

Table 8.9-1 caMOD putSearchCriteria arguments

SearchCriteria #1 (accepts) SearchCriteria #2
domain.AnimalModelSearchCriteria AvailabilitySearchCriteria,

CarcinogenicInterventionSearchCriteria,
CellLineSearchCriteria, GenomicSegmentSearchCriteria,
HistopathologySearchCriteria, ImageSearchCriteria,
InducedMutationSearchCriteria, JaxInfoSearchCriteria,
MicroArrayDataSearchCriteria, PartyRoleSearchCriteria,
PhenotypeSearchCriteria, PublicationSearchCriteria,
RepositoryInfoSearchCriteria,
TargetedModificationSearchCriteria, TaxonSearchCriteria,
TherapySearchCriteria, TransgeneSearchCriteria,
XenograftSearchCriteria

CarcinogenicInterventionSearchCriteria EnvironmentalFactorSearchCriteria,
GeneDeliverySearchCriteria, TreatmentScheduleSearchCriteria

CellLineSearchCriteria OrganSearchCriteria, PublicationSearchCriteria
ConditionalitySearchCriteria PartySearchCriteria
EngineeredGeneSearchCriteria ConditionalitySearchCriteria, ExpressionFeatureSearchCriteria,

GeneSearchCriteria, GeneFunctionSearchCriteria,
GenotypeSummarySearchCriteria, ImageSearchCriteria,
PromoterSearchCriteria

GeneDeliverySearchCriteria EngineeredGeneSearchCriteria, OrganSearchCriteria
GenomicSegmentSearchCriteria EngineeredGeneSearchCriteria, IntegrationTypeSearchCriteria,

SegmentTypeSearchCriteria
GenotypeSummarySearchCriteria NomenclatureSearchCriteria
ImageSearchCriteria AvailabilitySearchCriteria
InducedMutationSearchCriteria EngineeredGeneSearchCriteria,

EnvironmentalFactorSearchCriteria
MicroArrayDataSearchCriteria AvailabilitySearchCriteria
ModificationTypeSearchCriteria TargetedModificationSearchCriteria
PartySearchCriteria ContactInfoSearchCriteria, PartyRoleSearchCriteria
PartyRoleSearchCriteria AnimalModelSearchCriteria
PhenotypeSearchCriteria SexDistributionSearchCriteria
PublicationSearchCriteria PublicationStatusSearchCriteria
RegulatoryElementSearchCriteria RegulatoryElementTypeSearchCriteria, TaxonSearchCriteria
RoleSearchCriteria PartyRoleSearchCriteria
TargetedModificationSearchCriteria EngineeredGeneSearchCriteria,

ModificationTypeSearchCriteria
TherapySearchCriteria AgentSearchCriteria, PublicationSearchCriteria,

117

SearchCriteria #1 (accepts) SearchCriteria #2
domain.AnimalModelSearchCriteria AvailabilitySearchCriteria,

CarcinogenicInterventionSearchCriteria,
CellLineSearchCriteria, GenomicSegmentSearchCriteria,
HistopathologySearchCriteria, ImageSearchCriteria,
InducedMutationSearchCriteria, JaxInfoSearchCriteria,
MicroArrayDataSearchCriteria, PartyRoleSearchCriteria,
PhenotypeSearchCriteria, PublicationSearchCriteria,
RepositoryInfoSearchCriteria,
TargetedModificationSearchCriteria, TaxonSearchCriteria,
TherapySearchCriteria, TransgeneSearchCriteria,
XenograftSearchCriteria

CarcinogenicInterventionSearchCriteria EnvironmentalFactorSearchCriteria,
GeneDeliverySearchCriteria, TreatmentScheduleSearchCriteria

CellLineSearchCriteria OrganSearchCriteria, PublicationSearchCriteria
ConditionalitySearchCriteria PartySearchCriteria

TreatmentScheduleSearchCriteria
TransgeneSearchCriteria IntegrationTypeSearchCriteria,

RegulatoryElementSearchCriteria, TaxonSearchCriteria
XenograftSearchCriteria HostTaxonSearchCriteria, OrganSearchCriteria,

OriginTaxonSearchCriteria

8.9.1 The caMOD Criteria-Attribute Map
This section summarizes the object-specific settable attributes for the various caMOD search

criteria. Each of these attributes is a private data member of the class, but is settable via the set
method of the same name.

AnimalModelSearchCriteria
agentId java.lang.Long
availabilityId java.lang.Long
diseaseId java.lang.Long
experimentDescription java.lang.String
modelDescriptor java.lang.String
partyRoleId java.lang.Long
phenotypeId java.lang.Long
taxonId java.lang.Long

ApprovalStatusSearchCriteria
animalModelId java.lang.Long
approvalStatusName java.lang.String

AvailabilitySearchCriteria
animalModelId java.lang.Long
enteredDate java.util.Date
modifiedDate java.util.Date
releaseDate java.util.Date

118

visibleTo java.lang.String

CarcinogenicInterventionSearchCriteria
animalModelId java.lang.Long
environmentalFactorId java.lang.Long
geneDeliveryId java.lang.Long
treatmentScheduleId java.lang.Long

CellLineSearchCriteria
animalModelId java.lang.Long
comments java.lang.String
experiment java.lang.String
name java.lang.String
organId java.lang.Long

ConditionalitySearchCriteria
conditionedBy java.lang.String
Desc java.lang.String

ContactInfoSearchCriteria
city java.lang.String
email java.lang.String
fax java.lang.String
institute java.lang.String
labName java.lang.String
partyId java.lang.Long
phoneNumber java.lang.String
state java.lang.String
street java.lang.String
zip java.lang.String

EngineeredGeneSearchCriteria
caBioId java.lang.Long
conditionalityId java.lang.Long
dbCrossRefs java.util.Hashtable
genomicSegmentId java.lang.Long
genotypeSummaryId java.lang.Long
imageId java.lang.Long
inducedMutationId java.lang.Long
locusLinkSummary java.lang.String
name java.lang.String
targetedModificationId java.lang.Long
title java.lang.String

EnvironmentalFactorSearchCriteria
carcinogenicId java.lang.Long
name java.lang.String
type java.lang.String

119

GeneDeliverySearchCriteria
engineeredGeneId java.lang.Long
geneId java.lang.Long
organId java.lang.Long
viralVector java.lang.String

GeneFunctionSearchCriteria
engineeredGeneId java.lang.Long
geneFunction java.lang.String

GeneticAlterationSearchCriteria
histopathologyId java.lang.Long
methodOfObservation java.lang.String
observation java.lang.String

GenomicSegmentSearchCriteria
animalModelId java.lang.Long
cloneDesignator java.lang.String
integrationTypeId java.lang.Long
LocationOfIntegration java.lang.String
segmentSize java.lang.Float
segmentTypeId java.lang.Long

GenotypeSummarySearchCriteria
genotype java.lang.String
nomenclatureID java.lang.Long
summary java.lang.String

ImageSearchCriteria
animalModelId java.lang.Long
description java.lang.String
image java.lang.String
staining java.lang.String
title java.lang.String

InducedMutationSearchCriteria
animalModelId java.lang.Long
environmentalFactorId java.lang.Long

IntegrationTypeSearchCriteria
integrationTypeName java.lang.String

JaxInfoSearchCriteria
jaxStockNo java.lang.Long

MicroArrayDataSearchCriteria
animalModelId java.lang.Long
experimentId java.lang.Long
experimentName java.lang.String

ModificationTypeSearchCriteria
modificationTypeName java.lang.String

120

targetModificationId java.lang.Long

NomenclatureSearchCriteria
name java.lang.String

OrganizationSearchCriteria*
lastName java.lang.String

PartyRoleSearchCriteria
animalModelId java.lang.Long
partyId java.lang.Long
roleId java.lang.Long

PartySearchCriteria
contactInfo java.lang.String

PersonSearchCriteria*
firstName java.lang.String
lastName java.lang.String

PhenotypeSearchCriteria
animalModelId java.lang.Long
breedingNotes java.lang.String
desc java.lang.String
sexDistributionId java.lang.Long

PromoterSearchCriteria§

PublicationSearchCriteria
animalmodelId java.lang.Long
authors java.lang.String
cellLineId java.lang.Long
endPage java.lang.Long
journal java.lang.String
pmId java.lang.Long
publicationStatusId java.lang.Long
startPage java.lang.Long
status java.lang.String
therapyId java.lang.Long
title java.lang.String
volume java.lang.String
year java.lang.Long

PublicationStatusSearchCriteria
publicationStatusName java.lang.String

* Also inherits from PartySearchCriteria

§ Also inherits from RegulatoryElementSearchCriteria

121

RegulatoryElementSearchCriteria
name java.lang.String
regulatoryElementTypeId java.lang.Long
speciesId java.lang.Long
transGeneId java.lang.Long

RegulatoryElementTypeSearchCriteria
regulatoryElementTypeName java.lang.String

RepositoryInfoSearchCriteria
inTheRepository java.lang.Long
sentEmailContent java.lang.String
suggestSubmission java.lang.Long

RoleSearchCriteria
roleName java.lang.String

SegmentTypeSearchCriteria
segmentTypeName java.lang.String

SexDistributionSearchCriteria
sexDistributionTypeName java.lang.String

TargetedModificationSearchCriteria
animalModelId java.lang.Long
blastocystName java.lang.String
engineeredGeneId java.lang.Long
escellLineName java.lang.String
geneId java.lang.Long
modificationTypeId java.lang.Long

TherapySearchCriteria
agentId java.lang.Long
animalModelId java.lang.Long
comments java.lang.String
experiment java.lang.String
treatmentScheduleId java.lang.Long

TransgeneSearchCriteria±
animalModelId java.lang.Long
integrationTypeId java.lang.Long
locationOfIntegration java.lang.String
speciesId java.lang.Long

TreatmentScheduleSearchCriteria
carcinogenicInterventionId java.lang.Long
dosage java.lang.String
regimen java.lang.String

± Also inherits from EngineeredGeneSearchCriteria

122

therapyId java.lang.Long

XenograftSearchCriteria
administrativeSite java.lang.String
animalModelId java.lang.Long
geneticManipulation java.lang.String
hostSpeciesId java.lang.Long
modificationDescription java.lang.String
name java.lang.String
organId java.lang.Long
originSpeciesId java.lang.Long
parentCellLineName java.lang.String
type java.lang.String

123

9.0 THE caCORE PACKAGE ARCHITECTURE

124

9.1 Organization of Packages in caCORE
The caCORE 2.0 package structure reflects two perspectives: (1) a reorganization of packages

that the current implementation is migrating towards, and (2) vestiges of the previous major
release that are being maintained for backwards compatibility. In the caCORE 1.0 design, the
caBIO bean package was used to represent application-specific objects for the single domain that
the entire framework supported at that time. Figure 9.1-1 summarizes the main features of the
original package structure used in release 1.0:

bean

webservicesservlet

net

manager

db

Figure 9.1-1 The caCORE 1.0 package structure

A user could interact with the caBIO server in one of three ways. First, using a browser, a
user could enter the URL for a servlet contained in the servlet package. For example, the user
could access the getXML servlet, which provides an HTTP interface to perform searches on
domain objects. Second, a user could use a SOAP client to invoke various Web Services
methods contained in the webservices package. In both cases, the initial request was serviced by
the caBIO server by instantiating appropriate domain objects in the bean package, and
forwarding the requests to manager objects in the net and manager packages. Java clients
bypassed this first step, as their applications instantiate the domain objects directly.

While the package structure has expanded and evolved, this basic framework is still in place
in the 2.0 release; the difference is that the framework has been extended to support additional
application domains. The newly introduced application domains share many of the same
requirements as caBIO, and an obvious choice was to refactor those components that had
previously been deployed to support the caBIO domain objects only.

This led to the definition of five major modules: common, cabio, cadsr, camod, and evs,
corresponding to the four domains currently supported and a single shared module. The idea is
that each of these modules has an internal structure similar to that shown in Figure 9-1; the
packages contained in the common module implement the basic components shared by all of the
applications.

While the three new modules corresponding to the new domains follow this design principle
fairly rigorously, the cabio module retains much of its original “stand-alone” implementation, for
backwards compatibility. The problem with making a clean sweep is that applications based on
the original design would no longer be supported. Thus, the package design in release 2.0 applies
the new design structure to all of the new domains, but retains much of the previous design

125

internal to the cabio packages. In future releases the cabio module will also conform more
rigorously to the new design.

Table 9.1-1 summarizes the primary packages contained in caCORE 2.0. For convenience, the
package names in the first column drop the name’s prefix and retain only the last part of the full
name. The actual name for each package is composed as:

gov.nih.nci.<component name>.<package name>

Table 9.1-1 The caCORE Packages

Package common caDSR caMOD EVS
bean
db
domain
exception
manager
net

caBIO

search
servlet
util
webservices

A checkmark in the component column indicates that the component contains a package of
the same name as the corresponding row. Thus, there are six packages in the evs component,
named gov.nih.nci.evs.bean, gov.nih.nci.evs.exception, gov.nih.nci.evs.manager,
gov.nih.nci.evs.net, gov.nih.nci.evs.search, and gov.nih.nci.evs.util.

As mentioned, all of the application domains have a similar organization of packages, with
variations depending on the specific application. For example, the EVS has its own proprietary
data access layer powered by the Apelon vocabulary server. Table 9-2 summarizes the caCORE
package organization and provides brief descriptions of the functionalities located in the
packages.

Table 9.1-2 caCORE Packages Summaries

Domains Package Description

• caBIO
• caDSR
• EVS
• caMOD

bean
Holds domain-specific objects such as Gene, Chromosome
(caBIO); DataElement, AdministeredComponent (caDSR);
Concept, Definition (EVS); AnimalModel, Availability (caMOD),
etc.

• common db

Contains the logic to perform queries against the databases and
return results as collections or arrays of the associated domain
objects; contains shared code to hold JDBC connection
information and deal with errors related to connection pooling.

126

• common domain Holds the parent class to all caMOD domain objects.

• common
• caMOD
• EVS

exception Holds the exception classes for error handling.

• caBIO
• caDSR
• caMOD
• EVS

manager Holds the object manager classes to support RMI on the server.

• common
• caBIO
• caDSR
• caMOD
• EVS

net

Holds the proxy manager classes to support RMI on the client –
these objects encapsulate the network protocols used by the
domain objects to communicate with the server, and thus abstract
RMI implementations away from the user.

• common
• caBIO
• caDSR
• caMOD
• EVS

search

Holds the classes that collectively implement both the basic and
advanced search operations. For caDSR, EVS, and caMOD, the
search criteria objects are in this package.. For caBIO only, the
search criteria classes are in the bean package in release 2.0. In
future releases however, the caBIO search criteria classes will
also be located in the search package.

• caBIO
• caMOD servlet Holds classes supporting the JSP pages in the Presentation Layer;

encapsulates the caBIO servlet implementations.
• common
• caBIO
• caDSR
• caMOD
• EVS

util
Holds the classes supporting XML-encoding and other types of
serialization; includes the Document Object Model (DOM) parser
and Scalable Vector Graphics (SVG) pathway wrappers.

• caBIO util.das
Classes providing access to the Distributed Annotation Server
(DAS) at UCSC. The classes in this package were auto-generated
from the DAS DTDs using the Sun JAXB "xjc" tool.

• caBIO
• caDSR
• caMOD

webservices
Contains the caBIO webservices classes that receive and respond
to SOAP requests from a SOAP client or consumer by rendering a
response as a SOAP message.

A second factor contributing to the reorganization of the package structure was the emergence
of a more complete set of search utilities. The central paradigm of the caCORE 1.0 release was
based on the usage of instantiated caBIO domain objects in collaboration with their associated
search criteria objects to generate SQL queries. In release 1.0, these search criteria objects were
defined in the bean package, along with the domain objects.

In release 2.0, this same organization of classes is found in the cabio.bean package only; all
of the other modules locate their search criteria objects in the newly defined search packages. In
addition, all of these individual search criteria objects are direct subclasses of the SearchCriteria
class defined in the gov.nih.nci.common.search package. In contrast, search criteria objects in the

127

cabio.bean package are indirect subclasses of the common SearchCriteria object. The next
chapter describes the classes contained in the search packages in more depth.

9.2 The caBIO DAS Package
The caBIO package structure also differs from the other components in that it includes an

interface to the Distributed Annotation Server. Excellent documentation about these servers is
available on the DAS home page. For a brief summary of DAS, visit the Overview page; for a
more in-depth discussion, see the DAS/1 Specification pages. This section provides a general
overview of the DAS7, and describes the interface to these services implemented in the
gov.nih.nci.caBIO.util.das package.

The DAS provides a framework for sharing annotations associated with entire chromosomes,
complete sequences, and sequence fragments such as contigs. The key to how this knowledge is
shared rests in the idea of reference sequences, which can be used to locate nested indexes in
hierarchical structures. A reference sequence is defined as a set of entry points into a sequence,
along with a set of sequence lengths to be associated with these entry points. Each entry point
itself may have a substructure that recursively defines its own set of entry points, thus effecting a
kind of “zoom-in/out” capability. The annotations are in turn associated with selected regions of
the referred-to genomic segment by unambiguous start and stop positions relative to their
respective reference sequences.

The DAS uses a web-based client-server architecture consisting of a reference sequence
server in collaboration with several annotation servers. Clients query these servers by sending
formatted URL requests using the HTTP/1.0 protocol, and, in response, receive formatted XML
documents.

The basic operation is to retrieve annotations according to the type of construct annotated, the
methods used for discovery, and the broad functional category of the annotation. Annotation
types include examples such as “exon,” “intron,” and “CDS.” The categories are used to filter,
group and sort annotations, and include things like “homology,” “variation,” and “transcribed.”
Different annotation servers specialize in retrieving annotations across different regions of the
genomes. The reference sequence server is an annotation server that, when given a reference
sequence id, can provide additional information concerning the raw DNA as well as how the
sequence information was assembled.

The DAS/1 Specification pages provide catalogs of the available query commands, along with
detailed explanations of how to use these commands and how to interpret the XML response
documents. Classes in the gov.nih.nci.caBIO.util.das package were auto-generated from the DAS
DTDs using the Sun JAXB “xjc” tool. For example, the class DasDsn was generated from
"http://www.biodas.org/dtd/dasdsn.dtd.”

9.2.1 Accessing the DAS Server Using caBIO Objects
Three types of retrievals can be performed against a DAS server using caBIO objects:

1. Retrieval of annotation types.
2. Retrieval of annotations.

7 This description is based on the DAS/1 Specification pages and includes excerpts from that document.

128

http://www.biodas.org/
http://biodas.org/DAS_summary.html
http://biodas.org/documents/spec.html
http://biodas.org/documents/spec.html

3. Retrieval of DNA base pair sequences.

The first type of query will retrieve a list of annotation types, filtered by specific segments or
type subsets if desired. The second type of query will fetch a set of features/annotations for a
given segment. This type of query can be restricted to return only certain types or categories, or
filtered by a gene or sequence of interest. Finally, the third type of query will retrieve a DNA
base pair sequence for a given gene or sequence.

There are several classes in the caBIO hierarchy that are used to perform DAS queries, but the
most important are the search criteria objects DasDnaSearchCriteria, DasTypeSearchCriteria,
and DasGffFeatureSearchCriteria—which are defined in the gov.nih.nci.caBIO.util.das
package.

Example 1: Search for annotation types
DasTypeSearchCriteria criteria = new DasTypeSearchCriteria();
SearchResult results = null;
try {
 results = criteria.search();
}catch (Exception e){
 MessageLog.printInfo("Search exception " + e);
}
String[] types = (String [])results.getResultSet();

Example 2: Search for annotations:
SearchResult results=null;
DasGffFeatureSearchCriteria criteria=new DasGffFeatureSearchCriteria();
try{
 criteria.setGenes(new Gene(new Long(10)));
 criteria.setGenes(genes);
 results=criteria2.search();
} catch (Exception e){
 MessageLog.printInfo("Search exception " + e);
}
DasGffFeature[] features=(DasGffFeature [])results.getResultSet();

Example 3: Search for DNA sequences:
 SearchResult results=null;
 try{
 DasDnaSearchCriteria criteria=new DasDnaSearchCriteria();
 DasDataSource source = new DasDataSource();
 source.setURI("http://genome-test.cse.ucsc.edu/cgi-bin/das/hg7");
 criteria.setDataSource(source);
 criteria.setSequences(new Sequence(new Long(2709864)));
 results=criteria.search();
 } catch (Exception e){
 MessageLog.printInfo("Search exception " + e);
 }
 DasDnaDna[] dnas=(DasDnaDna [])results.getResultSet();
 MessageLog.printInfo(" DNA -> " + dnas[0].getContent());

 This last example retrieves a DNA string using a sequence id, and uses the DasDataSource to
specify a server different from the caBIO default DAS server.

129

10.0 Advanced Search Methods

130

10.1 Basic and Advanced Search Methods
We begin this discussion of the advanced search interface with a review of the basic search

paradigm presented in Chapter 8. The sequence described there was:

1. Instantiate a new domain object of the desired type;
2. Create a new SearchCriteria for that domain object, and set its attributes;
3. Invoke the domain object’s search() method on that SearchCriteria;
4. Invoke the getResultSet() method on the returned SearchResult object.

This process is well-suited to applications where the focus is not on the queries themselves
but rather, on the subsequent analysis of the query results. For applications such as BIOgopher
however, where the primary activity is issuing queries, a more advanced capability for executing
batch searches is needed. This is exactly what the search packages provide.

The advanced search paradigm implemented by these packages assembles a tree-structured
list of search criteria which can be used to issue highly complex search queries. The
implementation introduces several new objects which are summarized in Error! Reference
source not found.. Like the basic search paradigm, the advanced interface is centered around
search criteria objects. In this case however, it is no longer necessary to instantiate an associated
domain object for each search criteria.

Table 10.1-1 Central objects used in the advanced search methods

Object Description
SelectionNode For each search criteria object to be used in the query, a selection

node is added to a growing query tree. Each node specifies a
search criteria, a list of the relevant fields (attribute names) for
that object, and a name for the node. The root of the tree is itself a
selection node, which may have (0) or more child nodes to which
it is linked.

SearchCriteriaMapping The SearchCriteriaMapping objects serve two functions. Firstly,
they are used to define the values which will be associated with
the search criteria attributes in the query tree. Secondly, they
provide a mechanism for associating labels with the results. The
results are returned in a data structure that operates as an
associative array; these labels can then be used to extract specific
elements.

GridSearchCriteria A GridSearchCriteria should be thought of as a structured
collection of SearchCriteria objects. The two arguments to the
constructor are the root of a query tree (a SelectionNode), and an
array of SearchCriteriaMapping[].

ObjectGrid Just as the domain objects provided a generic search() method for
executing simple queries, the ObjectGrid provides a a generic
search() method for operating on a GridSearchCriteria. The
search method returns a GridSearchResultMapping.

131

Object Description
GridSearchResultMapping As implied by this object’s name, the results of the search are

combined with the SearchCriteriaMappings which were provided
in the GridSearchCriteria object. The combined results and
mappings are returned as GridRow objects.

GridRow A GridRow acts as an associative array, in that results are
retrieved by name. The “name” of a cell is defined through a
combination of the node names defined in the SelectionNodes and
the labels defined in the SearchCriteriaMappings.

Abstracting away the complexity involved in constructing a GridSearchCriteria, we can find
clear parallels to the basic search paradigm, summarized below. In this summary, we have
simplified the number of objects involved in the advanced search to emphasize the parallels:

Basic Search Advanced Search

1. Gene myGene = new Gene(); 1. // define the Tree and Mappings data structures
2. GeneSearchCriteria GSC =
 new GeneSearchCriteria();

 2. GridSearchCriteria GSC =
 new GridSearchCriteria(Tree, Mappings);

3. GSC.setName(“PTEN”); 3. ObjectGrid myGrid = new ObjectGrid();
4. myGene.search (GSC) 4. myGrid.search (GSC)
As suggested by this side-by-side comparison, the advanced search has effectively reversed

steps (1) and (3) of the basic search. In the basic search method, we invoke the parameter-free
constructor to instantiate a new search criteria object, and subsequently, use its set methods to
define the attributes we wish to use as a filter. In contrast, the advanced search first defines all of
the attributes and values to be searched for, and subsequently, uses these to initialize a new
GridSearchCriteria object.

10.2 Constructing the query tree
SelectionNode objects are extensions of the Java class DefaultMutableTreeNode contained in

the package javax.swing.tree. Each SelectionNode has a SearchCriteria object (the “filter”), a
list of attributes, and a node name associated with it. To build a query tree, we begin by defining
its root selection node, and to do that, we begin by defining that node’s search criteria object.

The following code defines a GeneSearchCriteria object whose selection attribute is the name
of the gene:
 List geneNames = new ArrayList();
 geneNames.add("PTEN");
 geneNames.add("TP53");
 geneNames.add("BRCA1");
 GeneSearchCriteria gsc = new GeneSearchCriteria();
 gsc.putCriteria("name", geneNames);

This example uses the putCriteria() method to define the actual values we would like to filter
the gene names by. Note that this expression will not be used to exrtract an individual gene
whose name satisfies all of the specified values – that would not be possible. Instead, the
expression will be used to find all genes whose names match any one of the specified values.

132

Having defined our search criteria’s attribute and values, our next step is to build the selection
node’s attribute list. In this case we have only one attribute:
 List geneAtts = new ArrayList();
 geneAtts.add("name");

With this we can now initialize a new selection node∗ named “Gene” using these constructs:
SelectionNode tree = new SelectionNodeImpl("Gene", gsc, geneAtts);

At this point, we have constructed a query tree with a single selection node that can be used to
extract the set of genes whose names match the specified values. In order to use this query tree in
a search, we will need to (1) define the ObjectGrid that will be used to invoke the search; and (2)
define the GridSearchCriteria object that will be required for that invocation.

10.3 Building the GridSearchCriteria
The two arguments to the GridSearchCriteria constructor are the root of a query tree (a

SelectionNode), and an array of SearchCriteriaMappings. Note that while a query tree can have
many selection nodes, only one of these can be defined as the root.

When our search is finally executed, the results will be returned as rows, with each row
corresponding to a branch of the query tree. The branch is “flattened” into a linear sequence that
behaves like an associative array. Each SearchCriteriaMapping provides a tag that will be used
to access an individual cell in a result row. The SearchCriteriaMapping also contains a single
search criteria object that will be associated with a specific selection node in the query tree.

Recall that our query tree contains just one selection node whose single search criteria
specifies a set of gene names. For each name, a separate SearchCriteriaMapping must now be
created. For convenience, we will use the gene name itself for the tag, and create a
GeneSearchCriteria whose attribute and value correspond to this tag:

SearchCriteriaMapping[] myMappings =
new SearchCriteriaMapping[geneNames.size()];

for(ListIterator i = geneNames.listIterator(); i.hasNext();){
 GeneSearchCriteria sc = new GeneSearchCriteria();
 String myTag = (String)i.next();

sc.putCriteria("name", myTag);
SearchCriteriaMapping scm = new SearchCriteriaMapping(myTag, sc);

 MyMappings[i.previousIndex()] = scm;
}

Although the tags are entirely arbitrary, the value specified in the above call to putCriteria()
is not. The tags could just as well have been zipcodes, but the values to putCriteria() must
correspond to those specified in the selection node’s search criteria object.

Our GridSearchCriteria can now be constructed as follows:
GridSearchCriteria gridCriteria = new GridSearchCriteria(tree, myMappings);

∗ The SelectionNode class, like many of the objects in the search packages, is actually an interface class that is

implemented by an Impl class.

133

10.4 Executing the Search and Interpreting the Results
We are now ready to execute the search by constructing an ObjectGrid and invoking its

search method:
 ObjectGrid myObjGrid = new ObjectGridImpl();

GridSearchResultMapping[] results = myObjGrid.search(gridCriteria);

The results of the search are returned as an array of GridSearchResultMappings. All of these
results refer to the root node of the query tree. For each attribute value that was originally
supplied to the root node’s search criteria object, a new GridSearchResultMapping is included in
the results. The order in which these results are returned exactly follows the order in which the
attribute values were provided.

Each GridSearchResultMapping contains (1) a string specifying the attribute value that the
result corresponds to; and (2) an array of type GridRow[]. The attribute value can be extracted
using GridSearchResultMapping.getClientData(). To extract the array of GridRows, the method
GridSearchResultMapping.getResult() is used.

In the simple example we have built thus far, each result mapping will contain a GridRow
array of size (1), as our query tree contained only a single selection node. For each attribute that
was specified, the grid row will contain a cell holding the value for that attribute. Because we
used only the gene’s name as a search criteria, each grid row will in this case contain a single
cell holding the value of name for that gene.

In summary, our simple example will return at most (3) GridSearchResultMappings, where
each of these will provide access to a single GridRow object containing a single value. The cells
are accessed using the row’s getCell() method, and the values are then accessed using the cell’s
getObject() method.

The argument to the getCell() method is a string constructed by appending each of the node
names together using a dot (“.”) to concatenate them, followed by the attribute name. Thus, to
access our results, we could use the following code:

for(int i = 0; i < results.length; i++){
 GridSearchResultMapping resultMapping = results[i];
 String attVal = (String)resultMapping.getClientData();
 GridRow[] rows = resultMapping.getResult();

GridCell myCell1 = rows[0].getCell("Gene.name")

 System.out.println("for criteria = " + attVal +
" the gene name is: " + myCell.getObject());

}
Here, the single node is named “Gene”, and the attribute name “name” is appended to it to
identify the cell in the row.

We began with an exceedingly simple example in order to lay out the complexties of using
the advanced search paradigm in a straightforward manner. The potential power of the advanced
search is better illustrated in the next example.

10.5 Building More Complex Queries
This example extends the previous case by inserting a new search criteria to the original

query tree. As before, we begin by initializing the query tree with a GeneSearchCriteria that

134

searches for genes by name We then add a PathwaySearchCriteria to the tree, and select a
couple of attributes of interest for the associated pathways. The PathwaySearchCriteria is
contained in a new selection node that is embedded in the tree using the
DefaultMutableTreeNode.insert() method. Figure 10.5-1 shows the complete code.

 // initialize the query tree with a GeneSearchCriteria
List geneNames = new ArrayList();
geneNames.add("PTEN");
geneNames.add("TP53");
geneNames.add("BRCA1");
GeneSearchCriteria gsc = new GeneSearchCriteria();
gsc.putCriteria("name", geneNames);

List geneAtts = new ArrayList();
geneAtts.add("name");
SelectionNode tree = new SelectionNodeImpl("Gene", gsc, geneAtts);

// now embed a PathwaySearchCriteria
List pathAtts = new ArrayList();
pathAtts.add("name");
pathAtts.add("displayValue");
SelectionNode pathNode =

new SelectionNodeImpl("pathways", new PathwaySearchCriteria(), pathAtts);
tree.insert(pathNode, 0);

// Construct the SearchCriteriaMappings array and GridSearchCriteria
SearchCriteriaMapping[] myMappings =

new SearchCriteriaMapping[geneNames.size()];

for(ListIterator i = geneNames.listIterator(); i.hasNext();){
 GeneSearchCriteria sc = new GeneSearchCriteria();
 String myTag = (String)i.next();

sc.putCriteria("name", myTag);
SearchCriteriaMapping scm = new SearchCriteriaMapping(myTag, sc);

 myMappings[i.previousIndex()] = scm;
}

GridSearchCriteria gridCriteria = new GridSearchCriteria(tree, myMappings);

// Execute the search and process the results
ObjectGrid myObjGrid = new ObjectGridImpl();
GridSearchResultMapping[] results = myObjGrid.search(gridCriteria);

for(int i = 0; i < results.length; i++){
 GridSearchResultMapping resultMapping = results[i];
 String attVal = (String)resultMapping.getClientData();
 GridRow[] rows = resultMapping.getResult();

GridCell myCell1 = rows[0].getCell("Gene.name");

System.out.println("\n" + rows.length + " results for " + attVal + "\n");
for(int j = 0; j < rows.length; j++){
 GridCell cell1 = rows[j].getCell("Gene.name");
 GridCell cell2 = rows[j].getCell("Gene.pathways.name");
 GridCell cell3 = rows[j].getCell("Gene.pathways.displayValue");
 if (cell1 != null && cell2!= null && cell3!= null){
 System.out.println(cell1.getObject() + ": " +
 cell2.getObject() + "(" +
 cell3.getObject() + ")");

}
}

135

}
Figure 10.5-1 Assembled Code for Example 2

In this example we are looking for pathways relative to the genes we are searching for, and
the tree we have constructed is analogous to a GeneSearchCriteria containing an embedded
PathwaySearchCriteria. In the basic search method, we would have constructed this by invoking
the GeneSearchCriteria‘s putSearchCriteria () method on the PathwaySearchCriteria.

In the advanced search method, each time we insert a new selction node in a previously
defined node, the name of the new selection node must reflect the relation that exists between the
two corresponding search criteria objects. In this case, the name must define the relation that
exists between genes and pathways. Because the root of the tree holds a GeneSearchCriteria, the
name must correspond to that attribute of the Gene class that stores its associated pathways.

Consulting the field summary in the JavaDocs for the Gene class, we find the attribute
“pathways” listed, so this is what we use for the node name. Because we are not using the
pathways as a search filter however, we do not need to specify any values for the attributes. The
attributes stored with the selection node are used in this case to define features we wish to be
included in the results.

A portion of the output generated from running this example is shown in Figure 10.4-2; a
complete listing of the executable source code (which you can compile and run) is included in
Appendix G.

 6 results for PTEN

 PTEN: mtorPathway(mTOR Signaling Pathway)
 PTEN: ptenPathway(PTEN Dependent Cell Cycle Arrest and Apoptosis)
 PTEN: eif4Pathway(Regulation of eIF4e and p70 S6 Kinase)
 Pten: m_eif4Pathway(Regulation of eIF4e and p70 S6 Kinase)
 Pten: m_mtorPathway(mTOR Signaling Pathway)
 Pten: m_ptenPathway(PTEN dependent Cell Cycle Arrest and Apoptosis)

 15 results for TP53

 TP53: g1Pathway(Cell Cycle: G1/S Check Point)
 TP53: p53Pathway(p53 Signaling Pathway)
 TP53: rnaPathway(Double Stranded RNA Induced Gene Expression)
 TP53: tidPathway(Chaperones Modulate Interferon Signaling Pathway)
 TP53: atmPathway(ATM Signaling Pathway)
 TP53: pmlPathway(Regulation of Transcriptional Activity by PML)
 TP53: efpPathway(Estrogen-responsive protein Efp controls cell cycle and breast tumors growth)
 TP53: arfPathway(Tumor Suppressor Arf Inhibits Ribosomal Biogenesis)
 TP53: g2Pathway(Cell Cycle: G2/M Checkpoint)
 TP53: telPathway(Telomeres, Telomerase, Cellular Aging and Immortality)
 TP53: plk3Pathway(Regulation of Cell Cycle Progression by Plk3)
 TP53: p53hypoxiaPathway(Hypoxia and p53 in the Cardiovascular System)
 TP53: rbPathway(RB Tumor Suppressor/Checkpoint Signaling in Response to DNA Damage)
 TP53: atrbrcaPathway(Role of Brac1, Brac2 and Atr)
 TP53: tertPathway(Overview of telomerase protein component gene hTert Transcriptional Regulation)

 (additional output continues)

136

Figure 10.5-2 Sample Output from Example 2.

The capabilities defined in the search packages were developed in concert with the caBIO
web interface, BIOgopher. The source code for BIOgopher, which was implemented using the
search methods described here, is also available for download at the NCICB Download page.

For a comparison of the basic and advanced search methods, Appendix G also includes an
example demonstrating how the same search might be implemented using the basic search
methods. The BIOgopher user interface itself is described fully in the NCICB Applications User
Manual. For more complete specifications of the search packages, consult the JavaDoc pages for
those packages.

10.6 Roles and Attributes
A common theme in all of the search methods—throughout all of the APIs—is the use of

object attributes to selectively retrieve information from the database. For example, the
following pseudo-SQL statement would retrieve all human genes whose symbol is BRCA1:

Select genes from geneTable where symbol = ‘BRCA1’ and taxonId in
 (select taxonId from taxonTable where scientic_name = ‘homo sapiens’)

Using the Java API’s basic search method we could formulate this query as:

Gene myGene = new Gene();
GeneSearchCriteria gsc = new GeneSearchCriteria();
gsc.setSymbol(“BRCA1”);
gsc.setTaxonId(new Long(“5”); // homo sapiens taxon Id is 5
myGene.search(gsc);

An equivalent expression using the HTTP “operation=” syntax (see Chapter 14) would then be:

http://cabio.nci.nih.gov/servlet/GetXML?operation=Gene&Symbol=BRCA1&taxonId=5

Finally, using the SOAP web services (see Chapter 13), we might use the GeneService to call
getGenes with the argument: symbol=BRCA1 and taxonId=5 .

In each case, we begin by defining the type of objects we would like to retrieve, and then
specify the values those objects must exhibit for selected attributes. In the case of simple
attributes such as name or id, we can directly specify the values we are seeking. But when the
attribute involves a second object that is in some kind of relation to the first, the situation
becomes more complex. The complexity arises when we wish to retrieve instances of the first
object that are in relation to some second object whose attributes are the ones we wish to
constrain.

The previous caBIO releases (versions 1.x) had some convenient methods such as
setTaxonId() in the GeneSearchCriteria to accomplish such queries., but these methods assumed
that you knew the proper associations beforehand. A clear draw back of the setTaxonId method
is that in order to use it, one must know that “5” is the taxonId for “homo sapiens” and “6” is the
taxonId for “Mus musculus”, etc.

In the initial release of caBIO, there were several objects—such as Gene, Sequence, Taxon,
Clone, Library, Protocol, and Pathway—that had settable attributes in the search criteria classes

137

http://ncicb.nci.nih.gov/download/index.jsp
http://cabio.nci.nih.gov/servlet/GetXML?operation=Gene&Symbol=BRCA1&taxonId=5

that did not map 1:1 with the properties of the domain objects. The taxonId attribute is one such
example. One could constrain the search for Genes by specifying the taxonId, but the taxonId
could not be accessed as a local property of the Genes in the result set.

The criterion “taxonId” literally means “Gene.taxon.id”. That is, “id” refers to a property that
is local to a Taxon associated with the Gene. In caBIO 2.0, we refer to these types of criteria as
“non-normalized.” There are currently many non-normalized criteria in the subclasses of
gov.nih.nci.caBIO.bean.SearchCriteria, all of which will eventually be phased out in future
releases. The new object models (caMOD, caDSR, and EVS) do not support such non-
normalized criteria.

Previous releases of caBIO addressed this issue by providing the putSearchCriteria() method,
which allows the search to be constrained by attributes defined on the “nested“ search criteria
objects. Using this approach, the following code snippet reproduces the results obtainable from
the previous example:

Gene myGene = new Gene();
GeneSearchCriteria gsc = new GeneSearchCriteria();
gsc.setSymbol(“BRCA1”);
TaxonSearchCriteria tsc = new TaxonSearchCriteria();
tsc.setScientificName(“homo sapiens”);
gsc.putSearchCriteria(tsc);
myGene.search(gsc);

This solution however, was still limited by the need to have predefined “setXxx()” methods
for all of the attributes users might wish to use as search cirteria. What was needed was a
dynamic query mechanism that would allow caBIO users to supply not only the criteria values at
runtime, but the attribute tags as well. In this way, any property that was defined for the domain
object would immeditately become “settable” as an attribute for the associated search criteria
object.

This led to development of the putCriteria() method in the Java API, and to the new query=
syntax in the HTTP interface (see Section 14.2.2). For example, to retrieve all human genes
whose symbols match “BRCA1” using the Java API, we can replacing the previous sample code
with the following:

Gene myGene = new Gene();
GeneSearchCriteria gsc = new GeneSearchCriteria();
gsc.putCriteria(“name”, “BRCA1”);
TaxonSearchCriteria tsc = new TaxonSearchCriteria();
tsc.putCriteria(“scientificName’, “homo sapiens”);
gsc.putCriteria(“taxon”, tsc);
myGene.search(gsc);

While this solved one problem, it introduced another. In order to use the putCtiteria() method
to define simple (non-nested) attributes you must know the value (e.g. “BRCA1”) as well as the
caBIO bean attribute name (e.g. “Gene.name”). Moreover, for “nested” attributes, you must
know the association role name that signifies a relationship between the two objects. Figure
10.6-1 illustrates the UML model and the association role names for this example.

138

1..n

+genes
Gene Taxo+taxon

1

Figure 10.6-1 The association roles between Gene and Taxon

In this example, “taxon” is the association role name from the Gene to the Taxon, and
“genes” is the association role name from the Taxon to the Gene. Note that the plurality of the
role name captures the cardinality of the relation as it is diagrammed in the UML model.

In many cases the association role name can be generated by these guidelines:

1. Begin with the class name of the related object and convert only the first letter to
lower case, leaving the rest of the name unchanged.

2. If the cardinality of the relation is greater than 1, pluralize the name.

These simple rules break down however, when the two objects have multiple relations to one
another, as in the following example from the caDSR API.

DataElementConcept

Qualifier

0..n 0..n
+ propertyQualifier +DECProperty

+DECObjectClass

0..n

+ objectClassQualifier

0..n

Figure 10.6-2 Objects with multiple association roles

The above rules are just guidelines; the precise nomenclature for these attributes and
association role names can be found in the caBIO JavaDocs, as the Field names for each bean
object, and, in the caBIO object models, as attribute names for the individual objects and as role
names for associations between objects.

139

http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/
http://ncicb.nci.nih.gov/content/coreftp/rose/caBIO2-0/root.html

11.0 THE caBIO Java API

140

11.1 Installing a caBIO Client
The caBIO Java API provides an enhanced object-oriented development environment for

bioinformatics researchers, along with access to customized data sources for plumbing the
molecular basis of cancer and manipulating clinical data. The data sources include many of the
NCICB databases specially curated for cancer research, as well as several of the public databases
at NCBI and the Distributed Annotation Server at UCSC. These data sources are described in
more detail in Chapter 15.

The caBIO objects in the bean packages—also referred to as the domain objects—simulate
the behavior and relationships of actual bioinformatic and biomedical components such as genes,
chromosomes, sequences, animal models, clinical trials, protocols, etc. They provide access to a
variety of data sources including Unigene, LocusLink, Homologene, GoldenPath, and NCICB’s
CGAP (Cancer Genome Anatomy Project) data repositories. Hence, a gene can get its ESTs,
SNPs, or clones; a SNP can provide access to the TraceFiles that were used to identify it; and a
chromosome can report the taxon in which it is defined.

Java applications can access the caBIO data sources directly through these domain objects;
the network details of communication to the data servers are abstracted away from the developer
by the supporting packages described in Chapter 9. Thus, developers need not deal with issues
such as RMI and can instead concentrate on the biological problems at hand.

The implementation of a separate data layer allows the domain objects to act independently of
the actual data storage facilities. This allows the data layer to migrate as necessary to enhance
performance or provide new data stores, without impact on the application programs. In
particular, the Data Access Objects (DAOs) in the db packages enable platform-independent
persistence of these domain objects, and the relational mappings provided by the DAOs are
optimized for the data queries presented by the domain objects.

Object
Managers Data

Access
Objects

Object
Layer

Data
Layer

RMI

Java Apps

 Domain

Objects

Figure 11.1-1 The caBIO Java API

Another important feature of the caBIO data access objects is their ability to cache and
manage large amounts of data. Coupled with the throttling mechanisms deployed to control the
flow of data through the system, this design provides optimal response time to all users of the
system.

The caBIO domain object classes are what most developers will use to access the information
available from the caBIO servers. These domain objects are available as Java beans in the caBIO
jar file that is downloaded with the caBIO installation. In most cases, the developer need not
look beyond the caBIO bean package to accomplish his or her goals.

141

More ambitious applications may require adapting and extending the basic caBIO platform,
and/or installing the data sources as a local resource. The entire caBIO source code is available
for download, and the complete installation of the caBIO server is described in the next section.
As an example of the types of applications that can be built using these development tools, visit
the CMAP web site, which is implemented using the caBIO objects described in this guide.

11.1.1 Requirements for Installing the caBIO Java Client
The caBIO Java API was developed and tested using JDK 1.3.1. Later versions of the JDK

(e.g., 1.4.1) may have deprecated certain methods used by caBIO, and warnings may be
generated at compile time. If JDK is not already installed in your system, follow the instructions
from the Java installation and tutorial web site for details on installing JDK.

The caBIO Java API can be downloaded from the NCICB Download web site. After filling in
your user name, institution, and email address, you are given the option of downloading the
caBIO distribution, which contains the caBIO.jar file, code examples written in Java and Perl,
and a PDF of the UML model.8 The caBIO.jar file is a Java archive file that defines all of the
caBIO domain objects, as well as the protocols and server information required to issue RMI
requests to the caBIO servers. This discussion assumes you have downloaded this package.

Unzip these files into a working directory of your choice; for the purposes of this discussion it
is assumed you are using c:\caBIO. Examine the file structure in your newly created directory. In
addition to the top-level files, you will find several subdirectories. The directory named jars
contains the caBIO Java archive, caBIO.jar, along with the other following jar files:

• xercesImpl.jar (the Xerces Java Parser)
• xml-apis.jar (XSLT processor)
• jaxp.jar (the Sun API for XML processing)
• jaxb-rt-1.0-ea.jar (the Sun architecture for XML binding)
• soap.jar (Apache SOAP)

11.1.2 Defining the ClassPath
In order to compile and/or execute caBIO applications, the Java compiler and runtime

environments must be able to locate the caBIO class definitions as well as those for the classes in
the additional jar files. This can be accomplished in three ways: (1) you can use a compile tool
such as ant; (2) you can use the scripts provided with the caBIO download (.bat for Windows
and .sh for Unix); or (3) you can set the CLASSPATH environment variable directly.

The first two methods are preferable, as hardcoding the locations of Java archive files in your
environment can create problems with versioning. Instructions for using the ant utility are
included in the readme file that accompanies the distribution.

The two script files contained in the caBIO distribution are compile_caBIO.* and
run_caBIO.*. The compilation script explicitly specifies the classpath as an argument to the
javac compiler. The execution script also specifies the classpath and, in addition, specifies the
java.security file using the –D define flag. If you plan to use either of these batch files, ensure
that the classpaths they specify concur with your installation of the corresponding jar files.

8 This guide can also be downloaded from that site.

142

http://cmap.nci.nih.gov/
http://developer.java.sun.com/developer/onlineTraining/new2java/gettingstartedjava.html
http://ncicb.nci.nih.gov/download/
http://xml.apache.org/xerces-j/
http://xml.apache.org/xalan-j/
http://java.sun.com/xml/jaxp/
http://java.sun.com/xml/jaxb/index.html
http://xml.apache.org/soap/index.html
http://jakarta.apache.org/ant

To set the CLASSPATH environment variable directly, Windows 98 users should modify the
autoexec.bat file by adding the following (single) line:
CLASSPATH=%CLASSPATH%;c:\cabio\jars\xercesImpl.jar; c:\cabio\jars\xml-
apis.jar;c:\cabio\jars\caBIO.jar;c:\cabio\jars\soap.jar;c:\cabio\jars\jaxp.jar;c:\cabi
o\jars\jaxb-rt-1.0-ea.jar;.

Note that this works only if you have previously defined the CLASSPATH; if not, you must use:
Set CLASSPATH=c:\cabio\jars\... instead of CLASSPATH=%CLASSPATH%;c:\cabio\jars\...

Users of Windows NT and Windows 2000 can enter this information directly, by clicking on
My Computer Properties, and selecting the Advanced tab, which brings up a dialog box for
editing your environment variables.

11.1.3 Compiling and Running the GeneDemo Program
The JavaDemos directory contains both the source code and the executable class for a Java

program called GeneDemo.java. Using the .bat file on Windows machines, you can now run the
demo by typing:

run_caBIO.bat GeneDemo

The screen shot in Figure 11.1-2 captures the first page of output that results from executing
the GeneDemo.class file. Additional lines of output are also listed in Appendix A of this guide.
Using the compile_caBIO.bat file on Windows machines, you can compile the demo by typing:

compile_caBIO.bat JavaDemos\GeneDemo.java

at the command line in a DOS shell. Alternatively, if you have defined the classpath environment
variable, you can just use

javac GeneDemo.java

This will reproduce the java class file named GeneDemo.class, which you can then execute by
again using the run_caBIO.bat script or typing directly:

java –Djava.security.policy=java.policy GeneDemo

The –D flag defining the security policy is provided to the RMISecurityManager class, which
requires that you specify a security policy at runtime. The policies defined in the java.policy file
protect your system — not the caBIO server — and you are free to edit these as you see fit. For
example, a policy file granting full access permissions to everyone would contain the text:

grant {
 permission java.security.AllPermission;
};

By default, the policy file that you downloaded grants all permissions. The commented out
section is an example of alternative settings you may wish to use.

11.1.4 Troubleshooting
The screen shot in Figure 11.1-2 captures the first page of output that results from executing

the GeneDemo.class file. If you do not see this, the first place to look for errors is in the
CLASSPATH definition; verify that all of the required jar files are present and under the correct

143

subdirectories. It is also possible that you have installed everything correctly but that the
executable has hit a firewall in trying to access the caBIO data services. For example, if you see
the first line of output:

Running the main of GeneDemo

followed by the error message:
Proxy unable to contact Gene manager! Connection refused to host:...

then you have hit a firewall on your system and need to ask your system administrator to open
the ports that the caBIO data services are using. Open another shell window and run the netstat
system utility (while simultaneously running GeneDemo) to identify these ports.

Figure 11.1-2 Screen shot of GeneDemo output

A second problem, which can produce similar error messages like:
Proxy unable to contact Core manager! Connection refused to host:...,

can arise if you have:

(1) redefined the java.policy file, and/or

(2) installed the cabio.jar file in some location other than the default configuration.

In this case, the program will get past the Gene manager and produce the first few lines of output
before running into trouble. To test this, redefine the java.policy file to grant all permissions (as
outlined in the previous subsection), and rerun the program. If this solves the problem, then you
will have established that the Core manager class (defined in cabio.jar) was not able to locate the
java.policy file. If you are not comfortable with using the open security policy, then you will
need to reconfigure your setup so that the policy file and cabio.jar file have the following
organization:

..\caBIO\
java.policy

144

jars\
cabio.jar

For a discussion of the GeneDemo program itself, see Chapter 12. In addition to a description
of the GeneDemo code that accesses the caBIO domain objects, other short example programs
(listed in the Appendices) are discussed which demonstrate the use of the Java API to access the
caDSR, EVS, caMOD, and MAGE-OM API domain objects.

11.2 Installing the caBIO Server
The complete source code for installing the caBIO server and caBIO database, as well as the

BIOgopher web interface, is available for download at:

http://ncicb.nci.nih.gov/download/

Select the file named “caBIO_source_ver2-0.zip” and follow the detailed step-by-step
instructions that are provided in the “Readme.txt” file. In addition to the materials provided at
the caBIO web site, Windows users will also need the following open source software:

• J2EE (Java 2 Platform Enterprise Edition) or J2SE (Standard Edition)
• Ant (Apache’s Java-based build tool);
• Cygwin (provides Linux-like environment for Windows); and
• Tomcat (for implementing Java Servlets and JSPs).

The complete installation is not difficult but can get quite complicated if the steps outlined in
the Readme file are not followed in the exact order specified there. Help is also available at the
NCICB Application Support web site, which provides phone numbers, email addresses, and a
knowledgebase of Frequently Asked Questions (FAQs). Two email discussion forums are also
accessible from the caBIO home page:

• A Users' Discussion Forum—for users of the caBIO Java, SOAP, and/or HTTP APIs can
be found at:

http://list.nih.gov/archives/cabio_users.html

• A Developers' Discussion Forum, for developers who are extending the API, adding
additional data sources, and/or enhancing the existing source code, can be found at:

http://list.nih.gov/archives/cabio_developers.html

145

http://ncicb.nci.nih.gov/download/index.jsp
http://java.sun.com/j2ee
http://java.sun.com/j2se
http://ant.apache.org/
http://www.cygwin.com/mirrors.html
http://jakarta.apache.org/tomcat/
http://ncicbsupport.nci.nih.gov/sw/
http://ncicb.nci.nih.gov/core/caBIO
http://list.nih.gov/archives/cabio_users.html
http://list.nih.gov/archives/cabio_developers.html

12.0 CODE EXAMPLES

146

Several small Java demonstration programs are included with the download package. The
source listings for these programs are also included here as appendices, along with the sample
output you should see after running the programs The sections that follow comment on these
appended source listings and their output.

12.1 The caBIO GeneDemo program
The GeneDemo.java program is in Appendix A. The most important method—indeed, the

paradigmatic operation—on a caBIO object is the search method. Corresponding to each domain
object is a SearchCriteria object that can be deployed to retrieve objects of the type that satisfy
user-specified criteria. For example, to obtain information about a particular gene:

1. Instantiate a new Gene object (e.g., myGene).

2. Instantiate a new GeneSearchCriteria object (e.g., criteria).

3. Set the attributes of the GeneSearchCriteria to limit the search.

4. Call the Gene object’s search method with the GeneSearchCriteria as the argument.

This approach is used in GeneDemo.java to retrieve all instances of Gene objects whose
symbols match the string “PTEN.” Specifically, the setSymbol() method of the
GeneSearchCriteria is first applied, and a subsequent call to myGene.search(criteria) is then
executed. Note that the return result needs to be typecast to Gene[], as the SearchResult object’s
method getResultSet() returns a generic container.

The Gene object in this example and, more generally, every caBIO domain object, should be
viewed as a “factory” that enables the procurement of a collection of caBIO objects of that same
type. Reviewing the steps outlined above, this manufacturing process can be generalized to:

1. Instantiate a new domain object of the desired type.

2. Instantiate a new SearchCriteria to be associated with that domain object, and set the
attributes of that search criteria object so as to limit the search.

3. Execute the domain object’s search() method on that SearchCriteria, and store the results
in a generic SearchResult object.

4. Invoke the getResultSet() method on the SearchResult object and typecast its return value
to an array of the same type as the original domain object.

In this example, the search finds an array of genes, and the code then explores the features of
each one in turn. Simple features whose values are just strings or numbers are printed directly to
the screen. These include attributes like the gene’s name, title, OMIM id, Unigene cluster id,
LocusLink id, and organism abbreviation. More complex features represent embedded objects or
arrays of simple elements or objects, and must be explored recursively.

For example, the gene’s getReferenceSequences() method returns an array of sequences, and
the features of each Sequence object are explored in turn. Similarly, the gene’s getDbCrossRefs()
method returns a hashtable or associative array of key/value pairs. The keys are stored in a Java
enumeration variable and used to access successive element values. In contrast, the gene’s
getExpressionFeature() method does not return an array, but an ExpressionFeature object. In
this case, the object’s getExpressedInOrgans() method produces an array of string values that is
iterated over.

147

The previous section described the caBIO architecture and the underlying design that drives
the logistics of the search() methods and interactions between the domain objects, object
managers, SearchCriteria, and SearchResult objects. The GeneDemo.java program demonstrates
how these objects and devices can be deployed to extract information from the caBIO data
sources

12.2 The EVSDemo Program
The EVSDemo program in Appendix B begins by instantiating a DescLogicConcept and a

MetaThesaurusConcept along with search criteria objects that can be used in conjunction with
these domain objects. The first demonstration is the DescLogicConcept‘s generic search()
method. In this example, a “*” is used to force wildcard matching—all concepts whose names
begin with the string “Gen” will be returned. The search is invoked with the search criteria
object as the single argument:

Concept[] conceptArray = dlc.search(dlcsc);

As described in Section 4.6, the values returned by this statement will be a collection of
lightweight Concept objects whose only defined attributes are the concept names. This method is
useful when all that is required is the concept names, or, when the complete DescLogicConcept
is desired, but the precise name is not known. Using the generic search() method to first obtain
the exact name enables the user to subsequently invoke the getConceptByName() method—as
demonstrated in the next several lines.

Although this method returns a fully defined DescLogicConcept that can they be used to
directly access all of the attributes for that concept, it is cast as a simple concept here. Instead,
the example goes on to demonstrate how convenience methods can be applied to get this same
information without requiring the description logic concept itself. The methods demonstrated are
GetPropertiesByConceptName() and getRolesByConceptName().

Next, the History class is deployed to obtain information about the ancestors and descendants
of the concept as well as the editing that has been performed on it. Finally, the methods that
access information about the subconcept and superconcept relations in the hierarchy are
exercised. As described in Chapter 4, this information can also be accessed from the description
logic concept itself. This ability to access hierarchical and historical information without
accessing the concept itself however, is a great time-saving device for NCI Thesaurus concepts
as the proprietary API to the Thesaurus entails significant overhead.

The retrieval of MetaThesaurusConcept objects is quite straightforward, as the search()
method for this class returns these objects directly. The section of the code beginning with the
comment “MetaThesaurus Search” demonstrates this, using the printConceptArray() method.

12.3 The caDSR Demo Program
The caDSR example in Appendix C also uses the domain object/search criteria paradigm to

selectively retrieve information from the caDSR registry. The domain object is a
CaseReportForm, and the attribute used as a filter is the id attribute. The program will retrieve
all instances of CaseReportForm whose id attribute is equal to the value specified in the setId()
method The result set is then passed to the printOutResults() method, which demonstrates some
of the features of the domain object and how they can be accessed.

148

As described in Chapter 8, the settable attributes of a search criteria object can be obtained
from the corresponding catalog entry in that chapter or, alternatively, from the JavaDocs, by
examining the set methods of that object. Note that in this example the method used is actually
inherited from the parent object, AdministeredComponentSearchCriteria.

Once the results have been obtained, the loop visits each result and prints information to the
screen about that CaseReportForm. As noted in the comments, the program does not expose all
attributes of the form, but only a few, for the purposes of demonstrating how this can be done.
The simple features displayed by the program include the object’s PreferredName, Id,
PreferredDefinition, LongName, Version, and WorkflowStatusName. As all of these are simple
strings, they are displayed directly.

The attributes of several embedded objects contained in the CaseReportForm are also
explored, using nested loops. In all cases, the get methods applied to both the CaseReportForm
objects, as well as to their embedded objects, are available on the JavaDocs pages.

12.4 The caMOD Demo Program
The caMOD demo program in Appendix D repeats a similar sequence of steps over the

caMOD domain objects TreatmentSchedule, Publication, MicroarrayData, and Phenotype.
Again, the domain object/search criteria paradigm is used to selectively retrieve information
from the caMOD database. In each case, the domain object and an associated search criteria
object are instantiated; some attribute is set for the search criteria object; and the domain object’s
search() method is invoked with the search criteria object as its single argument. The result set is
captured in an array of domain objects, which is then iterated over to expose its features.

12.5 The MAGE-OM Demo Program
The MAGE-OM API represents a significant departure from the other caBIO domain-specific

APIs. Unlike these other applications, the MAGE-OM API is not integrated with the caBIO
objects at the package level. As described in Chapter 7, MAGE-OM-compliant objects are
implemented as Java interfaces, which the custom MAGE-OM Impl objects implement as
concrete java classes.

The example program included with the MAGE API distribution (MageTest.java) is also
listed in Appendix E, along with a sample of the output from this program. MageTest.java
demonstrates how to access the microarray experiments stored in the GEDP database and the
bioassay data associated with those experiments.

A single class, MageTest, is defined, with four methods, two of which can be used to extract
experiments from the database. The first of these, getExperimentWithId(), uses the experiment Id
provided with the top-level arguments at the command line to retrieve the corresponding
experiment. Note that in this case, a new ExperimentImpl object is simply instantiated with the
desired id. The object resulting from this operation is a GEDP experiment with that Id (assuming
one exists).

If no arguments were provided, the test program calls the second method, getExperiments().
In this case, an “empty” ExperimentImpl object is first instantiated, and a generic SearchCriteria
object is used to generate results. The ExperimentImpl objects contained in these results are then
collected and returned by the method as an array of type ExperimentImpl[]. Because no selection
criteria were set, the entire collection of GEDP experiments will be returned. In both cases, the

149

http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/index.html

dumpExperimentBioAssays() method is then called to output the bioassay data, which in turn,
calls dumpBioDataValues().

150

13.0 THE SOAP API AND WEB SERVICES

151

The Simple Object Access Protocol (SOAP) is a bridging technology that allows
heterogeneous peers on diverse platforms to exchange structured data over the Internet via XML
and HTTP. The caBIO project provides a SOAP interface for non-Java applications. In this
model the client issues XML-encoded requests specifying the desired data services to the
appropriate host address and port and, in exchange, receives XML-encoded responses.

The SOAP engine operates on three types of specifications:

• The SOAP message’s envelope specifications, which define the content type, intended
recipient of the message, and whether it is optional or mandatory;

• The encoding rules, which specify the serialization method to be used in the exchange of
application-specific data; and

• The RPC (remote procedure call), which defines the conventions used in remote
procedure calls and responses.

The simple example of a SOAP message below requests the price of apples from a host,
www.foodprices.com:

POST /InPrices HTTP/1.1
Host: www.dictionary.com
Content-Type: application/soap; charset=utf-8
<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<soap:Body xmlns:m="http://www.dictionary.com " />
<m:GetDefinition>

<m:Item>Aperture</m:Item>
</m:GetDefinition>

</soap:Body>
</soap:Envelope>

In this example, the SOAP envelope specifications include only the content type
(application/soap) and the recipient (www.dictionary.com). There is no mention of whether the
message is mandatory or optional. The encoding rules are defined as

http://www.w3.org/2001/12/soap-encoding

The RPC call specification is defined in the <soap:Body > element, where it requests the price of
apples from the server.

13.1 The SOAP API and caBIO
As depicted in Figure 13.1-1, all of the caBIO data sources—including the internal databases

as well as other NCI resources and external web sites—are at the backend of the caBIO
infrastructure. The Object Layer consists of a set of object managers, data access objects, and a
collection of classes representing biological and bioinformatic entities. All of the objects in this
layer are implemented as Java bean classes and, as such, can be accessed by a Java program
using remote method invocation.

The Presentation Layer provides a more generic interface to these same data for non-Java
applications written in languages such as Perl, C/C++, Python, etc. caBIO uses the open-source

152

http://www.w3.org/TR/SOAP/

Apache SOAP package, in combination with appropriate serialization methods for the Java
beans, to achieve an application-independent interface. As described in the general discussion of
the caBIO APIs in Chapter 8, all of the domain objects are “XML Aware” and are capable of
serializing themselves to XML for transport.

Perl

Layer Layer Layer

Web Server

Servlet
Container

C

Python

SOAP
Engine

RMI
Object

Managers
Data

Access
Objects SOAP client

SOAP client

Presentation

Domain
Objects

Object Data

SOAP::lite

. . .

Figure 13.1-1 The caBIO architecture and the SOAP interface

caBIO’s SOAP API can be used as an interface to any language-specific application. In
theory, the remote application could in fact communicate directly with the SOAP server without
any additional layers of interfacing. In practice, however, this would involve a good deal of
effort, as it requires explicitly wrapping each request in a SOAP envelope, parsing the return
message types, and network programming to establish and maintain reliable connections.

Most developers instead prefer to install a SOAP client package to handle the implementation
of the envelope and the resolution of the SOAP types. A number of SOAP packages catering to
different programming languages are available at http://www.w3.org/TR/SOAP/ and at
Soapware.

One such package is SOAP::LITE for Perl, which can be freely downloaded from the
ActiveState web site . The PERL example discussed below utilizes SOAP::LITE, which provides
both a client- and a server-side SOAP implementation. Win 32 machines can download the .exe
file from ActiveState and simply follow the accompanying installation instructions. The installer
will automatically add the <perl soap:lite installation-directory>/bin to the system PATH.

13.2 Using the SOAP API with Perl and SOAP::LITE
13.2.1 Accessing the caBIO SOAP Services

The first thing you will need to determine before connecting to a SOAP server is the set of
callable services it provides. To see the list of SOAP services provided by the NCICB server,
point your browser to:

http://cabio.nci.nih.gov/soap/services/index.html

153

http://www.w3.org/TR/SOAP/
http://www.soapware.org/
http://www.activestate.com/
http://cabio.nci.nih.gov/soap/services/index.html

The links displayed on the deployed services page are known as the Uniform Resource Name
(URN) identifiers for the information resources. Additional information about a deployed service
can be obtained by clicking on the URN for that service. This will open a Deployed Service
Information page, providing details on its properties. For example, clicking on the urn:nci-gene-
service link displays the ID, Provider Type, Provider Class, and Methods properties.

The most important properties are ID and Methods. ID is the Uniform resource Identifier
(URI) for the SOAP service; Methods enumerates the methods available from the service. For
example, some of the methods provided by GeneService are getGenes, getTaxons, getClones,
getSequences, and getPathways.

The caBIO SOAP services are implemented by the classes defined in the caBIO webservices
package. You can get the details on these classes from the JavaDoc pages for that package. The
caBIO architecture includes about 30 “service” classes, which implement communication
between the caBIO domain objects and SOAP client applications via XML documents. Table
13.2-1 lists several of the most frequently used services and the java bean domain objects they
provide access to. The sample Perl application that follows demonstrates how information about
a specific Gene object can be selectively extracted using SOAP::Lite.

SOAP service name caBIO bean class
GeneService gov.nih.nci.caBIO.bean.Gene
LibraryService gov.nih.nci.caBIO.bean.Library
TargetService gov.nih.nci.caBIO.bean.Target
AgentService gov.nih.nci.caBIO.bean.Agent
PathwayService gov.nih.nci.caBIO.bean.Pathway
ClinicalTrialProtocolService gov.nih.nci.caBIO.bean.ClinicalTrialProtocol
GenericObjectService gov.nih.nci.caBIO.bean

Table 13.2-1 Frequently used caBIO SOAP services.

13.2.2 Accessing the GeneService using SOAP::Lite
SOAP::LITE is a collection of Perl modules that provide a simple interface to both the client

and the server. Each SOAP::LITE method can be used for both setting and retrieving values. In
the absence of any arguments, the current value is retrieved. When parameters are provided, the
new value specified in the arguments will be assigned to the object referred to in the method.
The example that follows retrieves information about a specific gene, using the gene’s symbol
(PTEN) to select it.

Three mandatory arguments for accessing any SOAP service are:

• server – <the NCICB server URL>

• port – < the NCICB server listening port> e.g., 80

• method – the requested SOAP service, e.g., GeneService

These arguments can be specified programmatically inside the Perl script, or at runtime on the
command line. For example, given a Perl script called geneClient.pl, we can invoke it as follows:

geneClient.pl cabio.nci.nih.gov 80 getGenes -symbol PTEN

154

http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caBIO/webservices/package-summary.html

Here, cabio.nci.nih.gov is the IP address of the SOAP server, 80 is the listening port, and
getGenes is the method of the GeneService we wish to access. The last argument is a specific
parameter to getGenes, specifying that we would like to retrieve a Gene object whose symbol
matches the string PTEN. Alternatively, we might specify these parameters in the Perl script
itself, as:

$server = "cabio.nci.nih.gov"; # set the server variable
$port = "80"; # set the port variable
$method = "getGenes"; # set the method variable
my %searchRec=(); # declare a hashtable to store the search options
$searchRec{"symbol"} = "pTEN"; # initialize the symbol field in searchRec

Using either approach, our Perl script will still need to include additional variables specifying
the URI for the SOAP service we wish to access, and a proxy path for message routing:

$URI='urn:nci-gene-service'; # set the URI variable to GeneService
$PROXY_PATH='/soap/servlet/rpcrouter'; # set the PROXY_PATH to (RPC|Message) Router

The proxy path specifies the endpoint service address and loads the required module. This
path is required for dispatching SOAP calls. SOAP::Lite provides explicit functions for these
specifications: uri()and proxy(). Given the above $variable definitions, we can apply these as:

$s = SOAP::Lite; # declare a SOAP::Lite
variable

-> uri($URI); # set the SOAP::Lite uri()
-> proxy("http://$server:$port$PROXY_PATH"); # set the SOAP::Lite proxy()

13.2.3 Issuing a SOAP::Lite Service Request
Thus far, we have set up everything we need for the connection: the IP address for the SOAP

server, the listening port for results, the URI for the SOAP service we wish to access, and a
proxy path for message routing. We have also created an internal hashtable to store <tag/value>
pairs for the search fields we will use; we have stored the pair <“symbol,” “PTEN”> in that
table, and we have assigned the string getGenes to the method variable. All that is left now is to
declare a variable to store results in, and a way of actually invoking the method. We can do this
as follows:

$som=$s->$method(SOAP::Data->type(map => \%searchRec));

In general SOAP::Data is used to specify a value, a name, a type, a URI, or attributes for
SOAP elements. In this example we have used it to specify that the argument, searchRec, is a
map type, since it is essentially a two-dimensional array. Alternatively, we might have specified
value(), name(), uri(), or attr() in place of type().

The return object $som is a SOAP::SOM object and can be used to access the returned values.
If a fault element is in the message, $som->fault will be defined. Additional information,
including faultdetail, faultcode, and faultstring, is also available from the $som object. If the
request was successful, the response XML can be retrieved and saved by calling $som->result as
follows:

155

$xmldoc = $som->result; # get the result
open (OUT, ">pTEN.XML"); # open a file for output
print OUT $xmldoc; # write output to the file
print $xmldoc; # write to standard output

13.2.4 The Complete geneClient.pl Perl Script
use SOAP::Lite;
use HTML::Entities;
$URI='urn:nci-gene-service';
$PROXY_PATH='/soap/servlet/rpcrouter';
my %searchRec=();
$server = "cabio.nci.nih.gov";
$port = "80";
$method = "getGenes";
$searchRec{"symbol"} = "pTEN";
$s = SOAP::Lite

-> uri($URI)
-> proxy("http://$server:$port$PROXY_PATH");

make service request
$som=$s->$method(SOAP::Data->type(map => \%searchRec));

interpret result
if ($som->fault) {

print "FAULT ENCOUNTERED!\nfaultcode:\t" . $som->faultcode .
"\nfaultstring:\t" .

$som->faultstring . "\n";
} else {

$xmldoc = $som->result;
open (OUT, ">pTEN.xml");
print OUT $xmldoc;
print $xmldoc;
close OUT;

}

13.2.5 The XML Output and the Additional Arguments
The resulting XML output of this script contains information relating to the selected gene

whose symbol was specified as “PTEN.” Simple features like the gene’s name, title, and cross-
referencing IDs into other databases are represented directly, as they are simple text strings. But
by default, more complex return values that reference other caBIO objects such as Chromosome,
ExpressionFeature, and Taxon are encoded as XLinks only.

There are two ways to retrieve further information about these embedded XLinks. The simple
approach of editing your perl scripts to recursively embed the Xlink:Href URIs and retrieving the
output may become tedious when those queries in turn return additional XLinks.

Alternatively, if you know in advance which XLinks you will need to expand, you can do so
on the first pass by adding two more arguments: fillInObjects and returnHeavyXML. The
fillInObjects option accepts comma-separated arguments, which specify which tags are to be
opened up further. The corresponding XLinks are then “filled in” with their XML content one
level deep. The returnHeavyXML option opens all of the embedded XLinks one level deep.

156

For example, suppose you want to open up the XLinks corresponding only to
ExpressionFeature and MapLocation. The syntax for this would be:

$searchRec{"fillInObjects"} = "ExpressionFeature,MapLocation";

where $searchRec is the hashtable variable used to store different arguments to map to the SOAP
service. Alternatively, to “fill up” all of the top-level XLinks in the resulting XML, use:

$searchRec{"returnHeavyXML"}="true";

These options can also be specified at the command line, e.g.:
geneClient.pl cabio.nci.nih.gov 80 getGenes -symbol PTEN –fillInObjects
ExpressionFeature,MapLocation

The example provided here is hard-coded with respect to the server, port number, method,
and attributes that will be applied in the service request. Appendix H provides a more generic
way of encoding this, where all of the parameters can be entered on the command line.

A number of additional Perl script examples are included in the caBIO distribution file,
available at the NCICB Download web site. Download this demonstration file, and explore the
PerlSOAP subdirectory. To get a complete list of the options available for the various services
and methods, refer to APIs for the classes implementing these services, on the NCICB
Webservices Java Doc pages.

13.3 The caBIO SOAP Services Catalog
The caBIO architecture includes 36 web service classes, which implement communication

between the caBIO domain objects and SOAP client applications via XML documents. These
services are implemented by classes defined in the caBIO webservices package, and are fully
documented on the JavaDoc pages for that package. The tables below summarize the information
available from the JavaDocs, and provide additional descriptive information as well as explicit
specifications of the methods and parameters that can be used with these services.

We begin by defining each web service and enumerating the methods that service provides.
Each web service class encapsulates methods callable by a SOAP client to perform a search on
the associated domain object. The method is invoked with a list of tag/value pairs, referred to in
SOAP as a hashtable, as in the above example from the geneClient Perl script. In that example,
the method is getGenes, the tag is symbol, and the value is PTEN.

The specific web service being accessed in the Perl script was identified via the Uniform
Resource Identifier which defined the GeneService. Each web service has a URI, which is
analogous to a postal address for receiving messages. The caBIO web services use a simple
pattern for URI addressing:

urn:nci-[DomainObjectName]–service.

For example, to call the GeneService, the client would use:

urn:nci-gene–service

157

http://ncicb.nci.nih.gov/download/
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caBIO/webservices/package-frame.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caBIO/webservices/package-frame.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caBIO/webservices/package-summary.html

 It is important to note that methods with the same name may be owned by many web service
classes, and that these methods will have different signatures and behaviors depending upon the
web service being used to access the method. For example, many of the domain objects have
associations with the Gene object, and each of their associated web services provides a GetGenes
method. The allowed arguments to GetGenes when invoked through the ChromosomeService
will be different, however, from those allowed when the method is accessed via the GeneService.

More specifically, each web service has a fixed set of parameters that can be applied to all of
its method invocations. This derives from the underlying association of the web service with a
domain object and, in turn, with that domain object’s SearchCriteria object. Thus, since the
ChromosomeSearchCriteria accepts different parameters than the GeneSearchCriteria, the
methods provided by the corresponding web services—even those of the same name—also have
different signatures. The URI is used by the server to identify which service owns the method the
client is invoking.

Each web service is summarized below by the definition of its associated domain object, the
list of parameters accepted by that service, and a list of methods provided. The parameters are
defined at the service level and are therefore valid for any method in that service. All of the
methods return XML-encoded representations; the return values summarized below reflect the
content.

13.3.1 AgentService
Definition: Agent – a therapeutic agent (drug, intervention therapy) used in a clinical trial

Parameters: agentNSCNumber, clinicalTrialProtocolId, comment, evsId, isCMAPAgent, name,
source, targetId, therapyId

Method Description
getAgents The set of Agents satisfying the search criteria
getClinicalTrialProtocols The ClinicalTrialProtocols for these Agents
getTargets The Targets associated with these Agents

13.3.2 AnomalyService
Definition: Anomaly – an irregularity in either the expression of a gene or its structure (i.e., a
mutation).

Parameters: anomalyDescription, contextCode, histopathologyId, organId, targetId

Method Description
getAnomalys The set of Anomalies satisfying the search criteria
getHistopathologys The Histopathologies associated with these Anomalies
getTargets The Targets associated with these Anomalies

13.3.3 ChromosomeService
Definition: Chromosome – an object representing a specific chromosome for a specific taxon;
provides access to all known genes contained in the chromosome and to the taxon.

Parameters: name

158

Method Description
getChromosomes The set of Chromosomes satisfying the search

criteria
getGenes The Genes associated with these Chromosomes

13.3.4 ClinicalTrialProtocolService
Definition: ClinicalTrialProtocol – the protocol associated with a clinical trial; organizes
administrative information about the trial such as Organization ID, participants, phase, etc., and
provides access to the administered Agents.

Parameters: agent, agentId, conceptId, ctepName, diseaseCategory, diseaseId, diseaseName,
documentNumber, imtCode, leadOrganizationId, leadOrganizationName, nihAdminCode,
pdqIdentifier, phase, piName, protocolAssociationId, title, treatmentFlag

Method Description
getClinicalTrialProtocols The set of ClinicalTrialProtocols satisfying the search

criteria
getAgents The Agents associated with these ClinicalTrialProtocols
getProtocolAssociations The ProtocolAssociations for these ClinicalTrialProtocols

13.3.5 CloneService
Definition: Clone – an object used to hold information pertaining to I.M.A.G.E. clones; provides
access to sequence information, associated trace files, and the clone’s library.

Parameters: geneId, name, sequenceId, snpId, verified

Method Description
getClones The set of Clones satisfying the search criteria
getSequences The Sequences associated with these Clones

13.3.6 CMAPOntologyService
Definition: an object providing entry to the CMAP gene ontology, which categorizes genes by
function; provides access to Gene objects corresponding to the ontological term, as well as to
ancestor and descendant terms in the ontology tree. Note: the CMAPOntologySearchCriteria
class inherits attributes from its parent class, OntologySearchCriteria.

Parameters: (direct) cMAPChildId, cMAPGeneId, cMAPName, cMAPParentId,
cMAPOntologyId; (inherited) diseaseId, geneId, histopathologyId, name, includeBoth,
includeParents, includeChildren, relationshipParentId, relationshipChildId, relationshipType

Method Description
getCMAPOntologys The set of CMAPOntology terms satisfying the search criteria
getChildren The descendant terms of these CMAPOntology terms
getGenes The Genes associated with these CMAPOntology terms
getParents The parent terms of these CMAPOntology terms

159

13.3.7 ConsensusSequenceService
Definition: ConsensusSequence – a specialization of the Sequence class; represents the
consensus of a set of contigs, which it also provides access to.

Parameters: consensusSequenceType, contigId, geneId, proteinId, refGeneId

Method Description
getConsensusSequences The set of ConsensusSequences satisfying the search criteria

13.3.8 ContigService
Definition: Contig – one of the set of overlapping sequence fragments used to assemble a
consensus sequence, which it also provides access to.

Parameters: sequenceId, name

Method Description
getContigs The set of Contigs satisfying the search criteria
getSequences The known Sequences for these Contigs

13.3.9 DiseaseRelationshipService
Definition: DiseaseRelationship – specifies a child or parent relationship between Disease
objects. Note: the DiseaseRelationshipSearchCriteria class inherits attributes from its parent
class RelationshipSearchCriteria.

Parameters: (inherited) relationshipChildId, relationshipParentId, relationshipType

Method Description
getDiseaseRelationships The set of DiseaseRelationships satisfying the search criteria
getDiseases The Diseases indicated in these DiseaseRelationships

13.3.10 DiseaseService
Definition: Disease – an object that specifies a disease name and ID; Disease objects also
provide access to: ontological relations to other diseases; clinical trial protocols treating the
disease; and specific histologies associated with instances of the disease. Note: the
DiseaseSearchCriteria class inherits attributes from its parent class, OntologySearchCriteria.

Parameters: (inherited) diseaseId, histopathologyId, geneId, includeBoth, includeChildren,
includeParents, name, relationshipChildId, relationshipParentId, relationshipType

Method Description
getDiseases The set of Diseases satisfying the search criteria
getChildRelationships The DiseaseRelationships to descendants of these Diseases
getHistopathologys The Histopathologies associated with these Diseases
getParentRelationships The DiseaseRelationships to parents of these Diseases

13.3.11 EstExperimentService
Definition: EstExperiment – an object that represents data from an expression experiment using
expressed sequence tags. Note: the EstExperimentSearchCriteria class inherits attributes from its
parent class, ExpressionExperimentSearchCriteria.

160

Parameters: (direct) contextId; (inherited) expressionFeatureId, gene, geneId, organ, proteinId,
taxonId, threshold, type

Method Description
getEstExperiments The set of ESTExperiments satisfying the search criteria

13.3.12 ExpressionFeatureService
Definition: ExpressionFeature – an object that is associated with a gene and provides access to
the list of organs where the gene is known to be expressed.

Parameters: geneId, expressionLevelDescId

Method Description
getExpressionFeatures The set of ExpressionFeatures satisfying the search criteria
getOrgans The set of Organs associated with these ExpressionFeatures

13.3.13 ExpressionMeasurementArrayService
Definition: ExpressionMeasurementArray – an array of ExpressionMeasurements.

Parameters: accessionNumber, expressionMeasurementId, name

Method Description
getExpressionMeasurementArrays ExpressionMeasurementArrays satisfying the search

criteria
getExpressionMeasurements ExpressionMeasurements contained in these

ExpressionMeasurementArrays

13.3.14 ExpressionMeasurementService
Definition: ExpressionMeasurement – an object that represents a structure capable of measuring
the absolute or relative amount of an expressed compound.

Parameters: accessionNumber, expressionMeasurementArrayId, geneId, name, sequenceId

Method Description
getExpressionMeasurements The ExpressionMeasurements satisfying the search

criteria
getExpressionMeasurementArrays The associated ExpressionMeasurementArrays
getGenes The Genes associated with these

ExpressionMeasurements
getSequences The associated Sequences

13.3.15 GeneAliasService
Definition: GeneAlias – an alternative name for a gene; provides descriptive information about
the gene (as it is known by this alias), as well as access to the Gene it refers to.

Parameters: description, geneId, type

Method Description
getGeneAliases The set of GeneAliases satisfying the search criteria

161

13.3.16 GeneHomologService
Definition: Defined only in relation to another Gene, the GeneHomolog in caBIO is the
functional equivalent of that gene in another taxon (i.e., its ortholog). The GeneHomolog object
is a specialization of the parent Gene object; in addition to all of the methods provided by the
gene interface, the homolog provides its percent of sequence similarity to the related gene of
interest.

Parameters: geneId

Method Description
getGeneHomologs The set of GeneHomologs satisfying the search criteria

13.3.17 GeneService
Definition: Gene – the effective portal to most of the genomic information provided by the
caBIO data services; organs, diseases, chromosomes, pathways, sequence data, and expression
experiments are among the many objects accessible via a gene.

Parameters: allPathwayId, bcId, chromosomeId, cloneName, cMAPOntologyId,
cytogenicLocation, expressedPathwayId, expressionMeasurementId, functionalPathway,
genBankAccessionNumber, GeneKeyword, geneNameKeyword, goOntologyHomoSapienId,
goOntologyId, goOntologyMouseId, keyword, mutatedGenePathwayId, organism,
overExpressedPathwayId, pathwayId, symbol, targetId, taxonId, tissueType,
underExpressedPathwayId, unigeneClusterId, uniqueIdentifier

Methods: Description
getGenes The set of Genes satisfying the search criteria
getGeneAliases GeneAliases for these Genes
getGeneHomologs GeneHomologs for these Genes
getGenomicSequences Sequences for these Genes
getGoOntologys GoOntology entries for these Genes
getMapLocations MapLocations for these Genes
getPathways Pathways for these Genes
getProteins Proteins expressed by these Genes
getReferenceSequences RefSeq Sequences for these Genes
getSequences Sequences for these Genes
getSNPs SNPs for these Genes

13.3.18 GoOntologyRelationshipService
Definition: GoOntologyRelationship – an object that specifies a child or parent relationship
between GoOntology objects. Note: the GoOntologyRelationshipSearchCriteria class inherits
attributes from its parent class, RelationshipSearchCriteria.

Parameters: (inherited) relationshipChildId, relationshipParentId, relationshipType

Method Description
getGoOntologyRelationships The GoOntologyRelationships satisfying the search criteria
getGoOntologys The GoOntology entries in these GoOntologyRelationships

162

13.3.19 GoOntologyService
Definition: GoOntology – an object that provides entry to a Gene object’s position in the Gene
Ontology Consortium’s controlled vocabularies, as recorded by LocusLink; provides access to
Gene objects corresponding to the ontological term, as well as to ancestor and descendant terms
in the ontology tree. Note: the GoOntologySearchCriteria class inherits attributes from its parent
class, OntologySearchCriteria.

Parameters: (direct) geneId; (inherited) diseaseId, geneId, histopathologyId, includeBoth,
includeParents, includeChildren, name, relationshipParentId, relationshipChildId,
relationshipType

Method Description
getGoOntologys The set of GoOntology entries satisfying the search criteria
getChildRelationships The child relationships associated with these GoOntology entries
getHomoSapienGenes The Homo Sapien Genes associated with these GoOntology entries
getMouseGenes The mouse Genes associated with these GoOntology entries
getParentRelationships The parent relationships associated with these GoOntology entries

13.3.20 HistopathologyService
Definition: Histopathology – an object that represents anatomical changes in a diseased tissue
sample associated with an expression experiment; also captures the relationship between organ
and disease.

Parameters: diseaseId, expressionExperimentId, name, organId

Method Description
getHistopathologys The set of Histopathology items satisfying the search criteria
getAnomalys The Anomalies associated with these Histopathologies
getDiseases The Diseases associated with these Histopathologies
get Organs The Organs associated with these Histopathologies

13.3.21 LibraryService
Definition: Library – an object that provides access to CGAP library information about the tissue
sample and its method of preparation, the library protocol that was used, the clones contained in
the library, and the sequence information derived from the library.

Parameters: geneId, libraryGroup, libraryName, libraryProtocol, organism, sortOrder,
tissueHistology, tissueName, tissuePreparation, tissueType

Method Description
getLibrarys The set of Library objects satisfying the search criteria
getProtocols The Protocols for these Libraries
getTissues The Tissues associated with these Libraries

13.3.22 MapLocationService
Definition: MapLocation – an object that represents the physical map location of a gene.

Parameters: type, location, geneId

163

Method Description
getMapLocations The set of MapLocations satisfying the search criteria

13.3.23 OrganRelationshipService
Definition: OrganRelationship – an object that specifies a child or parent relationship between
Organ objects. Note: the GoOrganRelationshipSearchCriteria class inherits attributes from its
parent class, RelationshipSearchCriteria.

Parameters: (inherited) proteinId, relationshipChildId, relationshipParentId, relationshipType

Method Description
getOrganRelationships The set of OrganRelationships satisfying the search criteria
getOrgans The Organs associated with these OrganRelationships

13.3.24 OrganService
Definition: Organ – a representation of an organ whose name occurs in a controlled vocabulary;
provides access to any Histopathology objects for the organ, and, because it is “ontolog-able,”
provides access to its ancestral and descendant terms in the vocabulary. Note: the
OrganSearchCriteria class inherits attributes from its parent class, OntologySearchCriteria.

Parameters: (direct) anomaly_id, expressionFeatureId, histopathologyId; (inherited) diseaseId,
geneId, includeBoth, includeChildren, includeParents, name, relationshipChildId,
relationshipParentId, relationshipType

Method Description
getOrgans The Organs satisfying the search criteria
getChildRelationships The relationships of these organs to their descendants in the EVS

Organ taxonomy
getHistopathologys The Histopatholgies associated with these organs
getParentRelationships The relationships of these organs to their parent organs in the EVS

Organ taxonomy

13.3.25 PathwayService
Definition: Pathway – an object that represents a molecular/cellular pathway compiled by
BioCarta. Pathways are associated with specific Taxa, and contain multiple Genes, which may
be Targets for treatment.

Parameters: bioProcessId, context, displayValue, geneId, name, pathwayDiagram, taxonId

Method Description
getPathways The set of Pathway objects satisfying the search criteria
getGenes The Genes associated with these Pathways

13.3.26 ProteinHomologService
Definition: Defined only in relation to another Protein of interest, the ProteinHomolog in caBIO
is the functional equivalent of that protein in another taxon (i.e., its ortholog). The
ProteinHomolog is a specialization of the parent Protein object; in addition to the methods

164

http://www.biocarta.com/

provided by the protein interface, the Homolog object provides the percent of sequence
similarity of the homolog to the related protein of interest.

Parameters: proteinId

Method Description
getProteinHomologs The set of ProteinHomologs satisfying the search criteria

13.3.27 ProteinService
Definition: Protein – an object representation of a protein; provides access to the encoding gene
via its GenBank ID, the taxon in which this instance of the protein occurs, and references to
homologous proteins in other species.

Parameters: accessionNumber, description, geneId

Method Description
getProteins The set of Proteins satisfying the search criteria
getProteinHomologs The ProteinHomologs that are orthologs of these Proteins

13.3.28 ProtocolAssociationService
Definition: ProtocolAssociation – an object that associates ClinicalTrialProtocols to Diseases.

Parameters: clinicalTrialProtocolId, protocolId

Method Description
getProtocolAssociations The set of ProtocolAssociations satisfying the search criteria
getClinicalTrialProtocals The ClinicalTrialProtocols associated with these

ProtocolAssociations

13.3.29 ProtocolService
Definition: Protocol – an object used to represent the protocol used in assembling a clone library.

Parameters: name

Method Description
getProtocols The set of Protocols satisfying the search criteria

13.3.30 ReadSequenceService
Definition: ReadSequence – an object representing the output of a TraceFile, an ASCII
representation of the nucleotide sequence; a read sequence is created by running PHRED.

Parameters: cloneId, geneId, proteinId, readSequenceId, refGeneId, traceFileId

Method Description
getReadSequences The set of ReadSequences satisfying the search criteria

13.3.31 SageExperimentService
Definition: SageExperiment – a subclass of the ExpressionExperiment class, used to represent
serial analysis of gene expression (SAGE) data. Note: the SageExperimentSearchCriteria class
inherits attributes from its parent class ExpressionExperimentSearchCriteria.

165

http://www.ncbi.nlm.nih.gov/GenBank/

Parameters: (direct) contextId; (inherited) expressionFeatureId, gene, geneId, organ, proteinId,
taxonId, threshold, type

Method Description
getSageExperiments The set of SAGEExperiments satisfying the search criteria

13.3.32 SequenceService
Definition: Sequence – an object representing a gene sequence and providing access to the clones
from which it was derived, the ASCII representation of the residues it contains, and the sequence
ID.

Parameters: accessionNumber, cloneId, contigId, expressionMeasurementId, geneId, isRefSeq,
refGeneId, returnDna, sequenceType

Method Description
getSequences The set of Sequences satisfying the search criteria

13.3.33 SNPService
Definition: SNP – an object that represents a Single Nucleotide Polymorphism; provides access
to the clones and the trace files from which it was identified, the two most common substitutions
at that position, the offset of the SNP in the parent sequence, and a confidence score.

Parameters: geneId

Method Description
getSNPs The set of SNPs satisfying the search criteria
getClones The Clones of these SNPs
getTraceFiles The TraceFiles of these SNPs

13.3.34 TargetService
Definition: Target – an object that represents a gene thought to be at the root of a disease
etiology and which is targeted for therapeutic intervention in a clinical trial.

Parameters: agentId, anomalyDescription, anomalyId, cancerType, conceptId, geneId

Method Description
getTargets The set of Targets satisfying the search criteria
getAgents The Agents associated with these Targets
getAnomalys The Anomalies associated with these Targets
getGenes The Genes associated with these Targets

13.3.35 TaxonService
Definition: Taxon – an object representing the various names (scientific, common, abbreviated,
etc.) for a species associated with a specific Gene, Chromosome, Pathway, Protein, or Tissue.

Parameters: abbreviation, animalModelId, chromosomeId, id, isPreferred, name,
regulatoryElementId, scientificName, strainId, xenograftId

Method Description
getTaxons The set of Taxa satisfying the search criteria

166

getGenes The Genes associated with these Taxa

13.3.36 TissueService
Definition: Tissue – defined by any group of similar cells united to perform a specific function.

Parameters: libraryId

Method Description
getTissues The set of Tissues satisfying the search criteria

13.3.37 TraceFileService
Definition: TraceFile – an object that represents the recorded trace file used to identify a SNP,
based on the observed intensities for the four possible bases at each position in the sequence.

Parameters: cloneId, name, snpId

Method Desciption
getTraceFiles The set of TraceFiles satisfying the search criteria
getReadSequences The ReadSequences of these TraceFiles

13.3.38 Map of Web Services to Methods
This section concludes with a quick reference chart that maps caBIO web services to

methods.

167

168

Table 13.3-1 Mapping web services to methods

 Ag
en

tS
er

vi
ce

An
om

al
yS

er
vi

ce

Ch
ro

m
os

om
eS

er
vi

ce

Cl
in

ic
al

Tr
ia

lP
ro

to
co

lS
er

vi
ce

Cl
on

eS
er

vi
ce

CM
AP

O
nt

ol
og

yS
er

vi
ce

Co
ns

en
su

sS
eq

ue
nc

eS
er

vi
ce

Co
nt

ig
Se

rv
ic

e

D
is

ea
se

Re
la

tio
ns

hi
pS

er
vi

ce

D
is

ea
se

Se
rv

ic
e

ES
TE

xp
er

im
en

tS
er

vi
ce

Ex
pr

es
si

on
Fe

at
ur

eS
er

vi
ce

Ex
pr

es
si

on
M

ea
su

re
m

en
tA

rr
ay

Se
rv

ic
e

getAgents x x
getAnomalys x
getBioCartIds
getChildren x
getChildRelationships x
getChromosomes x
getClinicalTrialProtocols x x
getClones x
getCMAPOntologys x
getConsensusSequences x
getContigs x
getDiseaseRelationships x
getDiseases x x
getEstExperiments x
getExpressionExperiments
getExpressionFeatures x
getExpressionMeasurementArrays x
getExpressionMeasurements x
getGeneAliases
getGeneHomologs
getGenes x x
getGenomicSequences
getGoOntologys
getHistopathologys x x
getGoOntologyRelationships
getHomoSapienGenes
getLibrarys
getMapLocations
getMouseGenes
getOrgans x
getOrganRelationships
getParents x
getPathways
getParentRelationships x
getProteins
getProteinHomologs
getProtocolAssociations x
getProtocols
getReadSequences
getReferenceSequences
getSageExperiments
getSequences x x
getSNPs
getTargets x x
getTaxons
getTissues
getTraceFiles

169

Ex
pr

es
si

on
M

ea
su

re
m

en
tS

er
vi

ce

G
en

eA
lia

sS
er

vi
ce

G
en

eH
om

ol
og

Se
rv

ic
e

G
en

eS
er

vi
ce

G
oO

nt
ol

og
yR

el
at

io
ns

hi
pS

er
vi

ce

G
oO

nt
ol

og
yS

er
vi

ce

Li
br

ar
yS

er
vi

ce

M
ap

Lo
ca

tio
nS

er
vi

ce

H
is

to
pa

th
ol

og
yS

er
vi

ce

O
rg

an
Re

la
tio

ns
hi

pS
er

vi
ce

O
rg

an
Se

rv
ic

e

Pa
th

w
ay

Se
rv

ic
e

Pr
ot

ei
nH

om
ol

og
Se

rv
ic

e

getAgents
getAnomalys x
getBioCartIds
getChildren
getChildRelationships x x
getChromosomes
getClinicalTrialProtocols
getClones

 getCMAPOntologys
getConsensusSequences
getContigs
getDiseaseRelationships
getDiseases x
getEstExperiments
getExpressionExperiments
getExpressionFeatures
getExpressionMeasurementArrays x
getExpressionMeasurements x
getGeneAliases x
getGeneHomologs x x

x

getGenes x x x x
getGenomicSequences x
getGoOntologys x x x
getGoOntologyRelationships x
getHistopathologys x x
getHomoSapienGenes x
getLibrarys x
getMapLocations x x
getMouseGenes x
getOrgans x x x
getOrganRelationships x
getParents
getPathways x x
getParentRelationships x X
getProteins x
getProteinHomologs x
getProtocolAssociations
getProtocols x
getReadSequences
getReferenceSequences x
getSageExperiments
getSequences x x
getSNPs x
getTargets
getTaxons
getTissues x
getTraceFiles

http://www.w3.org/Protocols/
http://www.w3.org/Style/XSL/
http://cabio.nci.nih.gov/CORE/GetXML?operation=Gene&Symbol=PTEN
http://cabio.nci.nih.gov/servlet/GetXML?operation=Gene&Symbol=PTEN
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caBIO/bean/package-summary.html
http://cabio.nci.nih.gov/CORE/GetXML?operation=Gene&Symbol=PTEN
http://cabio.nci.nih.gov/servlet/GetXML?operation=Target&AgentId=10412
http://cabio.nci.nih.gov/servlet/GetXML?query=Target&crit_agents_id=10412
http://cabio.nci.nih.gov/servlet/GetXML?operation=Taxon&scientificName=homo+sapiens
http://cabio.nci.nih.gov/servlet/GetXML?query=Chromosome&crit_genes_name=BRCA1&crit_taxon_ scientificName=homo+sapiens
http://cabio.nci.nih.gov/servlet/GetXML?query=Gene&crit_name=BRCA1&crit_taxonId=5
http://cabio.nci.nih.gov/servlet/GetXML?query=Gene&crit_name=BRCA1&crit_taxon_id=5
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/index.html
http://cabio.nci.nih.gov/servlet/ApplyXSLT?mURL=http://cabio.nci.nih.gov/servlet/GetXML?$operation=Gene@Symbol=pten&xslURL=http://cabio.nci.nih.gov/servlet//xsl/cabio-beans.xsl
http://cabio.nci.nih.gov/servlet/GetXML?operation=Gene&Symbol=PTEN

Pr
ot

ei
nS

er
vi

ce

Pr
ot

oc
ol

As
so

ci
at

io
nS

er
vi

ce

Pr
ot

oc
ol

Se
rv

ic
e

Re
ad

Se
qu

en
ce

Se
rv

ic
e

Sa
ge

Ex
pe

rim
en

tS
er

vi
ce

Se
qu

en
ce

Se
rv

ic
e

SN
PS

er
vi

ce

Ta
rg

et
Se

rv
ic

e

Ta
xo

nS
er

vi
ce

Ti
ss

ue
Se

rv
ic

e

Tr
ac

eF
ile

Se
rv

ic
e

getAgents x
getAnomalys x
getBioCartIds
getChildren
getChildRelationships
getChromosomes
getClinicalTrialProtocols x
getClones x
getCMAPOntologys
getConsensusSequences
getContigs
getDiseaseRelationships
getDiseases
getEstExperiments
getExpressionExperiments
getExpressionFeatures
getExpressionMeasurementArrays
getExpressionMeasurements
getGeneAliases
getGeneHomologs
getGenes x x
getGenomicSequences
getGoOntologys
getGoOntologyRelationships
getHistopathologies
getHomoSapienGenes
getLibrarys
getMapLocations
getMouseGenes
getOrgans
getOrganRelationships
getParents
getPathways
getParentRelationships
getProteins X
getProteinHomologs X
getProtocolAssociations x
getProtocols x
getReadSequences x x
getReferenceSequences
getSageExperiments x
getSequences X
getSNPs x
getTargets x
getTaxons x
getTissues x
getTraceFiles x x

170

13.4 The EVS SOAP Services Catalog
The EVS search package contains just two web services: DescLogicConceptService and

MetathesaurusConceptService. Both of the assoicated search criteria objects for these services
descend from the ConceptSearchCriteria object. Thus the web service classes inherit additional
“settable” attributes from the parent search criteria object. Each service is invoked using the
Uniform Resource Identifier (URI) along with a list of tag/value pairs. The caCORE web
services use a simple pattern for URI addressing:

urn:nci-[DomainObjectName]–service.

For example, to call the DescLogicConceptService, the client would use:

urn:nci-DescLogicConcept–service

All of the methods provided by these two services require a searchTerm parameter. In
addition, the DescLogicConceptService’s search method requires a vocabularyName and accepts
an optional limit parameter. The MetathesaurusConceptService’s search method also accepts an
optional limit parameter.

13.4.1 DescLogicConceptService
Definition: A description logic concept represented in the NCI Thesaurus.

Parameters: limit (optional), searchTerm (required), vocabularyName (required)

Method Description
search The names of concepts that matched the search term
getAllSubConceptNames The names of subconcepts whose superconcepts’ names matched the

search term.
getAllSubConceptCodes The conceptCodes for subconcepts whose superconcepts’ names

matched the search term

13.4.2 MetathesaurusConceptService
Definition: A concept in the NCI Metathesaurus.

Parameters: limit (optional), searchTerm (required)

Method Description
search The names of concepts that matched the search term

13.5 The caDSR SOAP Services Catalog
The caDSR module also contains a webservices package listing the available SOAP services.

Each service is invoked using the URI along with a list of tag/value pairs. The web services use a
simple pattern for URI addressing:

urn:nci-[DomainObjectName]–service.

For example, to call the CaseReportFormService, the client would use:

urn:nci-CaseReportForm–service

171

13.5.1 CaseReportFormService
Definition: A questionnaire that is a collection of data elements used to document patient
information stipulated in a protocol.

Parameters: displayName; (inherited) beginDate, changeNote, dateCreated, dateModified,
deletedIndicator, endDate, latestVersionIndicator, longName, origin, preferredDefinition,
preferredName, publicId, unresolvedIssue, version, workflowStatusDescription,
workflowStatusName

Method Description
GetCaseReportForms The set of CRFs satisfying the search criteria
getClassificationSchemeItems The ClassificationSchemeItems for these CRFs
GetContexts The set of Contexts in which these CRFs occur
GetDesignations The set of Designations for these CRFs
GetModules The set of Modules contained in these CRFs
GetProtocolFormsSets The set of ProtocolFormsSet in which each CRF occurs
GetReferenceDocuments The set of ReferenceDocuments associated with these CRFs

13.5.2 ClassificationSchemeItemService
Definition: An item or category in a classification scheme used to classify other components; for
example, a node in a taxonomy.

Parameters: comments, dateCreated, dateModified, description, name, type

Method Description
getClassificationSchemeItems The ClassificationSchemeItems (CSIs) satisfying the

search criteria
GetCaseReportForms The CRFs for these CSIs
GetClassificationSchemes The ClassificationSchemes in which these CSIs occur
getClassSchemeClassSchemeItems The associated ClassSchemeClassSchemeItems
GetConceptualDomains The ConceptualDomains in which these CSIs occur
GetDataElementConcepts The DataElementConcepts associated with these CSIs
GetDataElements The DataElements associated with these CSIs
getEnumeratedValueDomains The associated EumeratedValueDomains
getModules The Modules associated with these CSIs
getNonEnumeratedValueDomains The associated NonEumeratedValueDomains
getObjectClasses The ObjectClasses associated with these CSIs
getPropertys The Properties associated with these CSIs
getProtocolFormsSets The ProtocolFormsSets associated with these CSIs
getProtocolFormsTemplates The ProtocolFormsTemplates associated with these CSIs
getQuestions The Questions associated with these CSIs
getRepresentations The Representations associated with these CSIs
getValidValues The ValidValues associated with the CSIs

13.5.3 ClassificationSchemeService
Definition: Any set of organizing principles or dimensions along which data can be organized. A
ClassificationScheme may be a simple collection of keywords or a complex ontology.

172

Parameters: labelTypeFlag, type; (inherited) beginDate, changeNote, dateCreated,
dateModified, deletedIndicator, endDate, latestVersionIndicator, longName, origin,
preferredDefinition, preferredName, publicId, unresolvedIssue, version,
workflowStatusDescription, workflowStatusName

Method Description
getClassificationSchemes The ClassificationSchemes satisfying the search criteria
getClassificationSchemeItems The CSIs occurring in these ClassificationSchemes
getClassSchemeClassSchemeItems The associated ClassSchemeClassSchemeItems
getContexts The Contexts in which these ClassificationSchemes occur
getDesignations The Designations for these ClassificationSchemes
getReferenceDocuments The associated ReferenceDocuments

13.5.4 ClassSchemeClassSchemeItemService
Definition: A component used to associate a set of ClassificationSchemeItems with a particular
ClassificationScheme, and to store details of that association such as the display order of the
items within that scheme.

Parameters: dateCreated, dateModified, displayOrder, label

Method Description
getClassSchemeClassSchemeItems The ClassSchemeClassSchemeItems (CSCSIs)

satisfying the search criteria
getChildClassSchemeClassSchemeItems The descendants of these CSCSIs
getClassificationSchemes The associated ClassificationSchemes
getClassificationSchemeItems The CSIs associated with these CSCSIs
getParentClassSchemeClassSchemeItems The ancestors of these CSCSIs

13.5.5 ConceptualDomainService
Definition: The set of all possible ValidValue meanings of a DataElementConcept expressed
without representation.

Parameters: dimensionality; (inherited) beginDate, changeNote, dateCreated, dateModified,
deletedIndicator, endDate, latestVersionIndicator, longName, origin, preferredDefinition,
preferredName, publicId, unresolvedIssue, version, workflowStatusDescription,
workflowStatusName

Method Description
getConceptualDomains The ConceptualDomains satisfying the search criteria
getClassificationSchemeItems The associated ClassificationSchemeItems
getContexts The contexts in which these ConceptualDomains are used
getDataElementConcepts The associated DataElementConcepts
getDesignations The Designations for these ConceptualDomains
getEnumeratedValueDomains The associated EumeratedValueDomains
getNonEnumeratedValueDomains The associated NonEumeratedValueDomain
getReferenceDocuments The associated ReferenceDocuments
getValueMeanings The associated ValueMeanings

173

13.5.6 ContextService
Definition: A designation or description of the application environment or discipline in which a
name is applied or from which it originates.

Parameters: dateCreated, dateModified, description, designationId, languageName, name,
version

Method Description
getContext The Contexts satisfying the search criteria
getCaseReportForms The CRFs occurring in these Contexts
getClassificationSchemes The ClassificationSchemes occurring in these Contexts
getConceptualDomains The associated ConceptualDomains
getDataElementConcepts The associated DataElementConcepts
getDataElements The associated DataElements
getDesignations The associated Designations
getEnumeratedValueDomains The associated EumeratedValueDomains
getModules The associated Modules
getNonEnumeratedValueDomains The associated NonEumeratedValueDomains
getObjectClasses The associated ObjectClasses
getPropertys The associated Properties
getProtocolFormsSets The associated ProtocolFormsSets
getProtocolFormsTemplates The associated ProtocolFormsTemplates
getQuestions The associated Questions
getRepresentations The associated Representations
getValidValues The associated ValidValues

13.5.7 DataElementConceptRelationshipsService
Definition: A description of the affiliation between two occurrences of DataElementConcepts.

Parameters: dateCreated, dateModified, description, name

Method Description
getDataElementConceptRelationships The DataElementConceptRelationships satisfying the

criteria
getChildDataElementConcepts The Child DECs encoded by these relationships
getParentDataElementConcepts The Parent DECs encoded by these relationships

13.5.8 DataElementConceptService
Definition: A concept that can be represented in the form of a DataElement and described
independent of any particular representation.

Parameters: (inherited) beginDate, changeNote, dateCreated, dateModified, deletedIndicator,
endDate, latestVersionIndicator, longName, origin, preferredDefinition, preferredName,
publicId, unresolvedIssue, version, workflowStatusDescription, workflowStatusName

Method Description
getDataElementConcepts The DataElementConcepts (DECs) satisfying the

search criteria

174

getChildDataElementConceptRelationships The relations to child DECs
getClassificationSchemeItems The associated CSIs
getConceptualDomains The associated ConceptualDomains
getContexts The Contexts in which these DECs occur
getDataElements The associated DataElements
getDesignations The associated Designations
getObjectClasses The associated ObjectClasses
getObjectClassQualifiers The Qualifiers for these associated

ObjectClasses
getParentDataElementConceptRelationships The relations to parent DECs
getPropertyQualifiers The Qualifiers for the any associated Properties
getPropertys The associated Properties
getReferenceDocuments The associated ReferenceDocuments

13.5.9 DataElementService
Definition: A unit of data for which the definition, identification, representation, and permissible
values are specified by means of a set of attributes.

Parameters: (inherited) beginDate, changeNote, dateCreated, dateModified, deletedIndicator,
endDate, latestVersionIndicator, longName, origin, preferredDefinition, preferredName,
publicId, unresolvedIssue, version, workflowStatusDescription, workflowStatusName

Method Description
getDataElements The DataElements satisfying the search criteria
getClassificationSchemeItems The associated CSIs
getContexts The Contexts in which these elements occur
getDataElementConcepts The associated DataElementConcepts
getDesignations The associated Designations for the data

elements
getEnumeratedValueDomains The associated EumeratedValueDomains
getNonEnumeratedValueDomains The associated NonEumeratedValueDomains
getQuestions The Questions associated with elements on CRFs
getReferenceDocuments The associated ReferenceDocuments

13.5.10 DesignationService
Definition: A name by which an Administered Component is known in a specific Context. Also,
a placeholder to track the usage of Administered Components by different Contexts.

Parameters: dateCreated, dateModified, languageName, name, type

Method Description
getDesignations The Designations satisfying the search criteria
getCaseReportForms The CRFs that use these designations
getClassificationSchemes The ClassificationSchemes using these designations
getConceptualDomains The associated ConceptualDomains
getContexts The Contexts in which these designations are used
getDataElementConcepts The associated DataElementConcepts
getDataElements The associated DataElements

175

getEnumeratedValueDomains The associated EumeratedValueDomains
getModules The associated Modules
getNonEnumeratedValueDomains The associated NonEumeratedValueDomains
getObjectClasses The associated ObjectClasses
getPropertys The associated Properties
getProtocolFormsSets The ProtocolFormsSets that use these designations.
getProtocolFormsTemplates The associated ProtocolFormsTemplates
getQuestions The Questions included in the templates
getRepresentations The associated Representations
getValidValues The associated ValidValues

13.5.11 EnumeratedValueDomainService
Definition: A ValueDomain expressed as a list of all PermissibleValues.

Parameters: (inherited) characterSetName, dataTypeName, decimalPlace, formatName,
highValueNumber, lowValueNumber, maximumLengthNumber, minimumLengthNumber,
uomNamebeginDate, changeNote, dateCreated, dateModified, deletedIndicator, endDate,
latestVersionIndicator, longName, origin, preferredDefinition, preferredName, publicId,
unresolvedIssue, version, workflowStatusDescription, workflowStatusName

Method Description
getEnumeratedValueDomains The EumeratedValueDomains satisfying the criteria
getClassificationSchemeItems The associated ClassificationSchemeItems
getConceptualDomains The associated ConceptualDomains
getContexts The associated Contexts
getDataElements The associated DataElements
getDesignations The associated Designations
getQualifiers The Qualifiers that modify the values
getReferenceDocuments The associated Modules
getRepresentations The associated Representations
getValueDomainPermissibleValues The associated PermissibleValues

13.5.12 ModuleService
Definition: A collection of DataElements logically grouped on a CaseReportForm.

Parameters: displayOrder; (inherited) beginDate, changeNote, dateCreated, dateModified,
deletedIndicator, endDate, latestVersionIndicator, longName, origin, preferredDefinition,
preferredName, publicId, unresolvedIssue, version, workflowStatusDescription,
workflowStatusName

Method Description
getModules The Modules satisfying the search criteria
getCaseReportForms The CRFs that include these modules
getClassificationSchemeItems The associated CSIs
getContexts The Contexts in which these modules are used
getDesignations The associated Designations
getProtocolFormsTemplates The ProtocolFormsTemplates that include these modules
getQuestions The Questions included in these modules

176

getReferenceDocuments The associated ReferenceDocuments

13.5.13 NonenumeratedValueDomainService
Definition: A ValueDomain expressed by a generative formula or range of allowed values.

Parameters: (inherited) characterSetName, dataTypeName, decimalPlace, formatName,
highValueNumber, lowValueNumber, maximumLengthNumber, minimumLengthNumber,
uomNamebeginDate, changeNote, dateCreated, dateModified, deletedIndicator, endDate,
latestVersionIndicator, longName, origin, preferredDefinition, preferredName, publicId,
unresolvedIssue, version, workflowStatusDescription, workflowStatusName

Method Description
getNonEnumeratedValueDomains The NonEumeratedValueDomains satisfying the criteria
getClassificationSchemeItems The associated ClassificationSchemeItems

getRepresentations

getConceptualDomains The associated ConceptualDomains
getContexts The associated Contexts
getDataElements The associated DataElements
getDesignations The associated Designations
getQualifiers The Qualifiers that modify the possible values
getReferenceDocuments The associated ReferenceDocuments

The associated Representations

13.5.14 ObjectClassService
Definition: A set of ideas, abstractions, or things in the real world that can be identified with
explicit boundaries and meaning and whose properties and behavior follow the same rules.

Parameters: definitionSource; (inherited) beginDate, changeNote, dateCreated, dateModified,
deletedIndicator, endDate, latestVersionIndicator, longName, origin, preferredDefinition,
preferredName, publicId, unresolvedIssue, version, workflowStatusDescription,
workflowStatusName

Method Description
getObjectClasses The ObjectClasses satisfying the search criteria
getClassificationSchemeItems The associated ClassificationSchemeItems
getContexts The associated Contexts
getDataElementConcepts The associated DECs
getDesignations The associated Designations
getReferenceDocuments The associated ReferenceDocuments

13.5.15 PermissibleValueService
Definition: The exact names, codes, and text that can be stored in a data field.

Parameters: beginDate, dateCreated, dateModified, endDate, highValueNumber,
lowValueNumber, value

Method Description
getPermissibleValues The PermissibleValues satisfying the search criteria
getValueDomainPermissibleValues The associated ValueDomainPermissibleValues

177

getValueMeanings The associated ValueMeanings

13.5.16 PropertyService
Definition: A characteristic common to all members of an ObjectClass.

Parameters: definitionSource; (inherited) beginDate, changeNote, dateCreated, dateModified,
deletedIndicator, endDate, latestVersionIndicator, longName, origin, preferredDefinition,
preferredName, publicId, unresolvedIssue, version, workflowStatusDescription,
workflowStatusName

Method Description
getPropertys The Properties satisfying the search criteria
getClassificationSchemeItems The associated ClassificationSchemeItems
getContexts The associated Contexts
getDataElementConcepts The associated DECs
getDesignations The associated Designations
getReferenceDocuments The associated ReferenceDocuments

13.5.17 ProtocolFormsSetService
Definition: A specific clinical trial protocol document and its collection of associated CRFs.

Parameters: approvedBy, approvedDate, changeNumber, changeType, leadOrganizationName,
phase, protocolId, reviewedBy, reviewedDate, type; (inherited) beginDate, changeNote,
dateCreated, dateModified, deletedIndicator, endDate, latestVersionIndicator, longName, origin,
preferredDefinition, preferredName, publicId, unresolvedIssue, version,
workflowStatusDescription, workflowStatusName

Method Description
getProtocolFormsSets The ProtocolFormsSets satisfying the search criteria
getCaseReportForms
getClassificationSchemeItems
getContexts
getDesignations
getReferenceDocuments

The CRFs included in the ProtocolFormsSets
The associated ClassificationSchemeItems
The associated Contexts
The associated Designations
The associated ReferenceDocuments

13.5.18 ProtocolFormsTemplateService
Definition: A collection of components (modules, questions) to be included in a CRF.

Parameters: (inherited) beginDate, changeNote, dateCreated, dateModified, deletedIndicator,
endDate, latestVersionIndicator, longName, origin, preferredDefinition, preferredName,
publicId, unresolvedIssue, version, workflowStatusDescription, workflowStatusName

Method Description
getProtocolFormsTemplates The ProtocolFormsTemplates satisfying the search

criteria
getClassificationSchemeItems The associated ClassificationSchemeItems
getContexts The associated Contexts
getDesignations The associated Designations

178

getModules The Modules included in these ProtocolFormsTemplates
getReferenceDocuments The associated ReferenceDocuments

13.5.19 QualifierService
Definition: A term that helps define and render a concept unique.

Parameters: comments, dateCreated, dateModified, description, name

Method Description
getQualifiers The Qualifiers satisfying the search criteria
getEnumeratedValueDomains The associated EumeratedValueDomains
getNonEnumeratedValueDomains The associated NonEumeratedValueDomains
getDECObjectClassDataElementConcepts The DECObjectClassDataElementConcepts

associated.with these Qualifiers
getDECPropertyDataElementConcepts The DECPropertyDataElementConcepts

associated. with these Qualifiers

13.5.20 QuestionService
Definition: The actual text of the DataElement as specified on a CaseReportForm of a Protocol.

Parameters: displayOrder; (inherited) beginDate, changeNote, dateCreated, dateModified,
deletedIndicator, endDate, latestVersionIndicator, longName, origin, preferredDefinition,
preferredName, publicId, unresolvedIssue, version, workflowStatusDescription,
workflowStatusName

Method Description
getQuestions The Questions satisfying the search criteria
getClassificationSchemeItems The associated ClassificationSchemeItems
getContexts The associated Contexts
getDataElements The associated DataElements on CRFs
getDesignations The associated Designations
getModules The Modules that include these Questions
getReferenceDocuments The associated ReferenceDocuments
getValidValues The ValidValues for these Questions

13.5.21 ReferenceDocumentService
Definition: A place to document additional information about AdministeredComponents.

Parameters: dateCreated, dateModified, displayOrder, docText, languageName, name,
organizationId, rdtlName, type, url

Method Description
getReferenceDocuments The ReferenceDocuments satisfying the search criteria
getCaseReportForms The CRFs that refer to these ReferenceDocuments
getClassificationSchemes The associated ClassificationSchemes
getConceptualDomains The associated ConceptualDomains
getDataElementConcepts The associated DataElementConcepts
getDataElements The associated DataElements

179

getEnumeratedValueDomains The associated EumeratedValueDomains
getModules The associated Modules
getNonEnumeratedValueDomains The associated NonEumeratedValueDomains
getObjectClasses The associated ObjectClasses
getPropertys The associated Propertys
getProtocolFormsSets The associated ProtocolFormsSets
getProtocolFormsTemplates The associated ProtocolFormsTemplates
getQuestions The associated Questions
getRepresentations The associated Representations
getValidValues The associated ValidValues

13.5.22 RepresentationService
Definition: Mechanism by which the functional and/or presentational category of an item maybe
conveyed to a user.

Parameters: definitionSource; (inherited) beginDate, changeNote, dateCreated, dateModified,
deletedIndicator, endDate, latestVersionIndicator, longName, origin, preferredDefinition,
preferredName, publicId, unresolvedIssue, version, workflowStatusDescription,
workflowStatusName

Method Description
getRepresentations The Representations satisfying the search criteria
getClassificationSchemeItems The associated ClassificationSchemeItems
getContexts The associated Contexts
getDesignations The associated Designations
getEnumeratedValueDomains The associated EnumeratedValueDomains
getNonEnumeratedValueDomains The associated NonEnumeratedValueDomains
getReferenceDocuments The associated ReferenceDocuments

13.5.23 ValidValueService
Definition: The allowable values for a given DataElement (Question) on a CaseReportForm

Parameters: displayOrder; (inherited) beginDate, changeNote, dateCreated, dateModified,
deletedIndicator, endDate, latestVersionIndicator, longName, origin, preferredDefinition,
preferredName, publicId, unresolvedIssue, version, workflowStatusDescription,
workflowStatusName

Method Description
getValidValues The ValidValues satisfying the search criteria
getClassificationSchemeItems The associated ClassificationSchemeItems
getContexts The associated Contexts
getDesignations The associated Designations
getQuestions The Questions satisfied by these ValidValues
getReferenceDocuments The associated ReferenceDocuments
getValueDomainPermissibleValues The associated ValueDomainPermissibleValues

180

13.5.24 ValueDomainPermissibleValueService
Definition: An object that stores the many to many relationships between ValueDomains and
PermissibleValues.

Parameters: dateCreated, dateModified

Method Description
getValueDomainPermissibleValues The ValueDomainPermissibleValues satisfying the

criteria
getEnumeratedValueDomains The associated EnumeratedValueDomains
getPermissibleValues The associated PermissibleValues
getValidValues The associated ValidValues

13.5.25 ValueMeaningService
Definition: The significance associated with an allowable/permissible value.

Parameters: beginDate, comments, dateCreated, dateModified, description, endDate,
shortMeaning

Method Description
getValidValues The ValueMeanings satisfying the search criteria
getConceptualDomains The associated ConceptualDomains
getPermissibleValues The associated PermissibleValues

13.6 The caMOD Soap Services Catalog
13.6.1 AnimalModelService
Definition: A strain of genetically modified animals (rat or mouse) used to study the molecular
etiology of various types of cancer.

Parameters: agentId, availabilityId, diseaseId, experimentDescription, modelDescriptor,
partyRoleId, phenotypeId, taxonId

Method Description
getAnimalModels The set of AnimalModels satisfying the search criteria
getAvailability The Availability information for these AnimalModels
getCarcinogenicInterventions The CarcinogenicInterventions applied to these

AnimalModels
getCellLines The CellLines associated with these AnimalModels
getGenomicSegments The GenomicSegments extracted from the AnimalModels
getHistopathologies The Histopathologies taken from these AnimalModels
getImages The Images associated with these AnimalModels
getInducedMutations The InducedMutations on these AnimalModels
getMicroArrayData The MicroarrayData associated with the AnimalModels
getPhenotypes The Phenotypes of these AnimalModels
getPrincipalInvestigator The PrincipalInvestigators for these AnimalModels
getPublications The Publications associated with these AnimalModels
getSpecies The Species of these AnimalModels

181

getSubmitter The Submitters of the data for these AnimalModels
getTargetedModifications The TargetedModifications in these AnimalModels
getTherapies The Therapies associated with these AnimalModels
getTransgenes The Transgenes used in these AnimalModels
getXenografts The Xenografts applied in these AnimalModels

13.6.2 AvailabilityService
Definition: The availability status of a developed strain from the MMHCC, from the Jackson
Laboratory, or directly from the principal investigator.

Parameters: animalModelId, enteredDate, modifiedDate, releaseDate, visibleTo

Method Description
getAvailability The Availability objects satisfying the search criteria

13.6.3 CarcinogenicInterventionService
Definition: A treatment (chemical or drug administration, radiation, genetic modification,
knockout, etc) applied to an animal model to induce a disease state.

Parameters: animalModelId, environmentalFactorId, geneDeliveryId, treatmentScheduleId

Method Description
getCarcinogenicInterventions The CarcinogenicInterventions satisfying the search criteria
getEnvironmentalFactors The EnvironmentalFactors complicating these interventions
getGeneDelivery The methods of GeneDelivery used in these interventions
getTreatmentSchedule The TreatmentSchedules used in applying these interventions

13.6.4 CellLineService
Definition: A CellLine associated with a particular strain of animal model.

Parameters: animalModelId, comments, experiment, name, organId

Method Description
getCellLines The CellLines satisfying the search criteria
getOrgan The Organs from which these CellLines were extracted from
getPublications The Publications describing these CellLines

13.6.5 ConditionalityService
Definition: Conditionality is used to indicate whether or not the administration of a transgene or
targeted modification depends on time- or tissue-specific conditions.

Parameters: conditionedBy, Desc

Method Description
getConditionalitys

13.6.6 ContactInfoService

The Conditionality objects satisfying the search criteria

Definition: Contact information for the principal investigator of the selected model.

182

Parameters: city, email, fax, institute, labName, partyId, phoneNumber, state, street, zip

Method Description
getContactInfo The contact information satisfying the search criteria

13.6.7 EngineeredGeneService
Definition: A gene sequence genetically modified to induce a desired state in an animal model.

Parameters: caBioId, conditionalityId, dbCrossRefs, genomicSegmentId, genotypeSummaryId,
imageId, inducedMutationId, locusLinkSummary, name, targetedModificationId, title

Method Description
getEngineeredGenes The EngineeredGenes which satisfy the search criteria
getConditionality The Conditionality information for these genes
getExpressionFeatures The ExpressionFeatures associated with these genes
getGenes The Locus link Genes associated with these EngineeredGenes
getGenotypeSummary The GenotypeSummaries for these genes
getImage The Images associated with these genes

13.6.8 EnvironmentalFactorService
Definition: A contributing factor to the disease state of an animal model.

Parameters: carcinogenicId, name, type

Method Description
getEnvironmentalFactors The EnvironmentalFactors satisfying the search criteria

13.6.9 GeneDeliveryService
Definition: The method of introducing a modified gene to the recipient animal.

Parameters: engineeredGeneId, geneId, organId, viralVector

Method Description
getGeneDeliverys The methods of GeneDelivery satisfying the search criteria
getEngineeredGene The Genes engineered by these methods of delivery

13.6.10 GeneticAlterationService
Definition: An intentionally induced change in a gene sequence or in the number of gene copies.

Parameters: histopathologyId, methodOfObservation, observation,

Method Description
getGeneticAlterations The GeneticAlterations satisfying the search criteria

13.6.11 GenomicSegmentService
Definition: A region or set of regions of a genome including chromosome, gene, breakpoint etc.

Parameters: animalModelId, cloneDesignator, integrationTypeId, LocationOfIntegration,
SegmentSize, segmentTypeId

183

Method Description
getGenomicSegments The GenomicSegments satisfying the search criteria
getEngineeredGenes The EngineeredGenes associated with these GenomicSegments
getSegmentType The SegmentTypes of these GenomicSegments

13.6.12 GenotypeSummaryService
Definition: Genotype Summary information for a particular model.

Parameters: genotype, nomenclatureID, summary

Method Description
getGenotypeSummarys The GenotypeSummaries satisfying the search criteria
getNomenclature The Nomenclature used in these summaries

13.6.13 ImageService
Definition: An image of the diseased tissues or organs from an animal model.

Parameters: animalModelId, description, image, staining, title

Method Description
getImages The Images satisfying the search criteria
getAvailaility The Availability of these images

13.6.14 InducedMutationService
Definition: A mutation in a gene caused by exposure to chemicals, radiation or other mutagens.

Parameters: animalModelId, environmentalFactorId

Method Description
GetInducedMutations The InducedMutations satisfying the search criteria
getCarcinogenicInterventions The CarcinogenicInterventions applied to induce the

mutations
GetEngineeredGenes The Genes engineered by the InducedMutations

13.6.15 MicroArrayDataService
Definition: Expression data from microarray experiments with samples from animal models.

Parameters: animalModelId, experimentId, experimentName

Method Description
getMicroarrayDatas The MicroarrayData sets satisfying the search criteria
getAvailaility The Availability of these microarray data sets

13.6.16 ModificationTypeService
Definition: The type of gene modification in the target gene, such as the Null modification,
change in amino acid, deletion, insertion, misense, nonsense, point mutation, etc.

Parameters: modificationTypeName, targetModificationId,

184

Method Description
getModificationTypes The ModificationTypes satisfying the search criteria

13.6.17 NomenclatureService
Definition: Controlled vocabulary terms used for the MMHCC.

Parameters: name

Method Description
getNomenclatures The Nomenclatures satisfying the search criteria

13.6.18 PersonService
Definition: An individual involed in the deposition, review, and/or approval of MMHCC data.

Parameters: firstName, lastName

Method Description
getPersons The Persons satisfying the search criteria
getContactInfo The contact information for these persons
getRoles The Roles served by these persons

13.6.19 PhenotypeService
Definition: The physical appearance or otherwise observable characteristics of a model animal.

Parameters: animalModelId, breedingNotes, desc, sexDistributionId

Method Description
getPhenotypes The Phenotypes satisfying the search criteria
getSexDistribution The observed SexDistributions for these Phenotypes

13.6.20 PromoterService
Definition: A region of DNA sequence upstream of the coding region to which RNA polymerase
will bind and initiate replication.

Parameters: name, regulatoryElementTypeId, speciesId, transGeneId

Method Description
getPromoters The Promoters satisfying the search criteria
getGenes The Genes regulated by these promoters

13.6.21 PublicationService
Definition: A paper or article associated with MMHCC data published in a scientific journal.

Parameters: animalmodelId, authors, celllineId, endPage, journal, pmId, publicationStatusId,
startPage, status, therapyId, title, volume, year

Method Description
getPublications The Publications satisfying the search criteria
getPublicationStatus The statuses of these publications

185

13.6.22 RegulatoryElementService
Definition: A region of DNA sequence controlling the transcription/expression of a gene.

Parameters: name, regulatoryElementTypeId, speciesId, transGeneId

Method Description
getRegulatoryElements The RegulatoryElements satisfying the search criteria
getRegulatoryElementTypes The regulatory types of these elements

13.6.23 RegulatoryElementTypeService
Definition: The type of regulation imposed by the element, e.g., suppressor, promoter, etc.

Parameters: regulatoryElementTypeName

Method Description
getRegulatoryElementTypes The RegulatoryElementTypes satisfying the search criteria

13.6.24 RoleService
Definition: Role that a person or organization plays; e.g., submitter, reviewer, etc.

Parameters: roleName

Method Description
getRoles Roles satisfying the search criteria

13.6.25 SegmentTypeService
Definition: Genetic segment type such as chromosome, contig, CpG islands, repetitive DNA
(e.g. Alu, LINE, SINE etc.), gene, breakpoint, etc.

Parameters: segmentTypeName

Method Description
getSegmentTypes The SegmentTypes satisfying the search criteria

13.6.26 SexDistributionService
Definition: The observerable distribution of phenotypes between sexes.

Parameters: SexDistributionTypeName

Method Description
getSexDistributions The SexDistributions satisfying the search criteria

13.6.27 TargetedModificationService
Definition: Modification of a specific gene (versus one randomly selected) by a technology
called gene targeting through homologous recombination.

Parameters: animalModelId, blastocystName, engineeredGeneId, escellLineName, geneId,
modificationTypeId,

Method Description
getTargetedModifications The TargetedModifications satisfying the search criteria

186

getEngineeredGenes The Genes engineered by these TargetedModifications
getModificationType The types of identified modifications

13.6.28 TherapyService
Definition: A defined treatment protocol for testing the efficacy of the treatment on an
engineered animal model.

Parameters: agentId, animalModelId, comments, experiment, treatmentScheduleId

Method Description
getTherapys The Therapies satisfying the search criteria
getAgent The Agents used to deliver these Therapies
getPublications The Publications describing these Therapies
getTreatmentSchedule The TreatmentSchedules used in these Therapies

13.6.29 TransgeneService
Definition: A gene that has been integrated into the germ line of a transgenic animal by gene
targeting technology.

Parameters: animalModelId, integrationTypeId, locationOfIntegration, speciesId

Method Description
getTransgenes The Transgenes satisfying the search criteria
getSpecies The Species from which these transgenes were taken

13.6.30 TreatmentScheduleService
Definition: The dosage and regimen for treating cancer in an animal model.

Parameters: carcinogenicInterventionId, dosage, regimen, therapyId

Method Description
getTreatmentSchedules The TreatmentSchedules satisfying the search criteria

13.6.31 XenograftService
Definition: A surgical graft of tissue from one species onto or into individuals of unlike species,
genus, or family.

Parameters: administrativeSite, animalModelId, geneticManipulation, hostSpeciesId,
modificationDescription, name, organId, originSpeciesId, parentCellLineName, type

Method Description
getXenografts The Xenografts satisfying the search criteria
getOrgan The Organ from which these Xenografts were taken
getSpecies The Species from which these Xenografts were taken

187

14.0 THE HTTP INTERFACE

188

14.1 Overview
The Hypertext Transfer Protocol is a generic, stateless application protocol for distributed,

collaborative information systems. The HTTP uses the concept of reference provided by the
Uniform Resource Identifier as a location (URL) or name (URN) for indicating the resource on
which a method is to be applied. The HTTP is said to be connectionless because once the server
has responded to the single request, the connection is dropped. Because an HTTP server treats
each request as unprecedented, it is also called a stateless protocol.

The n-tier model of the caBIO architecture in Figure 14.1-1 emphasizes those components in
the Presentation Layer that implement the HTTP interface. The HTTP interface utilizes web
browsers such as NetscapeTM and Internet ExplorerTM. HTTP requests, which are issued as URLs
on the client browsers, are processed by Java servlets on the caBIO web server, and forwarded as
messages via RMI to the Object Layer.

Inside the Object Layer, the domain objects and their associated infrastructure classes
(SearchCriteria and SearchResult objects) are used to register the requests and hold the data as
they are fetched from the Data Layer via the data access objects. These results are then XML-
encoded by the domain objects’ toXML() methods and returned to the servlets in the Presentation
Layer via RMI.

Web Server

Servlet
Container

Internet
Explorer

Netscape

...
RMI Object

Managers
Data

Access
Objects

Presentation
Layer

Domain
Objects

Object
Layer

Data
Layer

Other
browsers

Figure 1 -1 The caBIO HTTP interface 4.1

Nonprogrammers can transform the XML-encoded HTTP response using XSL/XSLT. XSL
(extensible style sheet language) is a language for expressing style sheets; XSL Transformations
(XSLT) is a language for transforming XML documents using XSL. An example of how to use
the XSL to transform an XML document is provided at the end of this section.

The caBIO objects use two devices to limit the amount of information that will be returned on
a single HTTP request. The first of these is a throttling mechanism that limits the number of
items returned. For example, a request to retrieve all known genes on the human genome could
potentially retrieve over 30,000 gene records. To protect naïve users as well as the system from
the onslaught of data that would ensue, a (re-settable) default maximum of 1,000 records per data
request is enforced.

189

http://www.w3.org/Protocols/
http://www.w3.org/Style/XSL/

The second device limits the extent of data that will be contained in a single record, and
serves as a safeguard against infinite recursion. Many of the data objects contain or otherwise
entail “embedded” objects. For example, a Gene references the set of Sequences it encodes, and
each of those sequences in turn references the Gene. Clearly, allowing each of these objects to
return a full encoding of their nested references would be disastrous.

Generally, it is unlikely that the user will want access to all of the detailed information
associated with each retrieved object, but would rather selectively specify where to drill down.
The XML linking language (XLink) provides just the type of mechanism that is needed to
address this concern.

The caBIO web server returns only those features that can be expressed as simple data types
(i.e., strings, numbers) in the top-level encoding. Other features, such as embedded objects and
arrays or other data structures, are returned as XLinks, which specify the URL to use in a
subsequent request in order to retrieve that information. As described below, however, it is also
possible to selectively expand these XLinks in the initial HTTP request using additional
arguments.

14.2 Using the HTTP Interface
Requests sent by the client via HTTP are processed by a servlet called getXML residing on the

caBIO server. getXML anticipates a list of parameters, which specify the type of object to
retrieve along with additional search criteria to narrow the search. Currently there are two ways
of invoking the getXML servlet.

14.2.1 The operation= syntax
The first way was introduced in caCORE 1.0, and uses the “operation=” syntax. For example,

the following HTTP request retrieves all genes having “PTEN” as their symbol:

 http://cabio.nci.nih.gov/servlet/GetXML?operation=Gene&Symbol=PTEN

The most important parameter here is operation, which specifies the class name of the type of
domain object being requested. All other parameters are defined according to this first term. In
particular, only the Gene objects have a Symbol field. Thus, if the parameters had been:

operation=Chromosome&Symbol=PTEN

an error would be produced stating that the search method for “symbol” does not exist. Referring
back to Figure 14.1-1, recall that each HTTP request is effectively forwarded to the appropriate
objects in the Object Layer. Accordingly, any additional criteria the user may wish to specify to
narrow the search must be understandable by the receiving objects in the Object Layer. For
convenience, the last section of this chapter summarizes the operations that can be invoked and
the parameters these operations accept.

Although these definitions are relatively stable, the applications at NCICB are evolving over
time, so it is also useful to understand how to obtain this information directly from the
dynamically updated JavaDoc pages:

• To see the list of class names that can serve as values for the operation parameter, refer
to the JavaDoc pages for the bean packages. Example class names are: Gene, Library,
Chromosome, Sequence, etc. While the arguments following the operation parameter are

190

http://cabio.nci.nih.gov/CORE/GetXML?operation=Gene&Symbol=PTEN
http://cabio.nci.nih.gov/servlet/GetXML?operation=Gene&Symbol=PTEN
http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caBIO/bean/package-summary.html

not case sensitive, this one is, so be sure to use the same case as appears in the class
name.

• To get a list of the additional parameters that can follow a given operation request, visit
the associated search criteria object’s set methods in the bean or search packages. Each
domain object (Xxx) in the bean package has an associated search criteria object, named
XxxSearchCriteria.9

For example, the Chromosome domain object has an associated ChromosomeSearchCriteria
object. This search criteria object is designed for use as the single argument to the domain
object’s search() method. The idea is to set a few attributes in the search criteria so as to limit the
search, and to subsequently invoke the domain object’s search method on that search criteria
object.

Thus, we must consult the search criteria’s set methods to determine what attributes are
settable. The ChromosomeSearchCriteria has only two such named methods: SetName() and
SetId(). Accordingly, if we are using Chromosome as the value for operation, then the only
additional legitimate parameters are name= and id=. In other words, the additional allowed
parameters for the HTTP request are defined by removing the “set” prefix from the search
criteria’s methods.

In summary, the “operation=” expression must always be followed by the name of a domain
object specifying the type of result that will be returned. Any additional parameters which follow
this expression must occur as settable attributes of the domain object’s associated search criteria
object. The query syntax, which is described next, allows for more complex queries to be
formulated. The parameters which follow the “query=” expression are limited only by the terms
which immediately precede them.

14.2.2 The query= syntax
The alternative syntax substitutes “query=” for “operation=” in the URL, and explicitly tags

the parameters with the string “crit_”. The example below contrasts the syntax for these two
forms:

Old way: http://cabio.nci.nih.gov/servlet/GetXML?operation=Target&AgentId=10412

New way: http://cabio.nci.nih.gov/servlet/GetXML?query=Target&crit_agents_id=10412

The first of these two expressions uses the operation syntax. Effectively, this expression states
that a collection of Target objects should be searched for using a TargetSearchCriteria object
whose agentId has been set to 10412. In other words we are looking for those targets whose
associated agents include at least one whose Id is equal to 10412.

The second expression should be interpreted as follows. Again, we have specified that the
type of objects to be returned should be Target objects. But in this case, the parameters that
follow are no longer limited to the selection attributes defined for TargetSearchCriteria. Instead,
each crit_ tag signifies that some other object, which is in relation to the primary object, should
be used to define additional selection criteria. More specifically, the second expression states

9 As explained in Chapter 9, the caBIO package structure includes the search criteria in the bean package, along
with the domain objects. The other modules define the search criteria objects in the search packages.

191

http://cabio.nci.nih.gov/CORE/GetXML?operation=Gene&Symbol=PTEN
http://cabio.nci.nih.gov/servlet/GetXML?operation=Target&AgentId=10412
http://cabio.nci.nih.gov/servlet/GetXML?query=Target&crit_agents_id=10412

that an AgentSearchCriteria (with its id set to 10412) should be embedded (“put”) inside the
TargetSearchCriteria. This is analogous to the putSearchCriteria() methods which were
described in Section 8.1.

As illustrated here, immediately following the “crit_” tag is the name of the type of object you
wish to use as a filter. The name of the object is in lowercase and in plural form, to indicate that
the objects are in relation to each other.

As demonstrated by this example, the new syntax is equivalent to the old syntax when the
associated search criteria object defines the “foreign attribute” you wish to search on. Because
the TargetSearchCriteria object has a setAgentId() method, we can achieve the same results
using either approach. More complex queries however, which can be expressed using the new
query syntax, have no equivalents in the deprecated syntax.

For example, suppose that you would like to retrieve information on the human chromosome
containing the BRCA1 gene. Unfortunately, the ChromosomeSearchCriteria object provides no
direct method for filtering its result set by gene name. Thus, using the “operation=” syntax, the
only solution is to first fetch the gene, and subsequently, the chromosome on which it occurs.

But in this example we would also like to filter by taxon—that is, we want to retain only
human chromosomes. Although the GeneSearchCriteria does allow you to filter by taxon, the
only available method is setTaxonId(). So unless we already know that the taxon Id for homo
sapiens is 5, the “operation=” syntax will have to begin by retrieving taxons. In summary, the
“operation=” syntax will require three invocations to obtain the desired results:

(1) http://cabio.nci.nih.gov/servlet/GetXML?operation=Taxon&scientificName=homo+sapiens

(2) http://cabio.nci.nih.gov/servlet/GetXML?operation=Gene&symbol=BRCA1&taxonID=5

(3) http://cabio.nci.nih.gov/servlet/GetXML?operation=Chromosome&id=19

From our first query we can extract the appropriate taxon id (5); from our second query we
extract the chromosome Id (19); and finally, the third query retrieves the desired information.
Using the new syntax however, this can be accomplished in a single statement, as:

http://cabio.nci.nih.gov/servlet/GetXML?query=Chromosome&crit_genes_name=BRCA1&crit_
taxon_ scientificName=homo+sapiens

Using the query syntax, it is also possible to mix local attributes with the object relations
described above. And in actuality, these relations are local attributes of the primary object. For
example, the following two expressions are effectively equivalent to (2) above:

http://cabio.nci.nih.gov/servlet/GetXML?query=Gene&crit_name=BRCA1&crit_taxonId=5

http://cabio.nci.nih.gov/servlet/GetXML?query=Gene&crit_name=BRCA1&crit_taxon_id=5

In the first case we are accessing the taxon information as an attribute of the Gene object. In
the second case we are accessing the id as an attribute of the Taxon object associated with the
Gene. Looking at this second statement, we see that the general syntax for accessing a “foreign”
object’s attribute indirectly is “role_tag=value”. Here the “role” is taxon—which is in relation to
the Gene object, and the “tag” is id.

192

http://cabio.nci.nih.gov/servlet/GetXML?operation=Taxon&scientificName=homo+sapiens
http://cabio.nci.nih.gov/servlet/GetXML?operation=Chromosome&id=19
http://cabio.nci.nih.gov/servlet/GetXML?operation=Chromosome&id=19
http://cabio.nci.nih.gov/servlet/GetXML?query=Chromosome&crit_genes_name=BRCA1&crit_taxon_ scientificName=homo+sapiens
http://cabio.nci.nih.gov/servlet/GetXML?query=Chromosome&crit_genes_name=BRCA1&crit_taxon_ scientificName=homo+sapiens
http://cabio.nci.nih.gov/servlet/GetXML?query=Gene&crit_name=BRCA1&crit_taxon_id=5

14.2.3 Syntax Summary

Each HTTP request must include at least one search criterion that can be associated with the
requested object type. In both protocols, the first two terms in the GetXML expression are case-
sensitive — using “Operation” instead of “operation” or “Query” instead of “query” will
produce an error. The class names which provide values to these operators are also case-
sensitive. The case sensitivity of the HTTP requests are summarized in Table 14.2-1

Table 14.2-1 Summary of the HTTP syntax

operation =<class name> Specifies the class name of the type of domain
object to search for. The class name is case sensitive,
as is the expression “operation=”.

 &<tag=value> Specifies a settable attribute of the search criteria
associated with the domain object identified in the
class name. The tag and value are case insensitive.

query =<class name> Specifies the class name of the type of domain
object to search for. The class name is case sensitive,
as is the expression “query=”.

 &crit_<tag=value> The expression “&crit_” is case sensitive. The tag
specifies the name of an attribute local to the domain
object immediately preceding &crit_. Neither the tag
nor its value is case sensitive.

 &crit_<role_tag=value> The “role” refers to a domain object which is in
relation to the domain object immediately preceding
&crit_. The attribute is local to the domain object
immediately following &crit_. The role, tag, and
value are all case insensitive.

For convenience, a catalog of the current HTTP operations and their allowed parameters are
included at the end of this chapter. The available operations and parameters will be evolving
over time however, and it is useful to understand how these catalogs are constructed:

• For the operation= syntax: the allowed arguments to operation= are the domain objects
defined in the various bean packages. Given the selected domain object, the allowed
parameters are determined by the associated SearchCriteria object’s set methods. Refer to
the Java Docs to find the domain object class names and their corresponding search criteria’s
set methods.

• For the query= syntax: the allowed arguments to query= are the domain objects defined in
the various bean packages. Given the selected domain object, the arguments which can
follow the crit_ tag are defined by that domain object’s get methods. Simple local attributes
which return native Java types (String, float, etc.) are expressed with a simple “tag=value”
statement, where the tag is that attribute’s variable name. Those get methods which return
domain objects allow the user to insert additional selection criteria using an underscore, as in

193

http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/index.html

“role_tag =value.” The attribute in this case constrains the domain object identified by the
role name however – not the domain object identified in the query=expression.

14.3 Drilling Down Through XLinks
The output returned by the caBIO server in response to an HTTP request is formatted XML

with embedded XLinks. Using either syntax, there are two special request parameters that can
further expand these XLinks in the XML output. The returnHeavyXML parameter will open up
all of the embedded XLinks one level deep. For example, to search for genes whose symbol
match “PTEN” and open up all XLinks, you would use:

operation=Gene&Symbol=PTEN&returnHeavyXML=1

An equivalent expression in the query= syntax is:
query=Gene&crit_Symbol=PTEN&returnHeavyXML=1

The other parameter, fillInObjects, “fills” in only those XLinks whose tags are specified in a
comma-separated list. Thus, to open up only the GoOntology and ExpressionFeature tags in the
XML output, you would use:

operation=Gene&Symbol=pTEN&fillInObjects=GoOntology,ExpressionFeature

14.4 Controlling the Number of Items Returned
It is also possible to fine-tune the default “throttling” mechanism defining the number of

results returned on any single request. For example, assuming the search request yields, say, 500
results, specifying resultStart=450 will return only the last 50. Similarly, one can use
resultCount=50 to get back only the first 50:

operation=Gene&symbol=pTEN&resultCount=50

Alternatively, you can use the parameter ReturnCount to specify the number of results to
return, without concern for starting or ending indices. By default, the return results start at index
1 and the maximum number returned is 1,000.

14.5 Specifying the IP Address and Port in the URL
To use the HTTP API you need additional information such as the NCICB server and

listening port for HTTP requests. The complete syntax of the HTTP request is:
http://<server:port>/servlet/GetXML?<Argument list>

where <server:port> is the caBIO web server and port number reserved for HTTP requests. As
of the time of this writing, the port number is 80. These server addresses and port numbers may
change; check with NCICB Application Support for the current specifications.

14.6 Applying XSL to XML Output
Some browsers (e.g., Netscape) cannot process XML-formatted documents, and on these

platforms you will need to transform the XML response to an HTML document. As mentioned in
the foregoing section, XSL/XSLT can be used for these purposes.

One option is to save the XML output you receive to a file and subsequently apply an
appropriate XSL style sheet. Alternatively, you can use the ApplyXSLT servlet running on the
caBIO web server to transform the XML output in real time.

194

ApplyXSLT requires two parameters: mURL and xslURL. mURL is a “modified” URL in
which the original HTTP request is modified such that all instances of “?” are replaced with “$”
and all ampersands (“&”) are replaced with “@.” For example, the original HTTP request

http://cabio.nci.nih.gov/servlet/GetXML?operation=Gene&Symbol=vegf

would now become
http://cabio.nci.nih.gov/servlet/GetXML?$operation=Gene@Symbol=vegf

These modifications allow the new URL to be embedded inside a second URL. This is needed
because the HTTP request will now be sent directly to the ApplyXSLT servlet, with the original
request as an argument to that servlet. ApplyXSLT will then issue the original HTTP request,
receive the results on behalf of the client, and transform the results using the style sheet specified
in the xslURL parameter. The complete syntax of using ApplyXSLT is:

http://<server:port>/servlet/ApplyXSLT?mURL=<mURL>&xslURL=<xslURL>

For example:

http://cabio.nci.nih.gov/servlet/ApplyXSLT?mURL=http://cabio.nci.nih.gov/servlet/GetXML$
operation=Gene@Symbol=pten&xslURL=http://cabio.nci.nih.gov/servlet//xsl/cabio-beans.xsl

14.7 The HTTP Operation Catalog
The next section catalogs the operations that can be invoked and the parameters these

operations accept. As described above, the operation parameter in the HTTP URL is the name of
the object class you wish to search on. Thus, if you are looking for genes, the URL should
contain the string:

operation=Gene

The operation name must immediately follow the GetXML? request. As noted, all operations
require that at least one attribute is included in the search criteria in order to limit the search. The
following list of operations is taken directly from the list of caBIO domain object names. The
parameters are defined as the settable attributes of the associated SearchCriteria objects. These
attributes can also be gleaned from the embedded XLinks in the XML responses.

Figure 14.7-1 shows an excerpt of the XML document generated in response to:

http://cabio.nci.nih.gov/servlet/GetXML?operation=Gene&Symbol=PTEN

195

http://cabio.nci.nih.gov/servlet/ApplyXSLT?mURL=http://cabio.nci.nih.gov/servlet/GetXML?$operation=Gene@Symbol=pten&xslURL=http://cabio.nci.nih.gov/servlet//xsl/cabio-beans.xsl
http://cabio.nci.nih.gov/servlet/ApplyXSLT?mURL=http://cabio.nci.nih.gov/servlet/GetXML$operation=Gene@Symbol=pten&xslURL=http://cabio.nci.nih.gov/servlet//xsl/cabio-beans.xsl
http://cabio.nci.nih.gov/servlet/GetXML?operation=Gene&Symbol=PTEN

Figure 14.7-1 XML excerpt in response to the Gene operation

In this example, the next to the last line in the XML excerpt shows an Xlink that contains a
URL for invoking the Gene operation with the TaxonId attribute used as a filter.

14.8 The caBIO HTTP Catalog

Agent Operation
Definition: Agent – a therapeutic agent (drug, intervention therapy) used in a clinical trial.

Parameters: agentNSCNumber, clinicalTrialProtocolId, comment, evsId, isCMAPAgent, name,
source, targetId, therapyId

Anomaly Operation
Definition: Anomaly – an irregularity in either the expression of a gene or its structure (i.e., a
mutation).

Parameters: anomalyDescription, contextCode, histopathologyId, organId, targetId

Chromosome Operation
Definition: Chromosome – an object representing a specific chromosome for a specific taxon;
provides access to all known genes contained in the chromosome and to the taxon.

Parameters: name

ClinicalTrialProtocol Operation
Definition: ClinicalTrialProtocol – the protocol associated with a clinical trial; organizes
administrative information about the trial such as Organization ID, participants, phase, etc., and
provides access to the administered Agents.

196

Parameters: agent, agentId, conceptId, ctepName, diseaseCategory, diseaseId, diseaseName,
documentNumber, imtCode, leadOrganizationId, leadOrganizationName, nihAdminCode,
pdqIdentifier, phase, piName, protocolAssociationId, title, treatmentFlag

Clone Operation
Definition: Clone – an object used to hold information pertaining to I.M.A.G.E. clones; provides
access to sequence information, associated trace files, and the clone’s library.

Parameters: geneId, name, sequenceId, snpId, verified

CMAPOntology Operation
Definition: An object providing entry to the CMAP gene ontology, which categorizes genes by
function; provides access to Gene objects corresponding to the ontological term, as well as to
ancestor and descendant terms in the ontology tree. Note: the CMAPOntologySearchCriteria
class inherits attributes from its parent class, OntologySearchCriteria.

Parameters: (direct) cMAPChildId, cMAPGeneId, cMAPName, cMAPParentId,
cMAPOntologyId; (inherited) diseaseId, geneId, histopathologyId, name includeBoth,
includeParents, includeChildren, relationshipParentId, relationshipChildId, relationshipType

ConsensusSequence Operation
Definition: ConsensusSequence – a specialization of the Sequence class; represents the
consensus of a set of Contigs, which it also provides access to.

Contig Operation
Definition: Contig – one of the set of overlapping sequence fragments used to assemble a
ConsensusSequence, which it also provides access to.

Parameters: sequenceId, name

DiseaseRelationship Operation
Definition: DiseaseRelationship – specifies a child or parent relationship between Disease
objects. Note: the DiseaseRelationshipSearchCriteria class inherits attributes from its parent
class RelationshipSearchCriteria.

Parameters: (inherited) relationshipChildId, relationshipParentId, relationshipType

Disease Operation
Definition: Disease – an object that specifies a disease name and ID; also provides access to:
ontological relations to other diseases; clinical trial protocols treating the disease; and specific
histologies associated with instances of the disease. Note: the DiseaseSearchCriteria class
inherits attributes from its parent class, OntologySearchCriteria.

Parameters: (inherited) diseaseId, histopathologyId, geneId, includeBoth, includeChildren,
includeParents, name, relationshipChildId, relationshipParentId, relationshipType

Parameters: consensusSequenceType, contigId, geneId, proteinId, refGeneId

197

EstExperiment Operation
Definition: EstExperiment – an object that represents data from an expression experiment using
expressed sequence tags. Note: the EstExperimentSearchCriteria class inherits attributes from its
parent class, ExpressionExperimentSearchCriteria.

Parameters: (direct) contextId; (inherited) expressionFeatureId, gene, geneId, organ, proteinId,
taxonId, threshold, type

ExpressionFeature Operation
Definition: ExpressionFeature – an object associated with a Gene that provides access to the list
of Organs where the Gene is expressed.

Parameters: geneId, expressionLevelDescId

ExpressionMeasurementArray Operation
Definition: ExpressionMeasurementArray – an array of ExpressionMeasurements.

Parameters: AccessionNumber, expressionMeasurementId, name

ExpressionMeasurement Operation
Definition: ExpressionMeasurement – an object representing a structure capable of measuring
the absolute or relative amount of an expressed compound.

Parameters: accessionNumber, expressionMeasurementArrayId, geneId, name, sequenceId

GeneAlias Operation
Definition: GeneAlias – an alternative name for a gene; provides descriptive information about
the gene (as it is known by this alias), as well as access to the Gene object it refers to.

Parameters: description, geneId, type

GeneHomolog Operation
Definition: Defined only in relation to another Gene, the GeneHomolog in caBIO is the
functional equivalent of that gene in another taxon (i.e., its ortholog). The GeneHomolog object
is a specialization of the parent Gene object; in addition to all of the methods provided by the
gene interface, the homolog provides its percent of sequence similarity to the related gene of
interest.

Parameters: geneId

Gene Operation
Definition: Gene – the effective portal to most of the genomic information provided by the
caBIO data Operations; organs, diseases, chromosomes, pathways, sequence data, and
expression experiments are among the many objects accessible via a gene.

Parameters: allPathwayId, bcId, chromosomeId, cloneName, cMAPOntologyId,
cytogenicLocation, expressedPathwayId, expressionMeasurementId, functionalPathway,
genBankAccessionNumber, GeneKeyword, geneNameKeyword, goOntologyHomoSapienId,
goOntologyId, goOntologyMouseId, keyword, mutatedGenePathwayId, organism,
overExpressedPathwayId, pathwayId, symbol, targetId, taxonId, tissueType,
underExpressedPathwayId, unigeneClusterId, uniqueIdentifier,

198

GoOntologyRelationship Operation
Definition: GoOntologyRelationship – an object that specifies a child or parent relationship
between GoOntology objects. Note: the GoOntologyRelationshipSearchCriteria class inherits
attributes from its parent class, RelationshipSearchCriteria.

Parameters: (inherited) relationshipChildId, relationshipParentId, relationshipType

GoOntology Operation
Definition: GoOntology – an object that provides entry to a Gene object’s position in the Gene
Ontology Consortium’s controlled vocabularies, as recorded by LocusLink; provides access to
Gene objects corresponding to the ontological term, as well as to ancestor and descendant terms
in the ontology tree. Note: the GoOntologySearchCriteria class inherits attributes from its parent
class, OntologySearchCriteria.

Parameters: (direct) geneId; (inherited) diseaseId, geneId, histopathologyId, includeBoth,
includeParents, includeChildren, name, relationshipParentId, relationshipChildId,
relationshipType

Histopathology Operation
Definition: Histopathology – an object that represents anatomical changes in a diseased tissue
sample associated with an expression experiment; also captures the relationship between organ
and disease.

Parameters: diseaseId, expressionExperimentId, name, organId

Library Operation
Definition: Library – an object that provides access to CGAP library information about the tissue
sample and its method of preparation, the library protocol that was used, the clones contained in
the library, and the sequence information derived from the library.

Parameters: geneId, libraryGroup, libraryName, libraryProtocol, organism, sortOrder,
tissueHistology, tissueName, tissuePreparation, tissueType

MapLocation Operation
Definition: MapLocation – an object that represents the physical map location of a gene.

Parameters: type, location, geneId

OrganRelationship Operation
Definition: OrganRelationship – an object that specifies a child or parent relationship between
Organ objects. Note: the GoOrganRelationshipSearchCriteria class inherits attributes from its
parent class, RelationshipSearchCriteria.

Parameters: (inherited) proteinId, relationshipChildId, relationshipParentId, relationshipType

Organ Operation
Definition: Organ – a representation of an organ whose name occurs in a controlled vocabulary;
provides access to any Histopathology objects for the organ, and, because it is “ontolog-able,”
provides access to its ancestral and descendant terms in the vocabulary. Note: the
OrganSearchCriteria class inherits attributes from its parent class, OntologySearchCriteria.

199

Parameters: (direct) anomaly_id, expressionFeatureId, histopathologyId; (inherited) diseaseId,
geneId, includeBoth, includeChildren, includeParents, name, relationshipChildId,
relationshipParentId, relationshipType

Pathway Operation
Definition: Pathway – an object representing a molecular/cellular pathway compiled by
BioCarta. Pathways are associated with specific Taxa, and contain multiple Genes, which may
be Targets for treatment.

Parameters: bioProcessId, context, displayValue, geneId, name, pathwayDiagram, taxonId

ProteinHomolog Operation
Definition: Defined only in relation to another Protein of interest, the ProteinHomolog in caBIO
is the functional equivalent of that protein in another taxon (i.e., its ortholog). The
ProteinHomolog is a specialization of the parent Protein object; in addition to the methods
inherited from Protein, the homolog provides its percent of sequence similarity to the related
protein of interest.

Parameters: proteinId

 Protein Operation
Definition: Protein – an object representation of a protein; provides access to the encoding gene
via its GenBank ID, the taxon in which this instance of the protein occurs, and references to
homologous proteins in other species.

Parameters: accessionNumber, description, geneId

ProtocolAssociation Operation
Definition: ProtocolAssociation – an object that associates ClinicalTrialProtocols to Diseases.

Parameters: clinicalTrialProtocolId, protocolId

Protocol Operation
Definition: Protocol – an object that represents the protocol used in assembling a clone library.

Parameters: name

ReadSequence Operation
Definition: ReadSequence – an object representing the output of a TraceFile, an ASCII
representation of the nucleotide sequence; a read sequence is created by running PHRED.

Parameters: cloneId, geneId, proteinId, readSequenceId, refGeneId, traceFileId

SageExperiment Operation
Definition: SageExperiment – a subclass of the ExpressionExperiment class, used to represent
serial analysis of gene expression (SAGE) data. Note: the SageExperimentSearchCriteria class
inherits attributes from its parent class ExpressionExperimentSearchCriteria.

Parameters: (direct) contextId; (inherited) expressionFeatureId, gene, geneId, organ, proteinId,
taxonId, threshold, type

200

http://www.biocarta.com/
http://www.ncbi.nlm.nih.gov/GenBank/

Sequence Operation
Definition: Sequence – an object representing a gene sequence and providing access to the clones
from which it was derived, the ASCII representation of the residues it contains, and the sequence
ID.

Parameters: accessionNumber, cloneId, contigId, expressionMeasurementId, geneId, isRefSeq,
refGeneId, returnDna, sequenceType

SNP Operation
Definition: SNP – an object that represents a Single Nucleotide Polymorphism; provides access
to the clones and the trace files from which it was identified, the two most common substitutions
at that position, the offset of the SNP in the parent sequence, and a confidence score.

Parameters: geneId

Target Operation
Definition: Target – an object that represents a gene thought to be at the root of a disease
etiology and which is targeted for therapeutic intervention in a clinical trial.

Parameters: agentId, anomalyDescription, anomalyId, cancerType, conceptId, geneId

Taxon Operation
Definition: Taxon – an object representing the various names (scientific, common, abbreviated,
etc.) for a species associated with a specific Gene, Chromosome, Pathway, Protein, or Tissue.

Parameters: abbreviation, animalModelId, chromosomeId, id, isPreferred, name,
regulatoryElementId, scientificName, strainId, xenograftId

Tissue Operation
Definition: Tissue – defined by any group of similar cells united to perform a specific function.

Parameters: libraryId

TraceFile Operation
Definition: TraceFile – an object that represents the recorded trace file used to identify a SNP,
based on the observed intensities for the four possible bases at each position in the sequence.

Parameters: cloneId, name, snpId

14.9 The EVS HTTP Catalog

DescLogicConceptService
Definition: A description logic concept represented in the NCI Thesaurus.

Parameters: conceptCode, initialDate, property, role, vocabularyName; (inherited) allSource,
limit, searchTerm, source

MetathesaurusConceptService
Definition: A concept in the NCI Metathesaurus.

Parameters: code, score, semanticType, shortResult; (inherited) allSource, limit, searchTerm,
source

201

14.10 The caDSR HTTP Catalog

CaseReportForm Operation
Definition: A questionnaire that is a collection of DataElements used to document patient
information stipulated in a protocol.

Parameters: displayName; (inherited) beginDate, changeNote, dateCreated, dateModified,
deletedIndicator, endDate, latestVersionIndicator, longName, origin, preferredDefinition,
preferredName, publicId, unresolvedIssue, version, workflowStatusDescription,
workflowStatusName

ClassificationSchemeItem Operation
Definition: An item or category in a ClassificationScheme used to classify other components; for
example, a node in a taxonomy.

Parameters: comments, dateCreated, dateModified, description, name, type

ClassificationScheme Operation
Definition: Any set of organizing principles or dimensions along which data can be organized. A
ClassificationScheme may be a simple collection of keywords or a complex ontology.

Parameters: labelTypeFlag, type; (inherited) beginDate, changeNote, dateCreated,
dateModified, deletedIndicator, endDate, latestVersionIndicator, longName, origin,
preferredDefinition, preferredName, publicId, unresolvedIssue, version,
workflowStatusDescription, workflowStatusName

ClassSchemeClassSchemeItem Operation
Definition: A component used to associate a set of ClassificationSchemeItems with a particular
ClassificationScheme, and to store details of that association such as the display order of the
items within that scheme.

Parameters: dateCreated, dateModified, displayOrder, label

ConceptualDomain Operation
Definition: The set of all possible ValidValue meanings of a DataElementConcept expressed
without representation.

Parameters: dimensionality; (inherited) beginDate, changeNote, dateCreated, dateModified,
deletedIndicator, endDate, latestVersionIndicator, longName, origin, preferredDefinition,
preferredName, publicId, unresolvedIssue, version, workflowStatusDescription,
workflowStatusName

Context Operation
Definition: A designation or description of the application environment or discipline in which a
name is applied or from which it originates.

Parameters: dateCreated, dateModified, description, designationId, languageName, name,
version

DataElementConceptRelationships Operation
Definition: A description of the affiliation between two occurrences of DataElementConcepts.

202

Parameters: dateCreated, dateModified, description, name

DataElementConcept Operation
Definition: A concept that can be represented in the form of a DataElement and described
independent of any particular representation.

Parameters: (inherited) beginDate, changeNote, dateCreated, dateModified, deletedIndicator,
endDate, latestVersionIndicator, longName, origin, preferredDefinition, preferredName,
publicId, unresolvedIssue, version, workflowStatusDescription, workflowStatusName

DataElement Operation
Definition: A unit of data for which the definition, identification, representation, and permissible
values are specified by means of a set of attributes.

Parameters: (inherited) beginDate, changeNote, dateCreated, dateModified, deletedIndicator,
endDate, latestVersionIndicator, longName, origin, preferredDefinition, preferredName,
publicId, unresolvedIssue, version, workflowStatusDescription, workflowStatusName

Designation Operation
Definition: A name by which an Administered Component is known in a specific Context. Also
a placeholder to track the usage of Administered Components by different Contexts.

Parameters: dateCreated, dateModified, languageName, name, type

EnumeratedValueDomain Operation
Definition: A ValueDomain expressed as a list of all PermissibleValues.

Parameters: (inherited) characterSetName, dataTypeName, decimalPlace, formatName,
highValueNumber, lowValueNumber, maximumLengthNumber, minimumLengthNumber,
uomNamebeginDate, changeNote, dateCreated, dateModified, deletedIndicator, endDate,
latestVersionIndicator, longName, origin, preferredDefinition, preferredName, publicId,
unresolvedIssue, version, workflowStatusDescription, workflowStatusName

Module Operation
Definition: A collection of DataElements logically grouped on a case report form.

Parameters: displayOrder; (inherited) beginDate, changeNote, dateCreated, dateModified,
deletedIndicator, endDate, latestVersionIndicator, longName, origin, preferredDefinition,
preferredName, publicId, unresolvedIssue, version, workflowStatusDescription,
workflowStatusName

NonenumeratedValueDomain Operation
Definition: A ValueDomain expressed by a generative formula or range of allowed values.

Parameters: (inherited) characterSetName, dataTypeName, decimalPlace, formatName,
highValueNumber, lowValueNumber, maximumLengthNumber, minimumLengthNumber,
uomNamebeginDate, changeNote, dateCreated, dateModified, deletedIndicator, endDate,
latestVersionIndicator, longName, origin, preferredDefinition, preferredName, publicId,
unresolvedIssue, version, workflowStatusDescription, workflowStatusName

203

ObjectClass Operation
Definition: A set of ideas, abstractions, or things in the real world that can be identified with
explicit boundaries and meaning and whose properties and behavior follow the same rules.

Parameters: definitionSource; (inherited) beginDate, changeNote, dateCreated, dateModified,
deletedIndicator, endDate, latestVersionIndicator, longName, origin, preferredDefinition,
preferredName, publicId, unresolvedIssue, version, workflowStatusDescription,
workflowStatusName

PermissibleValue Operation
Definition: The exact names, codes and text that can be stored in a data field.

Parameters: beginDate, dateCreated, dateModified, endDate, highValueNumber,
lowValueNumber, value

Property Operation
Definition: A characteristic common to all members of an ObjectClass.

Parameters: definitionSource; (inherited) beginDate, changeNote, dateCreated, dateModified,
deletedIndicator, endDate, latestVersionIndicator, longName, origin, preferredDefinition,
preferredName, publicId, unresolvedIssue, version, workflowStatusDescription,
workflowStatusName

ProtocolFormsSet Operation
Definition: A specific clinical trial protocol document and its collection of associated CRFs.

Parameters: approvedBy, approvedDate, changeNumber, changeType, leadOrganizationName,
phase, protocolId, reviewedBy, reviewedDate, type; (inherited) beginDate, changeNote,
dateCreated, dateModified, deletedIndicator, endDate, latestVersionIndicator, longName, origin,
preferredDefinition, preferredName, publicId, unresolvedIssue, version,
workflowStatusDescription, workflowStatusName

ProtocolFormsTemplate Operation
Definition: A collection of components (Modules, Questions) to be included in a CRF.

Parameters: (inherited) beginDate, changeNote, dateCreated, dateModified, deletedIndicator,
endDate, latestVersionIndicator, longName, origin, preferredDefinition, preferredName,
publicId, unresolvedIssue, version, workflowStatusDescription, workflowStatusName

Qualifier Operation
Definition: A term that helps define and render a concept unique.

Parameters: comments, dateCreated, dateModified, description, name

Question Operation
Definition: The actual text of the DataElement as specified on a CaseReportForm of a protocol

Parameters: displayOrder; (inherited) beginDate, changeNote, dateCreated, dateModified,
deletedIndicator, endDate, latestVersionIndicator, longName, origin, preferredDefinition,
preferredName, publicId, unresolvedIssue, version, workflowStatusDescription,
workflowStatusName

204

ReferenceDocument Operation
Definition: A place to document additional information about AdministeredComponents.

Parameters: dateCreated, dateModified, displayOrder, docText, languageName, name,
organizationId, rdtlName, type, url

Representation Operation
Definition: Mechanism by which the functional and/or presentational category of an item may be
conveyed to a user.

Parameters: definitionSource; (inherited) beginDate, changeNote, dateCreated, dateModified,
deletedIndicator, endDate, latestVersionIndicator, longName, origin, preferredDefinition,
preferredName, publicId, unresolvedIssue, version, workflowStatusDescription,
workflowStatusName

ValidValue Operation
Definition: The allowable values for a given DataElement (Question) on a CaseReportForm

Parameters: displayOrder; (inherited) beginDate, changeNote, dateCreated, dateModified,
deletedIndicator, endDate, latestVersionIndicator, longName, origin, preferredDefinition,
preferredName, publicId, unresolvedIssue, version, workflowStatusDescription,
workflowStatusName

ValueDomainPermissibleValue Operation
Definition: An object that stores the many to many relationships between ValueDomains and
PermissibleValues.

Parameters: dateCreated, dateModified

ValueDomain Operation
Definition: A set of PermissibleValues for a DataElement

Parameters: characterSetName, dataTypeName, decimalPlace, formatName, highValueNumber,
lowValueNumber, maximumLengthNumber, minimumLengthNumber, uomName; (inherited)
beginDate, changeNote, dateCreated, dateModified, deletedIndicator, endDate,
latestVersionIndicator, longName, origin, preferredDefinition, preferredName, publicId,
unresolvedIssue, version, workflowStatusDescription, workflowStatusName

ValueMeaning Operation
Definition: The significance associated with an allowable/permissible value.

Parameters: beginDate, comments, dateCreated, dateModified, description, endDate,
shortMeaning

14.11 The caMOD HTTP Catalog

AnimalModel Operation
Definition: A strain of genetically modified animals (rat or mouse) used to study the molecular
etiology of various types of cancer.

Parameters: agentId, availabilityId, diseaseId, experimentDescription, modelDescriptor,
partyRoleId, phenotypeId, taxonId

205

Availability Operation
Definition: The availability status of a developed strain from the MMHCC, from the Jackson
Laboratory, or directly from the principal investigator.

Parameters: animalModelId, enteredDate, modifiedDate, releaseDate, visibleTo

CarcinogenicIntervention Operation
Definition: A treatment (chemical or drug administration, radiation, genetic modification,
knockout, etc.) applied to an AnimalModel to induce a disease state.

Parameters: animalModelId, environmentalFactorId, geneDeliveryId, treatmentScheduleId

CellLine Operation
Definition: A CellLine associated with a particular strain of AnimalModel.

Parameters: animalModelId, comments, experiment, name, organId

Conditionality Operation
Definition: Conditionality is used to indicate whether or not the administration of a transgene or
targeted modification depends on time- or tissue-specific conditions.

Parameters: conditionedBy, Desc

ContactInfo Operation
Definition: Contact information for the principal investigator of the selected model.

Parameters: city, email, fax, institute, labName, partyId, phoneNumber, state, street, zip

EngineeredGene Operation
Definition: A gene sequence genetically modified to induce a desired state in an AnimalModel.

Parameters: caBioId, conditionalityId, dbCrossRefs, genomicSegmentId, genotypeSummaryId,
imageId, inducedMutationId, locusLinkSummary, name, targetedModificationId, title

EnvironmentalFactor Operation
Definition: A contributing factor to the disease state of an AnimalModel.

Parameters: carcinogenicId, name, type

GeneDelivery Operation
Definition: The method of introducing a modified gene to the recipient animal.

Parameters: engineeredGeneId, geneId, organId, viralVector

GeneticAlteration Operation
Definition: An intentionally induced change in a gene sequence or in the number of gene copies.

Parameters: histopathologyId, methodOfObservation, observation

GenomicSegment Operation
Definition: A region or set of regions of a genome including chromosome, gene, breakpoint, etc.

Parameters: animalModelId, cloneDesignator, integrationTypeId, LocationOfIntegration,

206

SegmentSize, segmentTypeId

GenotypeSummary Operation
Definition: GenotypeSummary information for a particular model.

Parameters: genotype, nomenclatureID, summary

Image Operation
Definition: An image of the diseased tissues or organs from an AnimalModel.

Parameters: animalModelId, description, image, staining, title

InducedMutation Operation
Definition: A mutation in a Gene caused by exposure to chemicals, radiation or other mutagens.

Parameters: animalModelId, environmentalFactorId

MicroArrayData Operation
Definition: Expression data from microarray experiments with samples from AnimalModels.

Parameters: animalModelId, experimentId, experimentName

ModificationType Operation
Definition: The type of gene modification in the target gene, such as the Null modification,
change in amino acid, deletion, insertion, misense, nonsense, point mutation, etc.

Parameters: modificationTypeName, targetModificationId,

Nomenclature Operation
Definition: Controlled vocabulary terms used for the MMHCC.

Parameters: name

Person Operation
Definition: An individual involved in the deposition, review, and/or approval of MMHCC data.

Parameters: firstName, lastName

Phenotype Operation
Definition: The physical appearance or otherwise observable characteristics of a model animal.

Parameters: animalModelId, breedingNotes, desc, sexDistributionId

Promoter Operation
Definition: A region of DNA sequence upstream of the coding region to which RNA polymerase
will bind and initiate replication.

Parameters: name, regulatoryElementTypeId, speciesId, transGeneId

Publication Operation
Definition: A paper or article associated with MMHCC data published in a scientific journal.

Parameters: animalmodelId, authors, cellLineId, endPage, journal, pmId, publicationStatusId,
startPage, status, therapyId, title, volume, year

207

RegulatoryElement Operation
Definition: A region of DNA sequence controlling the transcription/expression of a gene.

Parameters: name, regulatoryElementTypeId, speciesId, transGeneId

RegulatoryElementType Operation
Definition: The type of regulation imposed by the element, e.g., suppressor, promoter, etc.

Parameters: regulatoryElementTypeName

Role Operation
Definition: The Role that a person or organization plays; for example, submitter, reviewer, etc.

Parameters: roleName

SegmentType Operation
Definition: Genetic segment type such as chromosome, contig, CpG islands, repetitive DNA
(e.g. Alu, LINE, SINE etc.), gene, breakpoint, etc.

Parameters: segmentTypeName

SexDistribution Operation
Definition: The observerable distribution of phenotypes between sexes.

Parameters: SexDistributionTypeName

TargetedModification Operation
Definition: Modification of a specific gene (versus one randomly selected) by a technology
called gene targeting through homologous recombination.

Parameters: animalModelId, blastocystName, engineeredGeneId, escellLineName, geneId,
modificationTypeId,

Therapy Operation
Definition: A defined treatment protocol for testing the efficacy of the treatment on an
engineered AnimalModel.

Parameters: agentId, animalModelId, comments, experiment, treatmentScheduleId

Transgene Operation
Definition: A gene that has been integrated into the germ line of a transgenic animal by gene
targeting technology.

Parameters: animalModelId, integrationTypeId, locationOfIntegration, speciesId

TreatmentSchedule Operation
Definition: The dosage and regimen for treating cancer in an AnimalModel.

Parameters: carcinogenicInterventionId, dosage, regimen, therapyId

Xenograft Operation
Definition: A surgical graft of tissue from one species onto or into individuals of unlike species,
genus, or family.

208

Parameters: administrativeSite, animalModelId, geneticManipulation, hostSpeciesId,
modificationDescription, name, organId, originSpeciesId, parentCellLineName, type

209

15.0 THE caCORE DATA SOURCES

210

15.1 Data Sources in the caBIO Database
The caCORE application programming interfaces were developed primarily in response to the

need for programmatic access to the information at several NCI web sites, including:

the Cancer Genome Anatomy Project (CGAP) •
the CGAP Genetic Annotation Initiative (GAI) •
the Enterprise Vocabulary Services (EVS) •
the Cancer Data Standards Repository (caDSR) •
the Mouse Models of Human Cancers Consortium (MMHCC) •
the Cancer Molecular Analysis Project (CMAP) •
the Gene Expression Data Portal (GEDP) •

While all of these sites provide information and search tools relevant to the molecular
analysis of cancer, each organizes its information somewhat differently, emphasizing for
example, gene sequences, clone libraries, chromosome maps, cancer terminologies, DNA
microarray data, or clinical trials data. The primary operation in the caCORE APIs involves
defining an object type of interest along with a set of search criteria for that object type, and
retrieving all instances of that object that satisfy the defined search criteria.

For example, the goal might be to find all genes that are expressed in bone marrow cells,
where those genes are also known to participate in apoptosis. Using the Java API, the user would
first instantiate a Gene object and a GeneSearchCriteria object. The methods
setFunctionalPathway() and setTissueType(), associated with GeneSearchCriteria objects, could
then be applied to define the search criteria. A subsequent call to myGene.search(myCriteria)
would then retrieve all genes known to satisfy these criteria.

While this information is in theory available from multiple public sites, the number of links to
traverse and the extent of collation that would have to be performed is daunting. The CGAP,
CMAP, and GAI web sites have distilled this information from both internal and public
databases, and the caBIO data warehouses have optimized it for access with respect to the types
of queries defined in the APIs. This section discusses the external and internal data sources for
caBIO and how the information these sources provide can be accessed via caBIO objects.

The caBIO objects fall roughly into two categories: those that pertain to clinical trials data,
and those that are relevant to basic research. The two groups are not mutually exclusive, as some
objects such as Gene, Organ, and Histopathology occur in both. In particular, the Gene object
functions as a central hub of the basic research objects and, accordingly, serves as a portal
between the two relatively disjunct groups.

Before discussing the specific data sources whose information is made available via the
caBIO objects, it is useful to consider the types of data that might be needed to investigate the
molecular basis of cancer. The challenges are to discover which chromosome aberrations, DNA
mutations, and single nucleotide polymorphisms may lead to or be associated with neoplasm
formations and/or cancerous preconditions, as well as what genetic idiosyncracies may affect
variable responses to treatment.

Clearly, sequence information must be available, including whole genomic sequences,
expressed mRNA sequences, expressed sequence tags, and single nucleotide polymorphisms.
Moreover, this sequence information must be available from multiple sources, including both

211

http://cgap.nci.nih.gov/
http://lpg.nci.nih.gov/
http://ncicb.nci.nih.gov/core/EVS
http://ncicb.nci.nih.gov/core/caDSR
http://emice.nci.nih.gov/
http://cmap.nci.nih.gov/
http://gedp.nci.nih.gov/dc/index.jsp

normal and diseased tissue, so as to allow statistical analysis and identification of significant
correlations. But it is not enough to provide the sequence data alone, devoid of any source
information. In particular, it must be possible to identify the tissue types, histological states, and
preparation methods of the samples, as well as the protocols used in generating the libraries from
which the sequences were extracted. As depicted in Figure 15-1, Clone objects can be accessed
directly from either a Gene, Sequence, or SNP object. The Clone object, in turn, provides access
to information about the protocol and preparation methods for its associated Library, as well as
access to TraceFile objects.

 GeneHomolog

Taxon

Chromosome

ExpressionExperiment

ExpressionFeature

Sequence GoOntology

MapLocation

a

ProteinHomolog

Pathw y

Protein

Clone SNP

Histopathology

Organ
Gene

Library

ReadSequence
Tissue Protocol

TraceFile

 Figure 15.1-1 caBIO objects supporting basic research

Figure 15.1-1 is a very reduced view of the entire collection of caBIO objects, showing only
those objects that are most relevant to basic research. The links between objects in Figure 15.1-1
reflect only the get methods defined for those objects. For example, a Library object has
getTissue() and getProtocol() methods; neither the Tissue nor Protocol objects have a
getLibrary() method, however, so the links are unidirectional. Each object also provides access
to a wealth of additional information not shown in Figure 15.1-1.

Thus, an application that attempts to identify new SNPs might use the Clone object to gain
access to TraceFiles. Alternatively, an application that attempts to correlate known SNPs with
disease states might use the Clone objects to filter SNPs according to tissue type, preparation
method, and library protocol.

Chromosome and map location information are important to studies that focus on oncology at
the cytogenetic level. Given a chromosome that is known to have aberrations associated with
cancer, this information can be used to drill down to the molecular level using the caBIO objects
and appropriate search criteria on the chromosomes and map locations of genes and sequences.

212

Another common focus is on proteomic pathways, for example cell cycle control. The caBIO
Pathway objects provide methods to selectively retrieve the genes occuring on that pathway,
according to whether they are mutated, overexpressed, or underexpressed, etc. Thus, starting
from a Pathway that is hypothesized to be involved in some disease etiology, it is possible to
first retrieve the associated Gene objects and, subsequently, explore the features of each Gene,
including its chromosome and map locations, variable expression levels (via
ExpressionExperiment objects), and its position in the Gene Ontology Consortium hierarchies
(via its GoOntology objects).

With the wealth of bioinformatic data that has emerged over the past decade, the need for
translational research that can deliver these advances in knowledge and understanding to the
clinical setting has become increasingly critical. Thus, another important type of information that
must be available is clinical data.

The caBIO objects that are geared to clinical research form a clique or subgrouping among
the larger set of objects and are displayed separately in Figure 15.1-2. Objects that appear in both
“sub-networks” include the Gene, Organ, and Histopathology objects.

 ProtocolAssociation

Agent

Target

ClinicalTrialProtocol

Disease

Histopathology

Anomaly Organ

Gene CMAPOntology

Figure 15.1-2 caBIO objects supporting clinical research

The remainder of this section discusses the external and internal data sources whose
information is used to populate the objects in Figures 15.1-1 and 15.1-2. While the caBIO data
are extracted from many sources that include information from a wide variety of species, we
emphasize that only genomic data pertaining to human and mouse are available from caBIO.
caBIO provides access to curated data from multiple sources, including:

• The NCBI UniGene database [1 – 3]. Unigene provides a nonredundant partitioning of the
genetic sequences contained in GenBank into gene clusters. Each such cluster has a unique
UniGene ID and a list of the mRNA and EST sequences that are subsumed by that cluster.
Related information stored with the cluster includes tissue types in which the gene has been
expressed, mapping information, and the associated LocusLink, OMIM, and HomoloGene

213

http://www.geneontology.org/
http://www.ncbi.nlm.nih.gov/UniGene/

IDs, thus providing access to related information in those NCBI databases as well. Because
the information in UniGene is centered around genes, access to Unigene is provided via the
caBIO Gene objects. Specifically, the method getClusterId() associated with a Gene object
can be used to fetch the gene’s UniGene ID. Similarly, the database IDs for the NCBI OMIM
and LocusLink databases can be obtained using the getOMIMId() and getLocusLinkId()
methods. While there is no explicit caBIO object corresponding to a Unigene cluster, all of
the information associated with the cluster is available directly via the caBIO Gene object’s
methods. For example:

- getGenomicSequences() returns an array containing the mRNA and EST sequences
contained in the Unigene cluster;

- getExpressionFeature() returns an ExpressionFeature object, which can in turn be
queried to obtain a list of the tissues in which the gene is expressed;

- getGeneHomologs() returns an array of GeneHomolog objects for the gene;

- getChromosome() returns the Chromosome on which this gene occurs;

- getMapLocation() returns an array of MapLocation objects associated with the gene.

In all of the above methods, the returned value is itself a caBIO object. Thus, further
information associated with the returned object can in turn be accessed using that object’s
methods.

The information stored with an ExpressionFeature object requires a bit more explanation,
as it is not actually a copy of what is stored in Unigene. caBIO’s expression information is
instead derived as the result of passing the Unigene free-text information through a
controlled vocabulary that defines only about 55 tissue types. Using an ontology to match the
Unigene terms to terms in the caBIO vocabulary, the result is generally a condensed version,
as several terms in the Unigene data may map to the same more general term in the
vocabulary.

NCBI’s LocusLink database [4, 5]. LocusLink contains curated sequence and descriptive
information associated with a gene. Each entry includes information about the gene’s
nomenclature, aliases, sequence accession numbers, phenotypes, UniGene cluster IDs,
OMIM IDs, gene homologies, associated diseases, map locations, and a list of related terms
in the Gene Ontology Consortium’s ontology. Sequence accessions include a subset of
GenBank accessions for a locus, as well as the NCBI Reference Sequence. As mentioned
above, a caBIO Gene object has explicit methods for retrieving the gene’s associated
LocusLink, OMIM, and Unigene IDs. The methods to access the gene’s reference sequences
and aliases are getReferenceSequences() and getAliases(), respectively. Related terms in the
GO ontology are retrieved using the gene’s getGoOntologies() method (see discussion
below). Finally, a Gene object’s getLocusLinkSummary() method returns a free-text
paragraph summarizing gene function.

•

• The Gene Ontology Consortium [6, 7]. The Gene Ontology Consortium provides a controlled
vocabulary for the description of molecular functions, biological processes, and cellular
components of gene products. The terms provided by the consortium define the recognized
attributes of gene products and facilitate uniform queries across collaborating databases. The
caBIO Gene object’s getGoOntologies() method returns a list of GoOntology objects for the

214

http://www.ncbi.nlm.nih.gov/LocusLink/
http://www.geneontology.org/
http://www.geneontology.org/

gene, which can in turn be queried to examine relationships among genes and other terms in
the gene ontology.

In general, each gene is associated with one or more biological processes, and each of
these processes may in turn be associated with many genes. In addition, the GO ontologies
define many parent/child relationships among terms. For example, a branch of the ontology
tree under biological_process contains the term cell cycle control, which in turn
bifurcates into the “child” terms cell cycle arrest, cell cycle checkpoint,
control of mitosis, etc. caBIO’s GoOntology objects capture these relations via the
getChildRelationships(), getParentRelationships(), getOntologyHomoSapienGenes(), and
getOntologyMouseGenes() methods. Thus, it is possible to start with a Gene object and
retrieve its GoOntology objects, and, from there, traverse a network of related genes via the
links deriving from the ontological terms.

As mentioned above, caBIO does not extract ontology terms directly from the Gene
Ontology Consortium but, instead, extracts those terms stored with the LocusLink entry for
that gene.

The HomoloGene database [8]. HomoloGene is an NCBI resource for curated and calculated
gene homologs. The caBIO data sources capture only the calculated homologs stored by
HomoloGene. These calculated homologs are the result of nucleotide sequence comparisons
performed between each pair of organisms represented in UniGene clusters. The caBIO Gene
method to access the gene’s homologs is getGeneHomologs(), and returns an array of
GeneHomolog objects.

•

• BioCarta pathways. BioCarta and its Proteomic Pathway Project (P3) provides detailed
graphical renderings of pathway information concerning adhesion, apoptosis, cell activation,
cell signalling, cell cycle regulation, cytokines/chemokines, developmental biology,
hematopoeisis, immunology, metabolism, and neuroscience. NCI’s CMAP web site captures
pathway information from BioCarta, and transforms the downloaded image data into
Scalable Vector Graphics (SVG) representations that support interactive manipulation of the
online images. The CMAP web site displays BioCarta pathways selected by the user and
provides options for highlighting anomalies, which include under- or overexpressed genes as
well as mutations.

The caBIO Pathway objects make this same information available via their associated
methods, which include: getGenes(), getExpressedGenes(), getMutatedGenes(),
getOverExpressedGenes(), getUnderExpressedGenes(), and getTargetGenes(). The pathway
diagram is also available, as an XML document (getPathwayDiagram()) or in SVG format
(getSvgPathwayDiagram()). The expression and mutation information that is associated with
the Pathway object is derived from EST and SAGE expression data that have been culled by
the CGAP project. Information about target genes is taken from data stored with CMAP.

The Distributed Annotation System (DAS) [9] at UCSC. DAS is a client-server system that
allows a single client machine to collect genome annotation information from multiple
distant servers, collate the information, and display it in a single view, with little or no
coordination among the information providers. DAS/1 servers are currently running at
WormBase, FlyBase, Ensembl, TIGR, and UCSC. caBIO provides access to the DAS

•

215

http://www.ncbi.nlm.nih.gov/HomoloGene/
http://www.biocarta.com/
http://www.w3.org/TR/SVG/
http://biodas.org/

information at UCSC, via the caBIO objects defined in the gov.nih.nci.caBIO.util.das
package.

The starting point for any DAS search is one of the three DAS search criteria objects:
DasTypeSearchCriteria, DasDnaSearchCriteria, and DasGffFeatureSearchCriteria. The
first of these can be used to obtain an array of annotation types, the second fetches DNA
sequences, and the last retrieves annotations satisfying the specified criteria. Further
documentation on these search criteria objects and their affiliated domain objects can be
found in the JavaDocs pages for the das package.

• The Cancer Genome Anatomy Project [10 – 13] (CGAP). The NCI CGAP web site provides
a collection of gene expression profiles of normal, pre-cancer, and cancer cells taken from
various tissues. The CGAP interface allows the user to browse these profiles by various
search criteria, including histology type, tissue type, library protocol, and sample preparation
methods. The goal at NCI is to exploit such expression profile information for the
advancement of improved detection, diagnosis, and treatment for the cancer patient.
Researchers have access to all CGAP data and biological resources for human and mouse,
including ESTs, gene expression patterns, SNPs, cluster assemblies, and cytogenetic
information.

The CGAP web site provides a powerful set of interactive data-mining tools to explore
these data, and the caBIO project was initially conceived as a programmatic interface to
these tools and data. Accordingly, most of the data that are available from CGAP can also be
accessed through the caBIO objects. Exceptions are those data sets having proprietary
restrictions, such as the Mitleman Chromosome Aberration database.

The caBIO ExpressionExperiment object provides a generic interface to the CGAP
expression data, with methods including: getType(), getExpressables(), getExpressionLevel(),
and getHistopathologies(). The type information returned by the first method is simply a
string with the value “SAGE” or “EST.” Expressable is a Java interface that is currently
implemented only by the caBIO Gene objects. Thus, the getExpressables() method of an
ExpressionExperiment returns the set of Gene objects whose expression levels were detected.
getExpressionLevel() returns an array of ExpressionLevel objects, where each of these
objects in turn provides information about the observed expression ratio for that gene.
getHistopathologies() returns an array of Histopathology objects. A Histopathology object
provides information about the organ and disease where the pathology was observed, along
with information about the type of anomaly (mutation or variation in expression) associated
with the histopathology.

Two subclasses, ESTExperiment and SAGEExperiment, inherit their methods from the
ExpressionExperiment object and provide access to CGAP’s EST and SAGE data,
respectively. The immediate source for EST library metadata (who made it, how many
sequences were submitted, tissue, histology, other keywords, etc.) is a custom import from
NCBI's dbEST database. Most of this information is also available to the public through an
HTTP request at NCBI's UniGene pages, e.g.:

http://www.ncbi.nlm.nih.gov/UniGene/lib.cgi?ORG=Hs&LID=289

216

http://ncicb.nci.nih.gov/content/coreftp/caBIO2-0_JavaDocs/gov/nih/nci/caBIO/util/das/package-summary.html
http://cgap.nci.nih.gov/
http://www.ncbi.nlm.nih.gov/UniGene/lib.cgi?ORG=Hs&LID=289

Assignment of the individual ESTs to genes is obtained from the standard UniGene dump.
CGAP’s SAGE data are derived from a collaboration between NCI and Duke University and
are based on new algorithms for mapping sequences to tags [13].

The caBIO Gene object provides access to these expression objects via its overloaded
getExpression() method. With no arguments, this method returns an array of all SAGE and
EST expression experiments for the gene. If a type argument (“SAGE” or “EST”) is
provided, then only the experiments of that type are returned. Finally, it is also possible to
specify the particular Organ and Disease of interest.

CGAP also provides access to lists of sequence-verified human and mouse cDNA IMAGE
clones supplied by Invitrogen. Starting with a caBIO Gene object, you can get the list of
Clones encoding that gene via the getSequenceVerifiedClones() method. From the Clone
object, one can retrieve the Library object that contains that clone using getLibrary().
Specific information about the library can then be extracted using the methods
getCloneProducer(), getCloneVector(), getDescription(), getKeyword(), getLabHost(), etc.

The CGAP Genetic Annotation Initiative [14] (GAI). GAI is an NCI research program to
explore and apply technology for identification and characterization of genetic variation in
genes important in cancer. The GAI utilizes data-mining to identify “candidate” variation
sites from publicly available DNA sequences, as well as laboratory methods to search for
variations in cancer-related genes. All GAI candidate, validated, and confirmed genetic
variants are available directly from the GAI web site, and all validated SNPs have been
submitted to the NCBI dbSNP database as well.

•

SNPs identified by the GAI project can be accessed using caBIO SNP objects. The SNP
object provides access to the Clones in which the SNP was observed via the getClones()
method. The offset of this SNP in the parent sequence is available from the getOffset()
method. The two most common base substitutions occurring at the site are extracted using
getBase1() and getBase2(). The getScore() method returns the confidence score for the
predicted SNP, and getTracefiles() provides access to the trace files used to identify the site
as an SNP. The sequencing trace files used by GAI are imported from Washington
University.

• The NCI Cancer Therapy Evaluation Program [15] (CTEP). CTEP funds an extensive
national program of basic and clinical research to evaluate new anti-cancer agents, with a
particular emphasis on translational research to elucidate molecular targets and drug
mechanisms. In response to this emergent need for translational research, there has been a
groundswell of translational support tools defining controlled vocabularies and registered
terminologies so as to enhance electronic data exchange in areas that have heretofore been
relatively non-computational. The caBIO trials data are updated with new CTEP data on a
quarterly basis, and many of the objects in Figure 15-2 are designed to support translational
research.

For example, a caBIO Target object represents a molecule of special diagnostic or
therapeutic interest for cancer research, and an Anomaly object is an observed deviation in
the structure or expression of a Target. An Agent is a drug or other intervention that is
effective in the presence of one or more specific Targets. The ClinicalTrialProtocol object

217

http://www.invitrogen.com/content.cfm?pageid=3&nv=1&ix=1
http://gai.nci.nih.gov/
http://www.genome.wustl.edu/est/esthmpg.html
http://www.genome.wustl.edu/est/esthmpg.html
http://ctep.cancer.gov/

organizes administrative information pertaining to that protocol and has a getAgents()
method for programmatic access to the specifc therapies deployed.

• NCI’s Cancer Molecular Analysis Project (CMAP) [16]. The CMAP web site is powered by
caBIO, and makes extensive use of the objects in both Figures 15-1 and 15-2. The goal of
CMAP is to enable researchers to identify and evaluate molecular targets in cancer. Towards
this goal, CMAP provides four interfaces.

The CMAP Profile Query tool finds genes with the highest or lowest expression levels
(using SAGE and microarray data) for a given tissue and histology. Selecting a gene from the
resulting table then leads to a Gene Info page, providing information about cytogenetic
location, chromosome aberrations, protein similarities, curated and computed orthologs, and
sequence-verified as well as full-length MGC clones, along with links to various other
databases. The CMAP ontology can be accessed through the caBIO CMAPOntology object.

CMAP’s Molecular Targets interface organizes collections of genes by pathways and by
ontology. Two ontologies are available: (1) the GO ontology described above, and (2) the
CMAP ontology described here. The CMAP ontology relates functional classifications to
molecular targets and agents. For example, selecting “angiogenesis” as the functional term
brings up KDR, a type III receptor tyrosine kinase, and a list of agents for KDR. Selecting the
target then produces a Gene Info page, as described above.

CMAP’s AgentSearch tool allows the researcher to search for drug therapies by name
(with wildcard matching), with the option of restricting the search to agents that are either
associated with a term in the CMAPOntology or registered with a CTEP protocol. If the
agent is associated with CTEP protocols, a table is presented on the Agent Info page, listing
the title of each protocol and a link to its associated documentation. Selecting an entry from
this table in turn leads to the Therapeutic Trials Info page for that CTEP protocol.

With the exception of the Mitelman Chromosome Aberration data, all of the information
available through CGAP is also accessible programmatically through the caBIO objects in
Figures 15-1 and 15-2.

• The NCI Enterprise Vocabulary Services [17, 18] (EVS). The EVS provides NCI with
services and resources for controlled biomedical vocabularies, and includes both the NCI
Thesaurus and the NCI Metathesaurus. The Thesaurus is composed of over 27,000 concepts
represented by about 78,000 terms. The Thesaurus is organized into 18 hierarchical trees
covering areas such as Neoplasms, Drugs, Anatomy, Genes, Proteins, and Techniques. These
terms are deployed by NCI in its automated systems for uses such as keywording and
database coding.

The NCI Metathesaurus maps terms from one standard vocabulary to another, facilitating
collaboration, data sharing, and data pooling for clinical trials and scientific databases. The
Metathesaurus is based on the NLM’s Unified Medical Language System (UMLS) and is
composed of over 70 biomedical vocabularies.

The NCI Cancer Data Standards Repository [18] (caDSR). The Cancer Data Standards
Repository is part of a larger effort associated with the ISO/IEC 11179 standard, whose
purpose is to regularize the vocabularies used in representing and annotating shared
electronic data. The caDSR at NCI is currently being used by a number of clinical trials

•

218

http://cmap.nci.nih.gov/
http://ncicb.nci.nih.gov/core/EVS
http://ncicb.nci.nih.gov/core/caDSR/

research centers for the standardization of case report forms and data collection
terminologies. These groups include:

- The Cancer Therapy Evaluation Project (CTEP)
- Specialized Programs of Research Excellence (SPOREs)
- The Early Detection Research Network (EDRN)
- The Division of Cancer Prevention (DCP)
- The Cancer Imaging Program (CIP)
- The Division of Cancer Epidemiology and Genetics (DECG)

• The NCI Gene Expression Data Portal (GEDP). The Gene Expression Data Portal is
designed to serve the microarray community as both a public source of microarray research
as well as an online resource for data annotation and analysis tools. The massive amount of
microarray data being generated today presents a significant challenge for analysis, storage,
and exchange of data. The GEDP was developed to address this problem, and is part of the
NCICB’s cancer array informatics project (caARRAY). GEDP also functions as a depot for
the exchange of pre- and post-publication data. The GEDP database is fully compliant with
the Minimum Information About a Microarray Experiment (MIAME) specifications and was
developed using the MicroArray and GeneExpression Object Model (MAGE-OM).

• The NCI Cancer Models Database [18] (caMOD). The NCI Cancer Models Database is
provided as a public service to the scientific community to foster the rapid dissemination of
information concerning animal models of human cancer. The database currently contains
murine models contributed from the Mouse Models of Human Cancers Consortium
(MMHCC) Repository, from the Jackson Laboratory, and directly from principle
investigators in the larger research community. The flexible design of the database can
accommodate models from a wide range of species—not just murine models—and it is
anticipated that such models will be added in the future.

219

http://ctep.cancer.gov/
http://spores.nci.nih.gov/
http://www3.cancer.gov/prevention/cbrg/edrn/
http://www3.cancer.gov/prevention/
http://www3.cancer.gov/bip/
http://dceg.cancer.gov/
http://gedp.nci.nih.gov/dc/index.jsp
http://cancermodels.nci.nih.gov/mmhcc/index.jsp
http://www.nih.gov/science/models/mouse/resources/hcc.html
http://jaxmice.jax.org/library/models/

15.2 References

1. Schuler (1997). Pieces of the puzzle: expressed sequence tags and the catalog of human
genes. J Mol Med 75(10):694–8.

2. Schuler et al. (1996). A gene map of the human genome. Science 274: 540–6.

3. Boguski & Schuler (1995). ESTablishing a human transcript map. Nature Genetics 10:
369–71.

4. Pruitt KD, and Maglott DR (2001). RefSeq and LocusLink: NCBI gene-centered resources.
Nucleic Acids Res 29(1):137–40.

5. Pruitt KD, Katz KS, Sicotte H, and Maglott DR (2000). Introducing RefSeq and
LocusLink: curated human genome resources at the NCBI. Trends Genet 16(1):44–7.

6. The Gene Ontology Consortium. (2000). Gene ontology: tool for the unification of biology.
Nature Genetics 25:25–9.

7. The Gene Ontology Consortium. (2001). Creating the gene ontology resource: design and
implementation. Genome Res 11:1425–33.

8. Zhang, Schwartz, Wagner, and Miller (2000). A Greedy algorithm for aligning DNA
sequences. J Comp Biol 7(1-2):203–14.

9. Dowell RD, Jokerst RM, Day A, Eddy SR, Stein L. The Distributed Annotation System.
BMC Bioinformatics 2(1):7.

10. Strausberg RL (2001). The Cancer Genome Anatomy Project: new resources for reading
the molecular signatures of cancer. J Pathol 195:31–40.

11. Strausberg RL, Buetow KH, Emmert-Buck M, and Klausner R. (2000). The Cancer
Genome Anatomy Project: building an annotated gene index. Trends Genet 16:103–106.

12. Strausberg RL (1999). The Cancer Genome Anatomy Project: building a new information
and technology platform for cancer research. In: Molecular Pathology of Early Cancer
(Srivastava S, Henson DE, Gazdar A, eds. IOS Press, 365–70.

13. Boon K, Osorio EC, Greenhut SF, Schaefer CF, Shoemaker J, Polyak K, Morin PJ, Buetow
KH, Strausberg RL, De Souza SJ, and Riggins GJ (2002). An anatomy of normal and
malignant gene expression. Proc Natl Acad Sci U S A 2002 Jul 15.

14. Clifford R, Edmonson M, Hu Y, Nguyen C, Scherpbier T, and Buetow KH (2000).
Expression-based genetic/physical maps of single-nucleotide polymorphisms identified by
the Cancer Genome Anatomy Project. Genome Res 10(8):1259–65.

15. Ansher SS and Scharf R (2001). The Cancer Therapy Evaluation Program (CTEP) at the
National Cancer Institute: industry collaborations in new agent development. Ann N Y
Acad Sci 949:333–40.

220

16. Buetow KH, Klausner RD, Fine H, Kaplan R, Singer DS, and Strausberg RL (2002).
Cancer Molecular Analysis Project: Weaving a rich cancer research tapestry. Cancer Cell
1(4):315–8.

17. Hartel FW and de Coronado S (2002). Information standards within NCI. In: Cancer
Informatics: Essential Technologies for Clinical Trials. Silva JS, Ball MJ, Chute CG,
Douglas JV, Langlotz C, Niland J and Scherlis W, eds. Springer-Verlag.

18. Covitz PA., Hartel F, Schaefer C, De Coronado S, Fragoso G, Sahni H, Gustafson S, and
Buetow KH. caCORE: A common infrastructure for cancer informatics. Bioinformatics, in
press.

221

Appendix A: The GeneDemo Program
import gov.nih.nci.caBIO.bean.*;
import gov.nih.nci.caBIO.util.*;
import java.util.*;

public class GeneDemo {

 public static void main (String args[])
 {
 System.out.println("Running the main of GeneDemo");
 try {

 Gene myGene = new Gene();
 GeneSearchCriteria criteria = new GeneSearchCriteria();
 criteria.setSymbol("pTEN");
 SearchResult result = myGene.search(criteria);
 if (result != null){
 Gene[] genes = (Gene[]) result.getResultSet();

 for(int i = 0; i < genes.length; i++){
 System.out.println("\nInformation regarding Gene "+genes[i].getName());
 System.out.println("\tTitle: "+genes[i].getTitle());
 System.out.println("\tOMIM Id: "+genes[i].getOMIMId());
 System.out.println("\tUnigene Cluster Id: "+genes[i].getClusterId());
 System.out.println("\tLocusLink Id: "+genes[i].getLocusLinkId());
 System.out.println("\tOrganism Abbreviation: "+genes[i].getOrganismAbbreviation());

 Sequence[] refSeqs = genes[i].getReferenceSequences();
 if(refSeqs.length > 0){
 System.out.println("\nAssociated Reference Sequence(s): ");
 for(int k = 0; k < refSeqs.length; k++){
 System.out.println("\n\tSequence Id:"+refSeqs[k].getId());
 System.out.println("\tSequence Acc #:"+refSeqs[k].getAccessionNumber());
 System.out.println("\tSequence Type:"+refSeqs[k].getType());
 System.out.println("\tSequence Ascii String:"+refSeqs[k].getAsciiString());
 }
 }
 StringBuffer buf = new StringBuffer();
 ExpressionFeature feature = genes[i].getExpressionFeature();
 if(feature != null){
 Organ[] organs = feature.getExpressedInOrgans();
 if(organs.length > 0){
 System.out.println("\nOrgans ExpressionFeature In :");
 buf.append("\t");
 for(int j =0; j < organs.length ; j++){
 organs[j].getName();
 buf.append(organs[j].getName()+", ");
 }
 System.out.println(buf.toString());
 }
 }

 GeneAlias[] geneAliases = genes[i].getGeneAliases();
 if(geneAliases.length > 0){
 System.out.println("\nAliase for "+genes[i].getName());
 for(int j =0; j < geneAliases.length ; j++){
 System.out.println("\t Type: "+geneAliases[j].getType());
 System.out.println("\t Name: "+geneAliases[j].getName());
 System.out.println("\t Description: "+geneAliases[j].getDescription());
 }
 }

 Hashtable hash = genes[i].getDbCrossRefs();
 if(hash != null){
 Enumeration dbCrossRefs = hash.keys();
 System.out.println("\nCross References for "+genes[i].getName());
 while(dbCrossRefs.hasMoreElements()){
 String key = (String)dbCrossRefs.nextElement();
 String value = (String) hash.get(key);
 System.out.println("\t"+key+" :"+value);
 }
 }
 Taxon taxon = genes[i].getTaxon();
 System.out.println("\nTaxon: "+taxon.getScientificName()+ "(Scientific Name)");
 System.out.println("Taxon: "+taxon.getCommonName()+ " (Common Name)");

222

 Chromosome chromosome = genes[i].getChromosome();
 System.out.println("\n"+genes[i].getName() +

" is on Chromosome: "+chromosome.getName());

 Clone[] clones = genes[i].getSequenceVerifiedClones();
 if(clones.length > 0){
 System.out.println("\nAssociated Sequence Verified Clones : ");
 for(int k = 0; k < clones.length; k++){
 System.out.println("\tClone Name: "+clones[k].getName());
 System.out.println("\tClone Version: "+clones[k].getVersion());
 System.out.println("\tClone Accession No: "+clones[k].getAccessionNumber());
 System.out.println("\tClone Strain: "+clones[k].getCloneStrain());
 System.out.println("\tCloning Site: "+clones[k].getCloningSite());
 System.out.println("\tClone Insert Size: "+clones[k].getInsertSize());
 System.out.println("\tCloning Site: "+clones[k].getCloningSite());

 Library library = clones[k].getLibrary();
 if(library != null){

 System.out.println("\n\t\tAssociated Library: ");
 System.out.println("\t\tLibrary Id: "+library.getId());
 System.out.println("\t\tLibrary Name: "+library.getName());
 System.out.println("\t\tLibrary Description: "+library.getDescription());
 System.out.println("\t\tLibrary Host: "+library.getLabHost());
 System.out.println("\t\tLibrary Creation Date: "+library.getCreationDate());
 Protocol protocol = library.getProtocol();
 if(protocol != null){
 System.out.println("\t\tAssociated Protocol: ");
 System.out.println("\t\tProtocol Id: "+protocol.getId());
 System.out.println("\t\tProtocol Name: "+protocol.getName());
 System.out.println("\t\tProtocol Description: "+protocol.getDescription());
 System.out.println("\t\tProtocol Type: "+protocol.getType());
 }

 }
 }
 }
 Pathway[] pathways = genes[i].getPathways();
 if(pathways.length > 0){
 System.out.println("\nAssociated Pathway :");
 for(int k = 0; k < pathways.length; k++){
 System.out.println("\t"+pathways[k].getName());
 }
 }

 Protein[] proteins = genes[i].getProteins();
 if(proteins.length > 0){
 System.out.println("\nAssociated Protein :");
 for(int k = 0; k < proteins.length; k++){
 ProteinHomolog[] pHomologs = proteins[k].getProteinHomologs();
 if(pHomologs.length > 0) {
 System.out.println("\nAssociated Protein Homologs:");
 for(int l = 0; l < pHomologs.length; l++){

 Taxon homologTaxon = pHomologs[l].getTaxon();
 System.out.println("\tProtein Homolog Taxon:"+

homologTaxon.getScientificName());
 System.out.println("\tProtein Homolog Alignment Length:"+

pHomologs[l].getAlignmentLength());
 System.out.println("\tProtein Homolog Percentage Similarity:"+

pHomologs[l].getSimilarityPercentage()+"%");
 }

 }
 }
 }

 GeneHomolog[] homologs = genes[i].getGeneHomologs();
 if(homologs.length > 0){
 System.out.println("\nGene Homolog :");
 for(int k = 0; k < homologs.length; k++){
 System.out.println("\tGene Homolog Name:"+homologs[k].getName());
 Taxon homologTaxon = homologs[k].getTaxon();
 System.out.println("\tGene Homolog Taxon:"+homologTaxon.getScientificName());
 System.out.println("\tGene Homolog Percentage Similarity:"+

homologs[k].getSimilarityPercentage()+"%");
 }
 }

223

 GoOntology[] goOntologies = genes[i].getGoOntologies();
 if (goOntologies.length > 0){
 System.out.println("\nRelated Gene Ontology : ");
 for(int k = 0; k < goOntologies.length; k++){
 System.out.println("\t"+goOntologies[k].getName());
 }
 }

 System.out.println("\n===\n");
 }

 }
 } catch (Exception exc) {

 System.out.println("Test failed in the main of GeneDemo.java: " + exc.getMessage());
 exc.printStackTrace();

 }
 }
}

224

Sample Output from GeneDemo:
Running the main of GeneDemo

Information regarding Gene PTEN
 Title: phosphatase and tensin homolog (mutated in multiple advanced cancers 1)
 OMIM Id: 601728
 Unigene Cluster Id: 10712
 LocusLink Id: 5728
 Organism Abbreviation: Hs

Organs ExpressionFeature In :
 bone, brain, cervix, colon, ear, endocrine, eye, gastrointestinal tract, genitourinary, germ
cell, head and neck, heart, kidney, liver, lung, lymph node, mammary gland, muscle, nervous,
ovary, pancreas, pancreatic islet, parathyroid, pituitary gland, placenta, prostate, retina,
salivary gland, skin, spleen, stomach, testis, thyroid, uncharacterized tissue, uterus, vascular,
whole blood, b-cell, fetus, pooled tissue, whole body,

Aliase for PTEN
 Type: BioCarta
 Name: pten
 Description: null
 Type: CGAP
 Name: PTEN
 Description: null

Cross References for PTEN
 LOCUS_LINK :5728
 OMIM :601728
 UNIGENE :10712

Taxon: Homo sapiens(Scientific Name)
Taxon: null (Common Name)

PTEN is on Chromosome: 10

Associated Sequence Verified Clones :
 Clone Name: IMAGE:1535806
 Clone Version: null
 Clone Accession No: AA936678
 Clone Strain: null
 Cloning Site: null
 Clone Insert Size: null
 Cloning Site: null

 Associated Library:
 Library Id: 49
 Library Name: NCI_CGAP_Kid3
 Library Description: 1st strand cDNA was primed with a Not I - oligo(dT) primer, double-
stranded cDNA was ligated to Eco RI adaptors (Pharmacia), digested with Not I and cloned into the
Not I and Eco RI sites of the modified pT7T3 vector. mRNA source: 2 pooled kidneys. Library went
through one round of normalization. Library constructed by Bento Soares and M. Fatima Bonaldo.
 Library Host: DH10B
 Library Creation Date: null
 Associated Protocol:
 Protocol Id: 8
 Protocol Name: normalized
 Protocol Description: null
 Protocol Type: LIBRARY

Associated Pathway :
 eif4Pathway
 ptenPathway
 mtorPathway

Associated Protein :

Associated Protein Homologs:
 Protein Homolog Taxon:Arabidopsis thaliana
 Protein Homolog Alignment Length:177
 Protein Homolog Percentage Similarity:51%
 Protein Homolog Taxon:Caenorhabditis elegans
 Protein Homolog Alignment Length:234
 Protein Homolog Percentage Similarity:40%

225

 Protein Homolog Taxon:Drosophila melanogaster
 Protein Homolog Alignment Length:347
 Protein Homolog Percentage Similarity:44%
 Protein Homolog Taxon:Homo sapiens
 Protein Homolog Alignment Length:403
 Protein Homolog Percentage Similarity:100%
 Protein Homolog Taxon:Mus musculus
 Protein Homolog Alignment Length:403
 Protein Homolog Percentage Similarity:99%
 Protein Homolog Taxon:Rattus norvegicus
 Protein Homolog Alignment Length:403
 Protein Homolog Percentage Similarity:99%
 Protein Homolog Taxon:Sacharomyces cerevisiae
 Protein Homolog Alignment Length:179
 Protein Homolog Percentage Similarity:27%

Gene Homolog :
 Gene Homolog Name:Pten
 Gene Homolog Taxon:Mus musculus
 Gene Homolog Percentage Similarity:91.98%

Related Gene Ontology :
 regulation of cell cycle
 regulation of CDK activity
 inositol/phosphatidylinositol phosphatase activity
 protein phosphatase activity
 protein tyrosine phosphatase activity
 cytoplasm
 protein amino acid dephosphorylation
 development
 cell proliferation
 phosphatidylinositol-3,4,5-trisphosphate 3-phosphatase activity
 hydrolase activity
 negative regulation of cell cycle

==

Information regarding Gene PTEN
 Title: phosphatase and tensin homolog (mutated in multiple advanced cancers 1)
 OMIM Id: 601728
 Unigene Cluster Id: 356062
 LocusLink Id: 5728
 Organism Abbreviation: Hs

Organs ExpressionFeature In :
 brain, colon, endocrine, gastrointestinal tract, genitourinary, germ cell, lung, nervous,
pineal gland, prostate, testis, uncharacterized tissue, whole blood, b-cell, fetus, pooled
tissue,

Aliase for PTEN
 Type: BioCarta
 Name: pten
 Description: null
 Type: CGAP
 Name: PTEN
 Description: null

 [additional pages of output omitted]

226

Appendix B: The EVSDemo Program
import gov.nih.nci.EVS.bean.*;
import gov.nih.nci.EVS.search.*;
import gov.nih.nci.EVS.exception.*;
import gov.nih.nci.common.util.*;
import gov.nih.nci.common.exception.*;
import java.util.*;

public class EVSDemo {

 public static void main (String args[])
 {
 System.out.println("Running the NCI Thesaurus ");
 String termStr = "";

 try
 {

DescLogicConceptSearchCriteria dlcsc = new DescLogicConceptSearchCriteria();
 DescLogicConcept dlc = new DescLogicConcept();
 MetaThesaurusConceptSearchCriteria mtcsc = new MetaThesaurusConceptSearchCriteria();
 MetaThesaurusConcept mtc = new MetaThesaurusConcept();
 String vocabularyName= "NCI_Thesaurus";
 String conceptname = "Gene";

//---
// NCI Thesaurus
// Search()
//--

dlcsc.setLimit(10000);

 dlcsc.setSearchTerm(“Gen*”);
 dlcsc.setVocabularyName("NCI_Thesaurus");
 Concept[] conceptArray = dlc.search(dlcsc);

 for(int i=0; i<conceptArray.length; i++)
 System.out.println(conceptArray[i].getName());

//---
// NCI Thesaurus
// getConceptByName()
//--
dlcsc.setSearchTerm("Gene");
dlcsc.setVocabularyName("NCI_Thesaurus");
Concept concept = dlc.getConceptByName(dlcsc);
conceptArray = new Concept[1];
conceptArray[0] = concept;
printConceptArray(conceptArray);

//---
// NCI Thesaurus
// getProperties()
//--
Property[] propertyArray = dlc.getPropertiesByConceptName("NCI_Thesaurus", "Gene");

for(int i=0; i<propertyArray.length; i++)

 System.out.println(propertyArray[i].getName() +
" ---> "+propertyArray[i].getValue()+"\n");

//---
// NCI Thesaurus
// getRoles()
//--
Role[] roleArray = dlc.getRolesByConceptName("NCI_Thesaurus", "Oncogene MYC");

for(int i=0; i<roleArray.length; i++)

 System.out.println(roleArray[i].getName() +
" ---> "+roleArray[i].getValue()+"\n");

//---
// NCI Thesaurus
// Ancestor
//--

 /**

227

 * Gets the ancestor concepts' codes of the specified concept.
 * The search extends to a final baseline date starting from an initial baseline date.
 * The search is based on a boolean value. If the value is true, the method only
 * searches for the active concepts at the initial baseline date.
 * If the value is false, the method searches for all ancestor concepts,
 * whether active or retired. The search is only applied to "split/merge"
 * actions and the specified concept could be the ancestor concept of itself.
 *
 * @param vocabularyName. The specified vocabulary name.
 * @param code1. The specified concept code.
 * @param atBaseline The boolean value to specify the search type.
 * @param date1. The initial baseline date.
 * @param date2. The final baseline date.
 * @return a vector of concept codes belonging to the ancestor concepts of
 * inCode.
 */

boolean atBaseline=false;

 String code1="C21434";
 String code2 = "";
 String date1="5/7/2003";
 String date2="12/12/2003";

 String[] ancestorCodes =

new History().getAncestors(vocabularyName, code1, atBaseline, date1, date2);

 for (int i=0; i<ancestorCodes.length; i++)
 System.out.println("\t"+ancestorCodes[i]);

//---
// NCI Thesaurus
// Descendants
//--

 /**
 * Gets the descendant concepts' codes of the specified concept.
 * The search extends to a final baseline date starting from an initial baseline date.
 * The search is based on a boolean value. If the value is true, the method only
 * searches for the active concepts at the initial baseline date.
 * If the value is false, the method searches for all descendant concepts,
 * whether active or retired. The search is only applied to "split/merge"
 * actions and the specified concept could be the descendant concept of itself.
 *
 * @param vocabularyName. The specified vocabulary name.
 * @param code1. The specified concept code.
 * @param atBaseline The boolean value to specify the search type.
 * @param date1. The initial baseline date.
 * @param date2. The final baseline date.
 * @return a vector of concept codes belonging to the descendant concepts of
 * inCode.
 */

atBaseline=false;
code1="C21434";
code2 = "";
date1="5/7/2003";
date2="12/12/2003";

String[] descCodes =

new History().getDescendants(vocabularyName,code1, atBaseline, date1, date2);

 for (int i=0; i<descCodes.length; i++)
 System.out.println("\t"+descCodes[i]);

// ---
// NCI Thesaurus
// getConceptEditAction
// --

try {

 String[] actions = new History(). getConceptEditAction(vocabularyName, code1);
 for (int i=0; i<actions.length; i++)
 System.out.println("\t"+actions[i]);

228

 } catch(Exception e){
 e.printStackTrace();
 }

//---
// NCI Thesaurus
// isRetired
//--

 try {
 System.out.println("Concept "+code1+" Retired ? :" +

new DescLogicConcept().isRetired(vocabularyName, code1));
 } catch(Exception e){
 e.printStackTrace();
 }

//---
// is Sub Concept
//--

 String name1 = "Autoantigen Gene";
 String name2 = "Paraneoplastic Disease Antigen Gene";
 System.out.println(name2+" is subconcept of "+name1+"? :" +

new DescLogicConcept().isSubConcept(vocabularyName, name2, name1));

//---
// Get Sub Concept
//--
// Subconcepts

 System.out.println("Sub Concept of Gene");
 String[] subConcepts =

(new DescLogicConcept()).getSubConcepts(vocabularyName, conceptname,
Boolean.FALSE, Boolean.FALSE);

 for (int i=0; i<subConcepts.length; i++)
 System.out.println("\t" + subConcepts[i]);

//---
// Get Super Concept
//--

 // Superconcepts
 conceptname = "Iris";
 System.out.println("Super Concept of Gene");
 String[] superConcepts =

new DescLogicConcept().getSuperConcepts(vocabularyName, conceptname,
Boolean.FALSE, Boolean.FALSE);

 for (int i=0; i<superConcepts.length; i++)
 System.out.println("\t" + superConcepts[i]);

//---
// Meta Thesaurus
// search
//--

 termStr = "lung";
 mtcsc.setSearchTerm(termStr);
 mtcsc.setLimit(2);
 printConceptArray(mtc.search(mtcsc));

//---
// MetaThesaurus
// Get Semantic Types
//--

 SemanticType[] semanticTypes = mtc.getSemanticTypes();
 if(semanticTypes.length>0) printSemanticArray(semanticTypes);

}

catch (Exception exc)
{

System.out.println("Test failed in the main of EVSDemo.java: " + exc.getMessage());
 exc.printStackTrace();
 }
 } // main

229

 public static void printConceptArray(Concept [] conceptArray)
 {

 for(int i=0; i<conceptArray.length; i++)
 {
 try
 {

 Concept conceptObj = (Concept)conceptArray[i];
 System.out.println(conceptObj.getName());
 System.out.println(conceptObj.getConceptCode());

 //Source of the concept
 if(conceptObj.getSources()!= null)
 {
 Source[] sourceArray = conceptObj.getSources();

 for(int j=0; j<sourceArray.length; j++)
 System.out.println("Source Abbreviation ==>" +

sourceArray[j].getAbbreviation());
 }
 //CUI UMLS & TEMP
 if(conceptObj.getConceptUniqueIdentifier()!= null)
 {
 ConceptUniqueIdentifier conceptUID = conceptObj.getConceptUniqueIdentifier();
 //if UMLS is false then TEMP is true
 System.out.println(" Is it a UMLS ? :"+conceptUID.isUMLS());
 //Type of CUI
 System.out.println("CUI :" + conceptUID.getCUI() +

" of Type "+conceptUID.getType());
 }
 //Semantic Types
 if(conceptObj.getSemanticTypes()!= null)
 {
 SemanticType[] semanticTypeArray = conceptObj.getSemanticTypes();

 if(semanticTypeArray.length>0) printSemanticArray(semanticTypeArray);
 }

 //Definitions
 if(conceptObj.getDefinitions()!= null)
 {
 Definition[] definitionArray = conceptObj.getDefinitions();
 if(definitionArray.length>0)

 for(int j=0; j<definitionArray.length; j++)
 {
 System.out.println("Definition \t" +

definitionArray[j].getDefinition()+"\n");
 //Source of the Definition
 System.out.println(" \t\tAbbreviation:" +

definitionArray[j].getSource().getAbbreviation()+" | ");
 System.out.println(" \t\tDescription: " +

definitionArray[j].getSource().getDescription()+" \n");
 }

 }

 }
 catch(Exception e)
 {
 e.printStackTrace();
 }

 }
 }

 public static void printSemanticArray(SemanticType[] semanticTypeArray) throws Exception
 {
 for (int i = 0; i < semanticTypeArray.length; ++i)
 {
 System.out.println(semanticTypeArray[i]);
 }
 }
}

230

Sample Output from EVSDemo:
Running the NCI Thesaurus
Gender
Gender/Minority Enrollment
Gender/Minority Projection
Gene
Gene Alteration, Environmentally Produced
Gene Amplification
Gene Amplification Technique
Gene Amplification or Deletion Detection
Gene Bank
Gene Cloning
Gene
C16612
 Is it a UMLS ? :true
CUI :C0017337 of Type UMLS_CUI
SemanticType => Name: Gene or Genome, ID:
Definition Specific sequences of nucleotides along a molecule of DNA (or, in the case of some
viruses, RNA) which represent the functional units of heredity. The majority of eukaryotic genes
contain coding regions (codons) that are interrupted by non-coding regions (introns) and are
therefore labeled split genes.

 Abbreviation:null |
 Description: null

Definition The functional and physical unit of heredity passed from parent to offspring. Genes
are pieces of DNA, and most genes contain the information for making a specific protein.

 Abbreviation:null |
 Description: null

Definition A functional unit of heredity which occupies a specific position (locus) on a
particular chromosome, is capable of reproducing itself exactly at each cell division, and
directs the formation of an enzyme or other protein. The gene as a functional unit consists of a
discrete segment of a giant DNA molecule containing the purine (adenine and guanine) and
pyrimidine (cytosine and thymine) bases in the ordered and correct sequence that encodes a
specific functional product (i.e., a protein or RNA molecule). Protein synthesis is mediated by
molecules of messenger-RNA formed on the chromosome with the gene acting as template. The RNA
then passes into the cytoplasm and becomes oriented on the ribosomes where it in turn acts as
template to organize a chain of amino acids to form a peptide. Genes normally occur in pairs in
all cells except gametes, as a consequence of the fact that all chromosomes are paired except the
sex chromosomes (X and Y) of the male.

 Abbreviation:null |
 Description: null

Preferred_Name ---> Gene

Semantic_Type ---> Gene or Genome

UMLS_CUI ---> C0017337

DEFINITION ---> <def-source>MSH2001</def-source><def-definition>Specific sequences of
nucleotides along a molecule of DNA (or, in the case of some viruses, RNA) which represent the
functional units of heredity. The majority of eukaryotic genes contain coding regions (codons)
that are interrupted by non-coding regions (introns) and are therefore labeled split genes.</def-
definition>

DEFINITION ---> <def-source>NCI-GLOSS</def-source><def-definition>The functional and physical
unit of heredity passed from parent to offspring. Genes are pieces of DNA, and most genes contain
the information for making a specific protein.</def-definition>

DEFINITION ---> <def-source>NCI</def-source><def-definition>A functional unit of heredity which
occupies a specific position (locus) on a particular chromosome, is capable of reproducing itself
exactly at each cell division, and directs the formation of an enzyme or other protein. The gene
as a functional unit consists of a discrete segment of a giant DNA molecule containing the purine
(adenine and guanine) and pyrimidine (cytosine and thymine) bases in the ordered and correct
sequence that encodes a specific functional product (i.e., a protein or RNA molecule). Protein
synthesis is mediated by molecules of messenger-RNA formed on the chromosome with the gene acting
as template. The RNA then passes into the cytoplasm and becomes oriented on the ribosomes where
it in turn acts as template to organize a chain of amino acids to form a peptide. Genes normally
occur in pairs in all cells except gametes, as a consequence of the fact that all chromosomes are
paired except the sex chromosomes (X and Y) of the male.</def-definition>

231

FULL_SYN ---> <term-name>Gene</term-name><term-group>PT</term-group><term-source>NCI</term-
source>

FULL_SYN ---> <term-name>Genes</term-name><term-group>SY</term-group><term-source>NCI</term-
source>

FULL_SYN ---> <term-name>gene</term-name><term-group>PT</term-group><term-source>NCI-
GLOSS</term-source><source-code>CDR0000045693</source-code>

Synonym ---> Genes

Gene_Associated_With_Disease ---> Burkitt's Lymphoma

Gene_Found_In_Organism ---> Human

Gene_Has_Function ---> Transcription

Gene_Has_Function ---> Transcriptional Regulation

Gene_Has_Function ---> Tumorigenesis

Gene_In_Chromosomal_Location ---> 8q24

 modify|08/22/2003
Concept C21434 Retired ? :false
Paraneoplastic Disease Antigen Gene is subconcept of Autoantigen Gene? :true
Sub Concept of Gene
 Apoptosis Regulation Gene
 Cancer Gene
 Candidate Disease Gene
 Cell Cycle Gene
 Chaperone Gene
 Complement Component Gene
 Cysteine Proteinase Inhibitor Gene
 DNA Repair Gene
 Enzyme Gene
 Fusion Gene
 Gene with Unknown or Unclassified Function
 Growth Factor Gene
 Housekeeping Gene
 Immunoglobulin Family Gene
 Immunoprotein Gene
 Ion Channel Protein Gene
 Ligand Binding Protein Gene
 Major Histocompatibility Complex Gene
 Membrane Protein Gene
 Non-Human Gene
 Peptide Hormone Gene
 Protein Complex Subunit Gene
 Regulatory Gene
 Replication Initiation Gene
 Reporter Gene
 Signaling Pathway Gene
 Structural Gene
 Telomere Maintenance Gene
 Trafficking Protein Gene
 Transcription Factor Gene
 Translation Process Gene
 Unmodeled Gene
Super Concept of Gene
 Eye Part
Lung
null
Source Abbreviation ==>AOD2000
Source Abbreviation ==>CSP2002
Source Abbreviation ==>ELC2001
Source Abbreviation ==>ICDO3
Source Abbreviation ==>LCH90
Source Abbreviation ==>LNC205

 [additional pages of output omitted]

232

Appendix C: The CaseReportFormDemo Program
import gov.nih.nci.caDSR.bean.*;
import gov.nih.nci.caDSR.util.*;
import gov.nih.nci.caDSR.search.*;
import gov.nih.nci.common.search.*;
import java.util.*;

public class CaseReportFormDemo {

 public static void printOutResults(SearchResult result) {
 CaseReportForm[] casereportforms = null;

 if (result != null) {
 try {
 casereportforms = (CaseReportForm[]) result.getResultSet();
 for(int i = 0; i < casereportforms.length; i++){

 System.out.println("\n\tCaseReportForm: "+
 casereportforms[i].getPreferredName());
 System.out.println("\n\n\tId: "+casereportforms[i].getId());
 System.out.println("\tPreferredDefinition:
 "+casereportforms[i].getPreferredDefinition());
 System.out.println("\tLong Name: "+casereportforms[i].getLongName());
 System.out.println("\tVersion: "+casereportforms[i].getVersion());
 System.out.println("\tWorkflowStatusName: "+
 casereportforms[i].getWorkflowStatusName());

 ReferenceDocument[] refDocs = casereportforms[i].getReferenceDocuments();
 if(refDocs.length > 0){
 System.out.println("\n\tAssociated Reference ReferenceDocument(s): ");
 for(int k = 0; k < refDocs.length; k++){
 System.out.println("\tName:"+refDocs[k].getName());
 System.out.println("\tType:"+refDocs[k].getType());
 System.out.println("\tDocText:"+refDocs[k].getDoctext());
 }
 }

 Module[] mods = casereportforms[i].getModules();
 if(mods.length > 0){
 System.out.println("\n\tAssociated Module(s): ");
 for(int k = 0; k < mods.length; k++){
 System.out.println("\n\tId:"+mods[k].getId());
 System.out.println("\tPreferredName:"+mods[k].getPreferredName());
 System.out.println("\tPreferredDefinition:" +
 mods[k].getPreferredDefinition());
 System.out.println("\tLongName:"+mods[k].getLongName());
 }
 }

 Designation[] desigs = casereportforms[i].getDesignations();
 if(desigs.length > 0){
 System.out.println("\n\tAssociated Designation(s): ");
 for(int k = 0; k < desigs.length; k++){
 System.out.println("\n\tId:"+desigs[k].getId());
 System.out.println("\tName:"+desigs[k].getName());
 System.out.println("\tType:"+desigs[k].getType());
 System.out.println("\tLanguageName:"+desigs[k].getLanguageName());
 }
 }

 ClassificationSchemeItem[] csItems =
 casereportforms[i].getClassificationSchemeItems();
 if(csItems.length > 0){
 System.out.println("\nAssociated ClassificationSchemeItem(s): ");
 for(int k = 0; k < csItems.length; k++){
 System.out.println("\n\tId:"+csItems[k].getId());
 System.out.println("\tName:"+csItems[k].getName());
 System.out.println("\tType:"+csItems[k].getType());
 System.out.println("\tDescription:"+csItems[k].getDescription());
 }
 }

 ProtocolFormsSet myProtocolFormsSet =

233

 casereportforms[i].getProtocolFormsSet();
 System.out.println("\n\tAssociated ProtocolFormsSet: ");
 System.out.println("\tTitle: " + myProtocolFormsSet.getTitle());
 System.out.println("\tType: " + myProtocolFormsSet.getType());
 System.out.println("\tPhase: " + myProtocolFormsSet.getPhase());
 System.out.println("\n\tAssociated Context:");
 Context myContext = casereportforms[i].getContext();
 System.out.println("\tId:"+ myContext.getId());
 System.out.println("\tName:"+ myContext.getName());
 System.out.println("\tVersion:"+ myContext.getVersion());
 System.out.println("\tDescription:"+ myContext.getDescription());
 System.out.println("\tDateCreated:"+ myContext.getDateCreated());
 System.out.println("\tDateModified:"+ myContext.getDateModified());
 System.out.println(
 "\n==\n");
 }
 } catch (Exception ex) {
 System.out.println(ex.toString());
 }
 }
 }

 public static void main (String args[]) {

 // This demonstration program searches for CaseReportForm objects using the
 // CRF id as the search criterias. After finding a CaseReportForm the program then
 // displays some of the attributes and associated objects (and their attribtes).

 CaseReportForm myCaseReportForm1 = new CaseReportForm();
 CaseReportFormSearchCriteria criteria1 = new CaseReportFormSearchCriteria();
 SearchResult result1 = new SearchResult();
 try {
 System.out.println("** Searching for CaseReportForms based on Id: “ +
 “A73D1CA4-8ADF-4761-E034-0003BA0B1A09 **\n");
 criteria1.setId("A73D1CA4-8ADF-4761-E034-0003BA0B1A09");
 result1 = myCaseReportForm1.search(criteria1);
 printOutResults(result1);
 } catch (Exception ex) {
 }
 }
}

234

Sample Output from CaseReportFormDemo:
** Searching for CaseReportForms based on Id: A73D1CA4-8ADF-4761-E034-0003BA0B1A09 **

 CaseReportForm: CALGB_49903_ADV_TX_SUMMARY_FOR

 Id: A73D1CA4-8ADF-4761-E034-0003BA0B1A09
 PreferredDefinition: CALGB: 49903 ADVANCED TREATMENT SUMMARY FORM; All Patients
 Long Name: CALGB: 49903 ADVANCED TREATMENT SUMMARY FORM; All Patients
 Version: 3.0
 WorkflowStatusName: APPRVD FOR TRIAL USE

 Associated Module(s):

 Id:A73D1CA4-8AE3-4761-E034-0003BA0B1A09
 PreferredName:CALGB_49903_ADV_TX_SUMM2038661
 PreferredDefinition:CCRR MODULE FOR CALGB: 49903 ADVANCED TREATMENT SUMMARY FORM; All
Patients
 LongName:CCRR MODULE

 Id:A73D1CA4-8B6A-4761-E034-0003BA0B1A09
 PreferredName:TREATMENT_SCHEDULEOTH_T2038705
 PreferredDefinition:Treatment Schedule - Other Therapy
 LongName:Treatment Schedule - Other Therapy

 Id:A73D1CA4-8B9D-4761-E034-0003BA0B1A09
 PreferredName:COMMENTS2038722
 PreferredDefinition:Comments
 LongName:Comments

 Id:A73D1CA4-8B4F-4761-E034-0003BA0B1A09
 PreferredName:TREATMENT_SCHEDULESYSIC2038696
 PreferredDefinition:Treatment Schedule - Systemic Therapy
 LongName:Treatment Schedule - Systemic Therapy

 Id:A73D1CA4-8AE9-4761-E034-0003BA0B1A09
 PreferredName:UNNAMED12038663
 PreferredDefinition:Unnamed1
 LongName:Unnamed1

 Id:A73D1CA4-8B0A-4761-E034-0003BA0B1A09
 PreferredName:UNNAMED22038674
 PreferredDefinition:Unnamed2
 LongName:Unnamed2

 Id:A73D1CA4-8B1F-4761-E034-0003BA0B1A09
 PreferredName:TREATMENT_CYCLE_INFORMA2038681
 PreferredDefinition:Treatment Cycle Information
 LongName:Treatment Cycle Information

 Id:A73D1CA4-8BA3-4761-E034-0003BA0B1A09
 PreferredName:UNNAMED52038724
 PreferredDefinition:Unnamed5
 LongName:Unnamed5

 Associated Designation(s):

 Id:CA69A1C9-2495-4B35-E034-0003BA0B1A09
 Name:2547042
 Type:QC_ID
 LanguageName:ENGLISH

 Associated ProtocolFormsSet:
 Title: null
 Type: Treatment trials
 Phase: 3

 Associated Context:
 Id:99BA9DC8-2095-4E69-E034-080020C9C0E0
 Name:CTEP
 Version:2.31
 Description:NCI Cancer Therapy Evaluation Program

235

 DateCreated:Wed Feb 13 00:00:00 EST 2002
 DateModified:Wed Feb 13 00:00:00 EST 2002

==

236

Appendix D: The CancerModelDemo Program
import java.io.*;
import java.util.*;
import java.net.*;
import org.w3c.dom.*;
import gov.nih.nci.caMOD.bean.*;
import gov.nih.nci.caMOD.search.*;
import gov.nih.nci.common.exception.*;
import gov.nih.nci.common.search.*;
import gov.nih.nci.common.util.*;

public class CancerModelDemo
{

 // **
 // ATTRIBUTES
 // **
 public MicroArrayData[] myMicroArrays = null;
 public Publication[] myPubs = null;
 public TreatmentSchedule[] mySchedules = null;
 public Phenotype[] myPhenotypes = null;

 public SearchResult microArrayResults = null;
 public SearchResult phenotypeResults = null;
 public SearchResult pubResults = null;
 public SearchResult tsResults = null;

 public CancerModelDemo(){}

 private void runDemo()
 {
 try {
 // ==
 // TreatmentSchedule Test
 // ==
 MessageLog.printInfo("\n<==== TESTING TREATMENT SCHEDULE ====>\n");

 // Instantiate a TreatmentScheduleSearchCriteria
 // and set the regimen value we are using to select treatment schedules.
 TreatmentScheduleSearchCriteria tsCriteria = new TreatmentScheduleSearchCriteria();
 tsCriteria.setRegimen("weekly for 6 weeks");

 // Instantiate a TreatmentSchedule
 TreatmentSchedule ts = new TreatmentSchedule();

 // Perform the search on the TreatmentSchedules
 tsResults = ts.search(tsCriteria);

 // Capture the results and loop through the results, casting each returned object
 // to it's expected type...TreatmentSchedule.
 Object[] theSchedules = tsResults.getResultSet();
 MessageLog.printInfo("\nAPI_TEST_CLIENT(search)::TreatmentSchedule Test Results");
 for (int i=0; i < theSchedules.length; i++)
 {
 MessageLog.printInfo("\nThreatment Schedule => " +

((TreatmentSchedule)(theSchedules[i])).toString());
 }

 // ==
 // Publication Test
 // ==
 MessageLog.printInfo("\n<==== TESTING PUBLICATION ====>\n");

 // Instantiate a PublicationSearchCriteria
 // Here, we set the criteria to look for a publication with an id of 1690.
 PublicationSearchCriteria pubCriteria = new PublicationSearchCriteria();
 pubCriteria.setId(new Long(1690));
 String[] pubObjs = {"PublicationStatus"};

 // Instantiate a Publication
 Publication pub = new Publication();

 // Perform the search on the Publications

237

 pubResults = pub.search(pubCriteria);

 // Capture the results and loop through the results, casting each returned object
 // to it's expected type...Publication.
 Object[] thePublications = pubResults.getResultSet();
 MessageLog.printInfo("\nAPI_TEST_CLIENT(search)::Publication Test Results");
 for (int i=0; i < thePublications.length; i++)
 {
 MessageLog.printInfo("\nPublication => " +
 ((Publication)(thePublications[i])).toString());
 }

 // ==
 // MicroArrayData Test
 // ==
 MessageLog.printInfo("\n<==== TESTING MICROARRAYDATA ====>\n");

 // Instantiate a TreatmentScheduleSearchCriteria
 // Here, we set the criteria to look for micro array data with an id of 1.
 //
 MicroArrayDataSearchCriteria microArrayDataCriteria = new MicroArrayDataSearchCriteria();
 microArrayDataCriteria.setId(new Long(1));

 // Instantiate a MicroArrayData
 MicroArrayData microArrayData = new MicroArrayData();

 // Perform the search on the MicroArrayData
 microArrayResults = microArrayData.search(microArrayDataCriteria);

 // Capture the results and loop through the results, casting each returned object
 // to it's expected type...MicroArrayData.
 Object[] theArrayData = microArrayResults.getResultSet();

 {

 MessageLog.printInfo("\nAPI_TEST_CLIENT(search)::MicroArrayData Test Results");
 for (int i=0; i < theArrayData.length; i++)
 {
 MessageLog.printInfo("\nMicroArrayData => " +
 ((MicroArrayData)(theArrayData[i])).toString());
 }

 // ==
 // Phenotype Test
 // ==
 MessageLog.printInfo("\n<==== TESTING PHENOTYPE ====>\n");
 // Instantiate a PhenotypeSearchCriteria
 // Here, we set the criteria to look for all Phenotypes where the breeding notes = "none".
 //
 PhenotypeSearchCriteria phenotypeCriteria = new PhenotypeSearchCriteria();
 phenotypeCriteria.setBreedingNotes("none");

 // Instantiate a Phenotype
 Phenotype phenotype = new Phenotype();

 // Perform the search on the Phenotypes
 phenotypeResults = phenotype.search(phenotypeCriteria);

 // Capture the results and loop through the results, casting each returned object
 // to it's expected type...Phenotype.
 Object[] thePhenotypes = phenotypeResults.getResultSet();
 MessageLog.printInfo("\nAPI_TEST_CLIENT(search)::Phenotype Test Results");
 for (int i=0; i < thePhenotypes.length; i++)

 MessageLog.printInfo("\nPhenotype => " + ((Phenotype)(thePhenotypes[i])).toString());
 }
 } catch (Exception e) {
 }
 }

 public static void main(String args[])
 {
 MessageLog.printError("Testing the caMOD API ...");
 CancerModelDemo apiTest = new CancerModelDemo();
 apiTest.runDemo();
 }
}

238

Sample Output from CancerModelDemo:
<==== TESTING TREATMENT SCHEDULE ====>

API_TEST_CLIENT(search)::TreatmentSchedule Test Results

Threatment Schedule => TreatmentSchedule id: 6
TreatmentSchedule dosage: 100 mg

status: PublicationStatus id: 1

API_TEST_CLIENT(search)::MicroArrayData Test Results

API_TEST_CLIENT(search)::Phenotype Test Results

Phenotype desc: Blocked for tumor promoter-induced activation of AP-1 transcription factor and
for skin tumor promotion (papillomagenesis that leads to carcinoma formation). Not blocked to
tumor promoter induced hyperplasia.

TreatmentSchedule regimen: weekly for 6 weeks

Threatment Schedule => TreatmentSchedule id: 7
TreatmentSchedule dosage: 100 mg/kg
TreatmentSchedule regimen: weekly for 6 weeks

<==== TESTING PUBLICATION ====>

API_TEST_CLIENT(search)::Publication Test Results

Publication => Publication id: 1690
Publication journal: Toxicol Pathol
Publication volume: ;29 Suppl
Publication pmid: 11695547
Publication startPage: 117
Publication year: 2001
Publication authors: van Kreijl, CF
Publication title: Xpa and Xpa/p53+/- knockout mice: overview of available data
Publication endPage: 127

PublicationStatus publicationStatusName: Published

<==== TESTING MICROARRAYDATA ====>

MicroArrayData => MicroArrayData id: 1
MicroArrayData experimentName: Initiating oncogenic event determines gene-expression patterns of
human breast cancer models
MicroArrayData experimentID: 160
availability: null

<==== TESTING PHENOTYPE ====>

Phenotype => Phenotype id: 108

Phenotype breedingNotes: none
sexDistribution: null

Phenotype => Phenotype id: 109
Phenotype desc: No phenotype
Phenotype breedingNotes: none
sexDistribution: null

Phenotype => Phenotype id: 96
Phenotype desc: Cell proliferation, but not cell survival, is increased in Pten+/-/Cdkn1b-/-
mice. Moreover, Pten+/-/Cdkn1b-/- mice develop prostate carcinoma at complete penetrance within
three months from birth.
Phenotype breedingNotes: none
sexDistribution: SexDistribution id: 3
SexDistribution sexDistributionTypeName: Male Only

Phenotype => Phenotype id: 19
Phenotype desc: Pten +/Ð mice, despite their young age (Pten+/Ð mice, <3.5 months), spontaneously
develop malignant tumours of various histological origins.

239

Moreover, Pten haploinsufficiency results in a lethal autoimmune disorder and Pten+/- mice are
impaired in Fas-mediated apoptosis.
Phenotype breedingNotes: none
sexDistribution: SexDistribution id: 1
SexDistribution sexDistributionTypeName: Both Sexes

Phenotype => Phenotype id: 20
Phenotype desc: Pten inactivation resulted in early embryonic lethality.
Phenotype breedingNotes: none
sexDistribution: SexDistribution id: 1
SexDistribution sexDistributionTypeName: Both Sexes

240

Appendix E: The MageTest Program
import gov.nih.nci.mageom.bean.Experiment.*;
import gov.nih.nci.mageom.bean.BioAssayData.*;
import gov.nih.nci.mageom.bean.BioAssay.*;
import gov.nih.nci.mageom.bean.Description.*;
import gov.nih.nci.mageom.bean.QuantitationType.*;
import gov.nih.nci.mageom.domain.Experiment.*;
import gov.nih.nci.mageom.domain.BioAssay.*;
import gov.nih.nci.mageom.domain.BioAssayData.*;
import gov.nih.nci.mageom.domain.Description.*;
import gov.nih.nci.mageom.search.*;

import java.util.Vector;

/**
* This class provides sample code that demonstrates the following.

* 3) Getting the bioassay datum values from each bioassay.

{

 * specified BioAssayDataImpl object to stdout.

 * from.

 {

* 1) Getting a list of experiments in the database.
* 2) Getting a list of bioassays for each experiment.

*/
public class MageTest

 /**
 * This method will dump the bioassay datum values obtained from the

 *
 * @param bioAssayData - The object to obtain the bioassay datum values

 */
 public static void dumpBioDataValues(BioAssayDataImpl bioAssayData)

 try
 {
 long totalMillis = 0;

 //first get all the values into memory... time this
 long startTimeMillis = 0;
 long endTimeMillis = 0;

 startTimeMillis = System.currentTimeMillis();
 BioDataValuesImpl values = bioAssayData.getBioDataValuesImpl();
 endTimeMillis = System.currentTimeMillis();
 totalMillis += (endTimeMillis - startTimeMillis);

 if(values instanceof BioDataTuplesImpl)
 {
 BioDataTuplesImpl tuples = (BioDataTuplesImpl)values;

 startTimeMillis = System.currentTimeMillis();
 BioAssayDatumImpl[] datum = tuples.getBioAssayTupleDataImpl();
 endTimeMillis = System.currentTimeMillis();
 totalMillis += (endTimeMillis - startTimeMillis);

 if(datum != null)
 {
 System.out.println(" BioDataTuple returned " + datum.length + " BioAssayDatum");
 Vector outputValues = new Vector();
 for(int x = 0; x < datum.length; x++)
 {
 startTimeMillis = System.currentTimeMillis();
 String value = datum[x].getValue();
 endTimeMillis = System.currentTimeMillis();
 totalMillis += (endTimeMillis - startTimeMillis);

 String quantTypeDesc = "";

 startTimeMillis = System.currentTimeMillis();
 QuantitationTypeImpl qType = datum[x].getQuantitationTypeImpl();
 DescriptionImpl[] descs = (DescriptionImpl[])qType.getDescriptions();
 endTimeMillis = System.currentTimeMillis();
 totalMillis += (endTimeMillis - startTimeMillis);

 if(descs != null && descs.length > 0)
 {

241

 startTimeMillis = System.currentTimeMillis();
 quantTypeDesc = descs[0].getText();
 endTimeMillis = System.currentTimeMillis();
 totalMillis += (endTimeMillis - startTimeMillis);
 }
 else
 {
 quantTypeDesc = "Unknown";
 }
 System.out.println(" Datum #" + x + ":" + quantTypeDesc + "=" + value);
 outputValues.add(quantTypeDesc + ": " + value);
 }

 System.out.println("**");
 System.out.println("The preceding " + datum.length +

" BioAssayDatum were retrieved in " + totalMillis + " milliseconds.");
 System.out.println("**");
 outputValues.clear();
 outputValues = null;
 }
 else
 {
 System.out.println("No data available for bioassay from impl.");
 }
 }
 else
 {
 System.out.println("Returned data was not BioDataTuples: " +

values.getClass().toString());
 }
 }
 catch(Exception e)
 {
 System.out.println("Error getting details of bio data: " + e.toString());
 e.printStackTrace();
 }
 }

 /**
 * Gets the list of bioassays for the experiment and calls a method to print
 * out the bioassay datum for each.
 *
 * @param exp - The experiment object to get bioassays from.
 */
 public static void dumpExperimentBioAssays(ExperimentImpl exp)
 {
 try
 {
 Long id = exp.getId();
 BioAssayImpl[] bioassays = exp.getBioAssaysImpl();

 if(bioassays.length > 0)
 {
 System.out.println("Experiment: " + id + " returned " +

bioassays.length + " bioassays.");
 }

 for(int y = 0; y < bioassays.length; y++)
 {
 try
 {
 if(bioassays[y] instanceof MeasuredBioAssay)
 {
 System.out.println("Measured BioAssay");
 MeasuredBioAssayDataImpl[] baData =

((MeasuredBioAssayImpl)bioassays[y]).getMeasuredBioAssayDataImpl();
 for(int z = 0; z < baData.length; z++)
 {
 dumpBioDataValues(baData[z]);
 }
 }
 else if(bioassays[y] instanceof DerivedBioAssay)
 {
 System.out.println("Derived BioAssay");
 DerivedBioAssayDataImpl[] baData =

242

((DerivedBioAssayImpl)bioassays[y]).getDerivedBioAssayDataImpl();
 System.out.println("got " + baData.length + " DerivedBioAssayDataImpl-s back");
 for(int z = 0; z < baData.length; z++)
 {
 dumpBioDataValues(baData[z]);
 }
 }
 else
 {
 System.out.println("Unknown BioAssay type returned.");
 }

 bioassays[y] = null;
 }
 catch(Exception e)
 {
 System.out.println("Error getting bioassaydata: " + e);
 e.printStackTrace();
 }
 }
 }
 catch(Exception e)
 {
 System.out.println("Error getting experiment details: " + e.getMessage());
 e.printStackTrace();
 }
 }

 /**
 * Returns an array of all experiments with the specified ID. Array should have
 * zero or one elements on return, zero if there are no experiments with the
 * specified Id.
 *
 * @param expId - The experiment Id to search on.
 */
 public static ExperimentImpl getExperimentWithId(long expId)
 {
 ExperimentImpl experiment = null;

 try
 {
 experiment = new ExperimentImpl(new Long(expId));
 }
 catch(Exception e)
 {
 System.out.println("Error creating experiment '" + expId + "': " + e.getMessage());
 e.printStackTrace();
 }

 return experiment;
 }

 /**
 * Returns a list of all experiments available on the server.
 */
 public static ExperimentImpl[] getExperiments()
 {
 ExperimentImpl[] experiments = new ExperimentImpl[0];

 Vector temp = new Vector();
 try
 {
 ExperimentImpl emptyExp = new ExperimentImpl();
 //get all experiments by searching experiments with empty search criteria
 SearchResult results = emptyExp.search(new SearchCriteria());
 Object[] objects = results.getResultSet();
 for(int x = 0; x < objects.length; x++)
 {
 if(objects[x] instanceof ExperimentImpl)
 {
 temp.add(objects[x]);
 }
 }
 }

243

 catch(Exception e)
 {
 System.out.println("Error getting experiments from server: " + e.getMessage());
 e.printStackTrace();
 }

 //dump the experiment objects into the return array.
 experiments = (ExperimentImpl[])temp.toArray(experiments);

 return experiments;
 }

 /**
 * Test driver. Performs simple test that dumps all bioassay datum values from
 * all experiments to stdout. The program also logs performance measurements as
 * it goes.
 *
 * @param args - Not used.
 */
 public static void main(String[] args)
 {
 if(args.length > 0)
 {
 String expIdStr = args[0];
 try
 {
 long expId = Long.valueOf(expIdStr).longValue();
 ExperimentImpl exp = getExperimentWithId(expId);
 System.out.print(" Experiment #" + expId);
 System.out.print(" name=" + exp.getName());
 System.out.println(" plat=" + exp.getPlatformType());
 dumpExperimentBioAssays(exp);
 }
 catch(Exception e)
 {
 }
 }
 else
 {
 ExperimentImpl[] experiments = getExperiments();
 for(int x = 0; x < experiments.length; x++)
 {
 dumpExperimentBioAssays(experiments[x]);
 }
 }
 }
}

244

Sample Output from MageTest:
Experiment #2915 name=CGH plat=BAC - Spotted
Experiment: 2915 returned 1 bioassays.
Derived BioAssay
got 1 DerivedBioAssayDataImpl-s back
 BioDataTuple returned 1000 BioAssayDatum
 Datum #0:Log2(ratio)=.168334
 Datum #1:Log2(ratio)=.131524
 Datum #2:Log2(ratio)=.159808
 Datum #3:Log2(ratio)=.057781
 Datum #4:Log2(ratio)=.223079
 Datum #5:Log2(ratio)=-.002598
 Datum #6:Log2(ratio)=.134221
 Datum #7:Log2(ratio)=.135854
 Datum #8:Log2(ratio)=.038074
 Datum #9:Log2(ratio)=.097623
 Datum #10:Log2(ratio)=-.019812
 Datum #11:Log2(ratio)=.199289
 Datum #12:Log2(ratio)=.139072
 Datum #13:Log2(ratio)=.208712
 Datum #14:Log2(ratio)=.128289
 Datum #15:Log2(ratio)=.081225
 Datum #16:Log2(ratio)=.011551
 Datum #17:Log2(ratio)=.069545
 Datum #18:Log2(ratio)=.150789
 Datum #19:Log2(ratio)=-.002607
 Datum #20:Log2(ratio)=.18813
 Datum #21:Log2(ratio)=.120432
 Datum #22:Log2(ratio)=.180525
 Datum #23:Log2(ratio)=.132566
 Datum #24:Log2(ratio)=.187966
 Datum #25:Log2(ratio)=-.013124
 Datum #26:Log2(ratio)=.105193
 Datum #27:Log2(ratio)=.163016
 Datum #28:Log2(ratio)=.076419
 Datum #29:Log2(ratio)=.137624
 Datum #30:Log2(ratio)=.041027
 Datum #31:Log2(ratio)=-.026699
 Datum #32:Log2(ratio)=.15916
 Datum #33:Log2(ratio)=.15978
 Datum #34:Log2(ratio)=.111909
 Datum #35:Log2(ratio)=.168225
 Datum #36:Log2(ratio)=.173834
 Datum #37:Log2(ratio)=.133104
 Datum #38:Log2(ratio)=.22337
 Datum #39:Log2(ratio)=.09875
 Datum #40:Log2(ratio)=.152262
 Datum #41:Log2(ratio)=.11133
 Datum #42:Log2(ratio)=.179602
 Datum #43:Log2(ratio)=.110244
 Datum #44:Log2(ratio)=.151796
 Datum #45:Log2(ratio)=-.031964
 Datum #46:Log2(ratio)=-.094368
 Datum #47:Log2(ratio)=.175549
 Datum #48:Log2(ratio)=.067724
 Datum #49:Log2(ratio)=-.10684
 Datum #50:Log2(ratio)=.178781
 Datum #51:Log2(ratio)=.004972
 Datum #52:Log2(ratio)=.025608
 Datum #53:Log2(ratio)=-.100067
 Datum #54:Log2(ratio)=-.005743
 Datum #55:Log2(ratio)=.138009
 Datum #56:Log2(ratio)=.04702
 Datum #57:Log2(ratio)=.034106
 Datum #58:Log2(ratio)=.186648
 Datum #59:Log2(ratio)=.097639
 Datum #60:Log2(ratio)=-.072626
 Datum #61:Log2(ratio)=.211926
 Datum #62:Log2(ratio)=.129871
 Datum #63:Log2(ratio)=.093671

[additional pages of output omitted]

245

Appendix F: The caBIO_MageTest Program
import gov.nih.nci.caBIO.bean.Gene;
import gov.nih.nci.caBIO.bean.GeneSearchCriteria;
import gov.nih.nci.mageom.bean.*;
import gov.nih.nci.mageom.bean.BioAssay.*;
import gov.nih.nci.mageom.bean.BioAssayData.*;
import gov.nih.nci.mageom.bean.DesignElement.*;
import gov.nih.nci.mageom.bean.Experiment.*;
import gov.nih.nci.mageom.domain.Description.*;
import gov.nih.nci.mageom.domain.BioAssay.*;

/**
 * This class provides sample code that demonstrates the following.
 * 1) Getting an experiment from the database.
 * 2) Getting a list of bioassays for the experiment.
 * 3) Getting the bioassay datum values from each bioassay.
 * 4) Get the DesignElement/Reporter from the bioassay
 * 5) Get the caBio Gene corresponding to the Reporter
 *
 * Invoke as: MageTest <experiment-id>
 */
public class MageTest {

/**
 * This method will retrieve the caBIO Gene corresponding to a MAGE-OM Reporter
 *
 * @param theReporter - The Mage-OM ReporterImpl object to obtain the
 * corresponding caBIO Gene
 */

public static void getCabioGeneInfo(ReporterImpl theReporter) {
try {

Long theId = theReporter.getId();
if (theId == null) return;

System.out.println("MAGE-OM Reporter id =" + theId);
System.out.println("MAGE-OM Reporter name=" + theReporter.getName());

GeneSearchCriteria caCrit = new GeneSearchCriteria();
caCrit.setExpressionMeasurementId(theId);
gov.nih.nci.caBIO.bean.SearchResult caRes =

(new Gene()).search(caCrit);
Gene[] caGenes = (Gene[]) caRes.getResultSet();
System.out.println(" Genes from cabio #=" + caGenes.length);

 for (int ig = 0; ig < caGenes.length; ig++) {

System.out.println(
 "caBIO Gene #" + ig + " id = " + caGenes[ig].getId());

}

if (values instanceof BioDataTuplesImpl) {

System.out.println(
"caBIO Gene #" + ig + " nam= " + caGenes[ig].getName());

} catch (Exception e) {
System.out.println(

 "Error getting cabio gene info: " + e.toString());
e.printStackTrace();

}
}

/**
 * This method will retrieve the bioassay datum values obtained from the
 * specified BioAssayDataImpl object. Get the DesignElement of the bioassay
 * datum. And finally call the getCabioGene
 *
 * @param bioAssayData - The object to obtain the bioassay datum values
 * from.
 */
public static void getBioDataValues(BioAssayDataImpl bioAssayData) {

try {

BioDataValuesImpl values = bioAssayData.getBioDataValuesImpl();

BioDataTuplesImpl tuples = (BioDataTuplesImpl) values;
BioAssayDatumImpl[] datum = tuples.getBioAssayTupleDataImpl();

if (datum != null) {

246

System.out.println(
datum.length + " MAGE-OM BioAssayDatums returned");

for (int x = 0; x < datum.length; x++) {

String value = datum[x].getValue();
Object theElement = datum[x].getDesignElementImpl();

if (theElement instanceof ReporterImpl) {

} else {

Long id = exp.getId();

 getCabioGeneInfo((ReporterImpl) theElement);
} else {

 System.out.println("DesignElement not a Reporter?.");
 }
}

} else {
 System.out.println("No data available for bioassay from impl.");

}

System.out.println("Returned data was not BioDataTuples: " +
values.getClass().toString());

}
} catch (Exception e) {

System.out.println(
 "Error getting details of bio data: " + e.toString());

e.printStackTrace();
}

}

/**
 * Test driver. A simple example of getting caBIO objects from MAGE-OM
 * references.
 *
 * @param args - the expIdStr
 */

public static void main(String[] args) {
if (args.length > 0) {

String expIdStr = args[0];
try {

long expId = Long.valueOf(expIdStr).longValue();
ExperimentImpl exp = new ExperimentImpl(new Long(expId));
if (exp == null)

throw new Exception("Experiment " + expIdStr + " not loaded.");

System.out.println("MAGE-OM Experiment Id = " + id);
System.out.println("MAGE-OM Experiment Name = " + exp.getName());
System.out.println("MAGE-OM Experiment Platform = " +

exp.getPlatformType());

Description[] eDescrips=exp.getDescriptions();
System.out.println("MAGE-OM Experiment # Descripts = " +

eDescrips.length);
for (int di=0; di < eDescrips.length; di++){

System.out.println("MAGE-OM Experiment Desc#" + di + " = " +
eDescrips[di].getText());

}

BioAssayImpl[] bioassays = exp.getBioAssaysImpl();
System.out.println("MAGE-OM Experiment: " + id + " returned " +

bioassays.length + " bioassays.");

if (bioassays.length > 0) {
for (int y = 0; y < bioassays.length; y++) {

Long bioassayId = bioassays[y].getId();

if (bioassays[y] instanceof MeasuredBioAssay) {
//String bioAssayName = bioassays[y].
MeasuredBioAssayDataImpl[] baData = ((MeasuredBioAssayImpl)

bioassays[y]).getMeasuredBioAssayDataImpl();
for (int z = 0; z < baData.length; z++) {

getBioDataValues(baData[z]);
}

}else if (bioassays[y] instanceof DerivedBioAssay) {
DerivedBioAssayDataImpl[] baData = ((DerivedBioAssayImpl)

bioassays[y]).getDerivedBioAssayDataImpl();

for (int z = 0; z < baData.length; z++) {

247

getBioDataValues(baData[z]);
}

}else {
System.out.println(

"Unknown BioAssay type returned." + bioassays[y])
}

}
} else {

System.out.println("No BioAssay data.");
}

} catch (Exception e) {
System.out.println("Failure Except " + e);

 e.printStackTrace();
 }

} else {
System.out.println(
 "Please specify an experiment id as an argument.");

}
}

}

248

Sample Output from caBIOMageTest:
MAGE-OM Experiment Id = 2998
MAGE-OM Experiment Name = test
MAGE-OM Experiment Platform = cDNA - Spotted
MAGE-OM Experiment # Descripts = 1
MAGE-OM Experiment Desc#0 = test
MAGE-OM Experiment: 2998 returned 1 bioassays.
8 MAGE-OM BioAssayDatums returned
MAGE-OM Reporter id =86181
MAGE-OM Reporter name=92584_at
 Genes from cabio #=1
caBIO Gene #0 id = 111155
caBIO Gene #0 nam= Kbras2-pending
MAGE-OM Reporter id =85511
MAGE-OM Reporter name=98065_at
 Genes from cabio #=1
caBIO Gene #0 id = 147251
caBIO Gene #0 nam= Ormdl3
MAGE-OM Reporter id =85397
MAGE-OM Reporter name=102327_at
 Genes from cabio #=0
MAGE-OM Reporter id =84927
MAGE-OM Reporter name=101011_at
 Genes from cabio #=1
caBIO Gene #0 id = 122396
caBIO Gene #0 nam= Cct4
MAGE-OM Reporter id =86738
MAGE-OM Reporter name=94713_at
 Genes from cabio #=1
caBIO Gene #0 id = 108665
caBIO Gene #0 nam= Myo7a
MAGE-OM Reporter id =85404
MAGE-OM Reporter name=97614_f_at
 Genes from cabio #=1
caBIO Gene #0 id = 111738
caBIO Gene #0 nam= Anxa1
MAGE-OM Reporter id =86184
MAGE-OM Reporter name=95563_at
 Genes from cabio #=1
caBIO Gene #0 id = 151542
caBIO Gene #0 nam= Arih1
MAGE-OM Reporter id =85778
MAGE-OM Reporter name=92689_at
 Genes from cabio #=1
caBIO Gene #0 id = 121992
caBIO Gene #0 nam= Il18bp

249

Appendix G: The SearchPkgExample Program
import gov.nih.nci.caBIO.search.*;
import gov.nih.nci.caBIO.bean.*;

import java.util.*;
import java.io.*;

public class SearchPkgExample{

public static void main(String[] args){
try{

//Build the root search criteria
List geneNames = new ArrayList();
geneNames.add("PTEN");
geneNames.add("TP53");
geneNames.add("BRCA1");
geneNames.add("yadda");
geneNames.add("CEACAM3");
geneNames.add("CEACAM4");
GeneSearchCriteria gsc = new GeneSearchCriteria();
gsc.putCriteria("name", geneNames);

// Initialize the query tree
List geneAtts = new ArrayList();
geneAtts.add("name");
SelectionNode tree = new SelectionNodeImpl("Gene", gsc, geneAtts);

// Insert another selection node
List pathAtts = new ArrayList();
pathAtts.add("name");
pathAtts.add("displayValue");

SelectionNode pathNode =

new SelectionNodeImpl("Gene.pathways", new PathwaySearchCriteria(),pathAtts);
tree.insert(pathNode, 0);

// Construct a SearchCriteriaMapping
ObjectGrid og = new ObjectGridImpl();

 SearchCriteriaMapping[] batchSearch =
 new SearchCriteriaMapping[geneNames.size()];

for(ListIterator i = geneNames.listIterator(); i.hasNext();){
 String clientData = (String)i.next();
 GeneSearchCriteria sc = new GeneSearchCriteria();
 sc.putCriteria("name", clientData);
 SearchCriteriaMapping mapping = new SearchCriteriaMapping(clientData, sc);
 batchSearch[i.previousIndex()] = mapping;

}
GridSearchCriteria sc = new GridSearchCriteria(tree, batchSearch);
GridSearchResultMapping[] results = og.search(sc);

// Pull out the results
for(int i = 0; i < results.length; i++){
 GridSearchResultMapping resultMapping = results[i];
 String name = (String)resultMapping.getClientData();
 GridRow[] rows = resultMapping.getResult();
 System.out.println("\n" + rows.length + " results for " + name + "\n");
 for(int j = 0; j < rows.length; j++){

GridCell cell1 = rows[j].getCell("Gene.name");
GridCell cell2 = rows[j].getCell("Gene.pathways.name");
GridCell cell3 = rows[j].getCell("Gene.pathways.displayValue");
if (cell1 != null && cell2!= null && cell3!= null){

System.out.println(cell1.getObject() + ": " +
 cell2.getObject() + "(" +
 cell3.getObject() + ")");

}
}

}
}catch(Exception ex){

 ex.printStackTrace();
 System.exit(1);

}
System.exit(0);

}
}

250

Sample Output from SearchPkgExample:
6 results for PTEN

PTEN: mtorPathway(mTOR Signaling Pathway)
PTEN: ptenPathway(PTEN Dependent Cell Cycle Arrest and Apoptosis)
PTEN: eif4Pathway(Regulation of eIF4e and p70 S6 Kinase)
Pten: m_eif4Pathway(Regulation of eIF4e and p70 S6 Kinase)
Pten: m_mtorPathway(mTOR Signaling Pathway)
Pten: m_ptenPathway(PTEN dependent Cell Cycle Arrest and Apoptosis)

15 results for TP53

TP53: g1Pathway(Cell Cycle: G1/S Check Point)

TP53: p53Pathway(p53 Signaling Pathway)
TP53: rnaPathway(Double Stranded RNA Induced Gene Expression)
TP53: tidPathway(Chaperones Modulate Interferon Signaling Pathway)
TP53: atmPathway(ATM Signaling Pathway)
TP53: pmlPathway(Regulation of Transcriptional Activity by PML)
TP53: efpPathway(Estrogen-responsive protein Efp controls cell cycle and breast tumors growth)
TP53: arfPathway(Tumor Suppressor Arf Inhibits Ribosomal Biogenesis)
TP53: g2Pathway(Cell Cycle: G2/M Checkpoint)
TP53: telPathway(Telomeres, Telomerase, Cellular Aging and Immortality)
TP53: plk3Pathway(Regulation of Cell Cycle Progression by Plk3)
TP53: p53hypoxiaPathway(Hypoxia and p53 in the Cardiovascular System)
TP53: rbPathway(RB Tumor Suppressor/Checkpoint Signaling in Response to DNA Damage)
TP53: atrbrcaPathway(Role of Brac1, Brac2 and Atr)
TP53: tertPathway(Overview of telomerase protein component gene hTert Transcriptional Regulation
)

7 results for BRCA1

BRCA1: atrbrcaPathway(Role of Brac1, Brac2 and Atr)
BRCA1: atmPathway(ATM Signaling Pathway)
BRCA1: g2Pathway(Cell Cycle: G2/M Checkpoint)
BRCA1: carm-erPathway(CARM1 and Regulation of the Estrogen Receptor)
Brca1: m_atmPathway(ATM Signaling Pathway)
Brca1: m_g2Pathway(Cell Cycle: G2/M Checkpoint)
Brca1: m_atrbrcaPathway(Role of Brac1, Brac2 and Atr)

0 results for yadda

1 results for CEACAM3

1 results for CEACAM4

251

TypicalCabioSearch Program
import gov.nih.nci.caBIO.search.*;
import gov.nih.nci.caBIO.bean.*;
import java.util.*;
import java.io.*;

/*
 * This example is used to demonstrate the same functionality as the previous
* example – but in this case, using the basic search methods rather than the
* advanced methods defined in the search packages
*/

public class TypicalCabioSearch {

public static void main (String args[])
{

System.out.println("Running the main of TypicalCabioSearch ");
try {

// add the Gene Names to an Array List object

List geneNames = new ArrayList();
geneNames.add("PTEN");
geneNames.add("TP53");
geneNames.add("BRCA1");
geneNames.add("yadda");
geneNames.add("CEACAM3");
geneNames.add("CEACAM4");

// Now use a GeneSearchCriteria Object to apply each criteria
// and iterate over the SearchResults one at a time

Gene gene = new Gene();
SearchResult result = null;
System.out.println("\nInformation regarding Gene ");

for(ListIterator i = geneNames.listIterator(); i.hasNext();){
String symbol = (String) i.next();
GeneSearchCriteria sc = new GeneSearchCriteria();
sc.setSymbol(symbol);
result = gene.search(sc);
if (result != null){

Gene[] genes = (Gene[]) result.getResultSet();
for(int j = 0; j < genes.length; j++){

System.out.println("\nGene "+genes[j].getName());

// now define a second query to get the Pathways for this gene

Pathway[] pathways = genes[j].getPathways();
if(pathways.length > 0){

System.out.println("\nAssociated Pathway(s): ");
for(int k = 0; k < pathways.length; k++){

System.out.println("\t"+ pathways[k].getDisplayValue()+ " (" +
 pathways[k].getName() +")");

} // end for
} // end if

} // end for
} // end if

} // end for
} catch (Exception exc) {

System.out.println("Test failed in the main of TypicalCabioSearch.java: " +
exc.getMessage());

exc.printStackTrace();
}

} // end main
}

252

APPENDIX H. geneClient.pl

#!/usr/bin/perl -w

Client side SOAP application which tests the urn:nci-gene-service

use SOAP::Lite;

use HTML::Entities;

$USAGE=qq`

Usage: geneClient.pl {server} {port} {method} [-organism {organism}]

 [-symbol {symbol}] [-genBankAccessionNumber {genBankAccessionNumber}]

 [-unigeneClusterId {unigeneClusterId}] [-pathwayId {pathwayId}]

 [-allPathwayId {allPathwayId}] [-expressedPathwayId {expressedPathwayId}]

 [-overExpressedPathwayId {overExpressedPathwayId}]

 [-underExpressedPathwayId {underExpressedPathwayId}]

 [-mutatedGenePathwayId {mutatedGenePathwayId}] [-chromosomeId {chromosomeId}]

 [-uniqueIdentifier {uniqueIdentifier}] [-tissueType {tissueType}]

 [-functionalPathway {functionalPathway}]

 [-cytogenicLocation {cytogenicLocation}] [-geneNameKeyword {geneNameKeyword}]

 [-goOntologyHomoSapienId {goOntologyHomoSapienId}]

 [-goOntologyMouseId {goOntologyMouseId}]

 [-resultStart {resultStartNum}]

 [-resultCount {resultCountNum}]

 [-fillInObjects {objects comma dilimited such as GoOntology, Maplocation }]

 [-returnHeavyXML {"true"} to return a completely fill in XML document]

... where {method} must be one of the following:

... where {method} must be one of the following:

 getGenes, getTaxons, getClones, getReferenceSequences, getBioCartaIds,

 getGenomicSequences, getGoOntologies, getGeneHomologs, getSequences,

 getPathways, getChromosome, getMapLocations, getExpressionFeature,

 getProteins, getGenes, getTaxons, getClones,

 getReferenceSequences, getBioCartaIds,

 getGenomicSequences, getGoOntologies, getGeneHomologs,

253

 getSequences, getPathways, getChromosome,

 getMapLocations, getExpressionFeature, getProteins

for complete upto date method list, please see
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/index.html

e.g.,

\$ geneClient.pl cabio.nci.nih.gov 80 getGenes -symbol brca1

`

 ;

$URI='urn:nci-gene-service';

$PROXY_PATH='/soap/servlet/rpcrouter';

my $argc=@ARGV;

anonymous hash reference, passed as map to SOAP service

my $searchRec={};

first three arguments are mandatory

if ($argc < 3) {

 die $USAGE;

}

else {

 $server = shift @ARGV;

 $port = shift @ARGV;

 $method = shift @ARGV;

 $argc=@ARGV;

 while ($argc) {

 my $arg = shift @ARGV;

 if ($arg eq "-organism") {$searchRec->{organism} = shift @ARGV;}

 elsif ($arg eq "-symbol") {$searchRec->{symbol} = shift @ARGV;}

 elsif ($arg eq "-genBankAccessionNumber") {$searchRec->{genBankAccessionNumber} = shift
@ARGV;}

 elsif ($arg eq "-unigeneClusterId") {$searchRec->{unigeneClusterId} = shift @ARGV;}

 elsif ($arg eq "-pathwayId") {$searchRec->{pathwayId} = shift @ARGV;}

254

 elsif ($arg eq "-allPathwayId") {$searchRec->{allPathwayId} = shift @ARGV;}

 elsif ($arg eq "-expressedPathwayId") {$searchRec->{expressedPathwayId} = shift @ARGV;}

 elsif ($arg eq "-overExpressedPathwayId") {$searchRec->{overExpressedPathwayId} = shift
@ARGV;}

 elsif ($arg eq "-underExpressedPathwayId") {$searchRec->{underExpressedPathwayId} = shift
@ARGV;}

 elsif ($arg eq "-mutatedGenePathwayId") {$searchRec->{mutatedGenePathwayId} = shift @ARGV;}

 elsif ($arg eq "-chromosomeId") {$searchRec->{chromosomeId} = shift @ARGV;}

 elsif ($arg eq "-uniqueIdentifier") {$searchRec->{uniqueIdentifier} = shift @ARGV;}

 elsif ($arg eq "-tissueType") {$searchRec->{tissueType} = shift @ARGV;}

 elsif ($arg eq "-functionalPathway") {$searchRec->{functionalPathway} = shift @ARGV;}

 elsif ($arg eq "-cytogenicLocation") {$searchRec->{cytogenicLocation} = shift @ARGV;}

 elsif ($arg eq "-geneNameKeyword") {$searchRec->{geneNameKeyword} = shift @ARGV;}

 elsif ($arg eq "-goOntologyHomoSapienId") {$searchRec->{goOntologyHomoSapienId} = shift
@ARGV;}

 elsif ($arg eq "-goOntologyMouseId") {$searchRec->{goOntologyMouseId} = shift @ARGV;}

 elsif ($arg eq "-resultStart") {$searchRec->{resultStart} = shift @ARGV;}

 elsif ($arg eq "-resultCount") {$searchRec->{resultCount} = shift @ARGV;}

 elsif ($arg eq "-fillInObjects") {$searchRec->{fillInObjects} = shift @ARGV;}

 elsif ($arg eq "-returnHeavyXML") {$searchRec->{returnHeavyXML} = shift @ARGV;}

 $argc=@ARGV;

 }

}

$s = SOAP::Lite

 -> uri($URI)

 -> proxy("http://$server:$port$PROXY_PATH");

make service request

$som=$s->$method(SOAP::Data->type(map => $searchRec));

interpret result

if ($som->fault) {

 print "FAULT ENCOUNTERED!\nfaultcode:\t" . $som->faultcode . "\nfaultstring:\t" . $som-
>faultstring . "\n";

} else {

 $xmldoc = $som->result;

255

256

 print "\nMETHOD CALLED: $method\n\n" . decode_entities($xmldoc) . "\n\n";

}

	OVERVIEW OF caCORE
	Introduction: The NCICB Core Infrastructure
	The caCORE Standards
	Organization of this Guide

	THE UNIFIED MODELING LANGUAGE
	Use Case diagrams
	The Class diagram
	The Rose Web Publisher Pages
	Package diagrams
	Collaboration and Sequence diagrams

	THE caBIO DOMAIN OBJECTS
	The Object Hierarchies
	The caBIO Domain Object Catalog
	Agent
	Anomaly
	Chromosome
	ClinicalTrialProtocol
	Clone
	CMAPOntology
	CMAPOntologyRelationship
	ConceptSearch
	ConsensusSequence
	Contig
	Disease
	DiseaseRelationship
	ESTExperiment
	ExpressionExperiment
	ExpressionFeature
	ExpressionLevelDesc
	ExpressionMeasurement
	ExpressionMeasurementArray
	Gene
	GeneAlias
	GeneHomolog
	GoOntology
	GoOntologyRelationship
	Histopathology
	Library
	MapLocation
	Organ
	OrganRelationship
	Pathway
	Protein
	ProteinHomolog
	Protocol
	ProtocolAssociation
	ReadSequence
	SAGEExperiment
	Sequence
	SNP
	Target
	Taxon
	Tissue
	TraceFile

	THE EVS DOMAIN OBJECTS
	The UMLS Metathesaurus
	Knowledge Representations and Description Logic
	Description Logic

	Description Logic in the NCI Thesaurus
	Concept Edit History in the NCI Thesaurus
	The caBIO EVS API
	The EVS Search Paradigm
	Description Logic Concepts
	MetaThesaurus Concepts

	The EVS Domain Object Catalog
	BaseLineDate
	Concept
	ConceptUniqueIdentifier
	Definition
	DescLogicConcept
	EvsProperties
	History
	MetaThesaurusConcept
	Property
	Role
	SemanticType
	Source

	Downloading the NCI Thesaurus
	The OWL Encoding of the NCI Thesaurus

	Ontylog Name Conversion
	Mapping of the Gene Ontology to Ontylog

	THE caDSR DOMAIN OBJECTS
	Modeling Metadata: The ISO/IEC 11179 Standard
	The caDSR Metamodel
	The caDSR API
	Downloading the caDSR
	The caDSR Domain Object Catalog
	AdministeredComponent
	CaseReportForm
	ClassificationScheme
	ClassificationSchemeItem
	ClassSchemeClassSchemeItem
	ConceptualDomain
	Context
	DataElement
	DataElementConcept
	DataElementConceptRelationship
	Designation
	DomainObject
	EnumeratedValueDomain
	Module
	NonenumeratedValueDomain
	ObjectClass
	PermissibleValue
	Property
	ProtocolFormsSet
	ProtocolFormsTemplate
	Qualifier
	Question
	ReferenceDocument
	Representation
	ValidValue
	ValueDomain
	ValueDomainPermissibleValue
	ValueMeaning

	THE caMOD DOMAIN OBJECTS
	The Mouse Models of Human Cancers Consortium
	The caMOD API
	The caMOD Domain Object Catalog
	AnimalModel
	Availability
	CarcinogenicIntervention
	CellLine
	CompleteNotScreened
	Conditionality
	ContactInfo
	EditorApproved
	EditorAssigned
	EditorMoreInfo
	EngineeredGene
	EnvironmentalFactor
	GeneDelivery
	GeneFunction
	GeneticAlteration
	GenomicSegment
	GenotypeSummary
	Incomplete
	Image
	InducedMutation
	IntegrationType
	JaxInfo
	MicroArrayData
	ModificationType
	Nomenclature
	Organization
	Party
	PartyRole
	Person
	Phenotype
	Promoter
	Publication
	PublicationStatus
	RegulatoryElement
	RegulatoryElementType
	RepositoryInfo
	ReviewerApproved
	ReviewerAssigned
	ReviewerRejected
	Role
	ScreenerApproved
	ScreenerAssigned
	ScreenerRejected
	SegmentType
	SexDistribution
	TargetedModification
	Therapy
	Transgene
	TreatmentSchedule
	Xenograft

	THE caCORE MAGE-OM API
	The GEDP Project
	The caCORE MAGE-OM API
	Example 1:
	Example 2:

	Installing a MAGE-OM Java Client
	The caBIO Bridge to MAGE

	SEARCH CRITERIA OBJECTS AND THE caCORE APIs
	The Java API Search/Retrieve Paradigm
	Constructing More Complex Queries

	How the caBIO Search Paradigm Operates
	The SOAP API
	The HTTP Interface
	Summary of Search Controls in the Different APIs
	The caBIO SearchCriteria Catalog
	The caBIO SearchCriteria-Attribute Map

	The EVS SearchCriteria Catalog
	The EVS SearchCriteria-Attribute Map

	The caDSR SearchCriteria Catalog
	The caDSR SearchCriteria-Attribute Map

	The caMOD SearchCriteria Catalog
	The caMOD Criteria-Attribute Map

	THE caCORE PACKAGE ARCHITECTURE
	Organization of Packages in caCORE
	The caBIO DAS Package
	Accessing the DAS Server Using caBIO Objects

	Advanced Search Methods
	Basic and Advanced Search Methods
	Constructing the query tree
	Building the GridSearchCriteria
	Executing the Search and Interpreting the Results
	Building More Complex Queries
	Roles and Attributes

	THE caBIO Java API
	Installing a caBIO Client
	Requirements for Installing the caBIO Java Client
	Defining the ClassPath
	Compiling and Running the GeneDemo Program
	Troubleshooting

	Installing the caBIO Server

	CODE EXAMPLES
	The caBIO GeneDemo program
	The EVSDemo Program
	The caDSR Demo Program
	The caMOD Demo Program
	The MAGE-OM Demo Program

	THE SOAP API AND WEB SERVICES
	The SOAP API and caBIO
	Using the SOAP API with Perl and SOAP::LITE
	Accessing the caBIO SOAP Services
	Accessing the GeneService using SOAP::Lite
	Issuing a SOAP::Lite Service Request
	The Complete geneClient.pl Perl Script
	The XML Output and the Additional Arguments

	The caBIO SOAP Services Catalog
	AgentService
	AnomalyService
	ChromosomeService
	ClinicalTrialProtocolService
	CloneService
	CMAPOntologyService
	ConsensusSequenceService
	ContigService
	DiseaseRelationshipService
	DiseaseService
	EstExperimentService
	ExpressionFeatureService
	ExpressionMeasurementArrayService
	ExpressionMeasurementService
	GeneAliasService
	GeneHomologService
	GeneService
	GoOntologyRelationshipService
	GoOntologyService
	HistopathologyService
	LibraryService
	MapLocationService
	OrganRelationshipService
	OrganService
	PathwayService
	ProteinHomologService
	ProteinService
	ProtocolAssociationService
	ProtocolService
	ReadSequenceService
	SageExperimentService
	SequenceService
	SNPService
	TargetService
	TaxonService
	TissueService
	TraceFileService
	Map of Web Services to Methods

	The EVS SOAP Services Catalog
	DescLogicConceptService
	MetathesaurusConceptService

	The caDSR SOAP Services Catalog
	CaseReportFormService
	ClassificationSchemeItemService
	ClassificationSchemeService
	ClassSchemeClassSchemeItemService
	ConceptualDomainService
	ContextService
	DataElementConceptRelationshipsService
	DataElementConceptService
	DataElementService
	DesignationService
	EnumeratedValueDomainService
	ModuleService
	NonenumeratedValueDomainService
	ObjectClassService
	PermissibleValueService
	PropertyService
	ProtocolFormsSetService
	ProtocolFormsTemplateService
	QualifierService
	QuestionService
	ReferenceDocumentService
	RepresentationService
	ValidValueService
	ValueDomainPermissibleValueService
	ValueMeaningService

	The caMOD Soap Services Catalog
	AnimalModelService
	AvailabilityService
	CarcinogenicInterventionService
	CellLineService
	ConditionalityService
	ContactInfoService
	EngineeredGeneService
	EnvironmentalFactorService
	GeneDeliveryService
	GeneticAlterationService
	GenomicSegmentService
	GenotypeSummaryService
	ImageService
	InducedMutationService
	MicroArrayDataService
	ModificationTypeService
	NomenclatureService
	PersonService
	PhenotypeService
	PromoterService
	PublicationService
	RegulatoryElementService
	RegulatoryElementTypeService
	RoleService
	SegmentTypeService
	SexDistributionService
	TargetedModificationService
	TherapyService
	TransgeneService
	TreatmentScheduleService
	XenograftService

	THE HTTP INTERFACE
	Overview
	Using the HTTP Interface
	The operation= syntax
	The query= syntax
	Syntax Summary

	Drilling Down Through XLinks
	Controlling the Number of Items Returned
	Specifying the IP Address and Port in the URL
	Applying XSL to XML Output
	The HTTP Operation Catalog
	The caBIO HTTP Catalog

	Agent Operation
	Anomaly Operation
	Chromosome Operation
	ClinicalTrialProtocol Operation
	Clone Operation
	CMAPOntology Operation
	ConsensusSequence Operation
	Contig Operation
	DiseaseRelationship Operation
	Disease Operation
	EstExperiment Operation
	ExpressionFeature Operation
	ExpressionMeasurementArray Operation
	ExpressionMeasurement Operation
	GeneAlias Operation
	GeneHomolog Operation
	Gene Operation
	GoOntologyRelationship Operation
	GoOntology Operation
	Histopathology Operation
	Library Operation
	MapLocation Operation
	OrganRelationship Operation
	Organ Operation
	Pathway Operation
	ProteinHomolog Operation
	Protein Operation
	ProtocolAssociation Operation
	Protocol Operation
	ReadSequence Operation
	SageExperiment Operation
	Sequence Operation
	SNP Operation
	Target Operation
	Taxon Operation
	Tissue Operation
	TraceFile Operation
	The EVS HTTP Catalog

	DescLogicConceptService
	MetathesaurusConceptService
	The caDSR HTTP Catalog

	CaseReportForm Operation
	ClassificationSchemeItem Operation
	ClassificationScheme Operation
	ClassSchemeClassSchemeItem Operation
	ConceptualDomain Operation
	Context Operation
	DataElementConceptRelationships Operation
	DataElementConcept Operation
	DataElement Operation
	Designation Operation
	EnumeratedValueDomain Operation
	Module Operation
	NonenumeratedValueDomain Operation
	ObjectClass Operation
	PermissibleValue Operation
	Property Operation
	ProtocolFormsSet Operation
	ProtocolFormsTemplate Operation
	Qualifier Operation
	Question Operation
	ReferenceDocument Operation
	Representation Operation
	ValidValue Operation
	ValueDomainPermissibleValue Operation
	ValueDomain Operation
	ValueMeaning Operation
	The caMOD HTTP Catalog

	AnimalModel Operation
	Availability Operation
	CarcinogenicIntervention Operation
	CellLine Operation
	Conditionality Operation
	ContactInfo Operation
	EngineeredGene Operation
	EnvironmentalFactor Operation
	GeneDelivery Operation
	
	GeneticAlteration Operation

	GenomicSegment Operation
	GenotypeSummary Operation
	Image Operation
	InducedMutation Operation
	MicroArrayData Operation
	ModificationType Operation
	Nomenclature Operation
	Person Operation
	Phenotype Operation
	Promoter Operation
	Publication Operation
	RegulatoryElement Operation
	RegulatoryElementType Operation
	Role Operation
	SegmentType Operation
	SexDistribution Operation
	TargetedModification Operation
	Therapy Operation
	Transgene Operation
	TreatmentSchedule Operation
	Xenograft Operation
	THE caCORE DATA SOURCES
	Data Sources in the caBIO Database
	References

	Appendix A: The GeneDemo Program
	Appendix B: The EVSDemo Program
	Appendix C: The CaseReportFormDemo Program
	Appendix D: The CancerModelDemo Program
	Appendix E: The MageTest Program
	Appendix F: The caBIO_MageTest Program
	Appendix G: The SearchPkgExample Program
	APPENDIX H. geneClient.pl

