
 Center for Bioinformatics

 CACORE
3.2 TECHNICAL GUIDE

Revised December 22, 2006

i

CREDITS AND RESOURCES

caCORE 3.2 Contributors

Development Technical Guide Program Management

Prerna Aggarwal3 Art Lian4 Steve Alred3 Tara Akhavan1

Gavin Brennan7 Ying Long1 Michael Connolly1 Steve Alred3

Vanessa Caldwell7 Wei Lu7 Dan Dimitru4 Bill Britton7

Ben Chapman7 Christophe Ludet3 Wendy Erickson-Hirons6 Peter Covitz2

Michael Connolly1 Harsh Marwaha3 Jill Hadfield 2 Charles Griffin4

Eric Copen4 Doug Mason1 Jane Jiang3 Frank Hartel2

Kim Diercksen7 Kunal Modi4 Shan Jiang1 George Komatsoulis2

Dan Dumitru4 Shaziya Muhsin1 George Komatsoulis2 Sichen Liu2

Craig Fee7 Satish Patel4 Christophe Ludet3 Krishnakant Shanbhag2

Gilberto Fragoso2 Kim Ong5 Doug Mason1 Denise Warzel2

Steven Hunter 4 Konrad Rokicki 1 Kunal Modi4

Shan Jiang1 Ralph Rutherford7 Shaziya Muhsin1

Sriram
Kalyanasundaram7

Claire Wolfe7 Satish Patel4

Doug Kanoza7 Ye Wu1 Tracy Safran1

Alan Klink7 Rob Wynne8 Krishnakant Shanbhag2

Vinay Kumar4 Bob Wysong7 Denise Warzel 2

Norval Johnson7 Nafis Zebarjadi1 Nafis Zebarjadi1

Thai Le1 Jennifer Zeng1

1Science Applications
International Corpora-
tion (SAIC)

3Oracle Corporation 5Northrop-Grumman 7Terpsys

2National Cancer Insti-
tute Center for Bioinfor-
matics (NCICB)

4Ekagra 6Northern Taiga Ven-
tures, Inc.

8Management System
Designers, Inc.

caCORE 3.2 Technical Guide

ii

The following NCICB listserv facilities are pertinent to this Technical Guide.

GForge is a cross project collaboration site for NCICB caCORE developers located at
http://gforge.nci.nih.gov/projects/cacore/.

LISTSERV URL Name

caBIO_Users https://list.nih.gov/archives/cabio_users.html caBIO Users Discus-
sion Forum

caBIO_Developers https://list.nih.gov/archives/
cabio_developers.html

caBIO Developers Dis-
cussion Forum

caCORE_SDK_
Users

https://list.nih.gov/archives/
cacore_sdk_users-l.html

caCORE SDK Users
Discussion Forum

caCORE_SDK_
Developers

https://list.nih.gov/archives/cacore_sdk_dev-
l.html

caCORE SDK Develop-
ers Discussion Forum

caDSR_Users https://list.nih.gov/archives/cadsr_users.html Cancer Data Standards
Repository

NCI EVS Listserv https://list.nih.gov/archives/ncievs-l.html NCI Vocabulary
Services Information

caCORE Area/
Tool URL Description

cacoretoolkit http://gforge.nci.nih.gov/
projects/cacoresdk/

The NCICB caCORE Software Develop-
ment Kit is a set of tools designed to aid
in the design and creation of a
'caCORE-like' software system.

caBIO DB http://gforge.nci.nih.gov/
projects/cabiodb/

Schema and related data for the caBIO
database.

caCORE Perl API http://gforge.nci.nih.gov/
projects/cabioperl/

The purpose of this project is to develop
a Perl-based interface to caCORE.

Common Security
Module (CSM)

http://gforge.nci.nih.gov/
projects/security/

The CSM provides application develop-
ers with powerful security tools to allow
application developers to integrate
security with minimal coding effort.

Common Logging
Module (CLM)

http://gforge.nci.nih.gov/
projects/logging/

The CLM is a powerful set of auditing
and logging tools implemented in a flexi-
ble and comprehensive solution.

https://list.nih.gov/archives/cabio_users.html
https://list.nih.gov/archives/cabio_developers.html
https://list.nih.gov/archives/cacore_sdk_users-l.html
https://list.nih.gov/archives/cacore_sdk_dev-l.html
http://gforge.nci.nih.gov/projects/security/
http://gforge.nci.nih.gov/projects/cacore/
https://list.nih.gov/archives/cadsr_users.html
http://gforge.nci.nih.gov/projects/cabiodb/
http://gforge.nci.nih.gov/projects/cabioperl/
http://gforge.nci.nih.gov/projects/logging/
https://list.nih.gov/archives/ncievs-l.html
http://gforge.nci.nih.gov/projects/cacoresdk/

iii

TABLE OF CONTENTS
Preface ...1

Purpose ... 1
Release Schedule .. 1
Audience ... 1
How To Use This Guide ... 2
Additional caCORE Documentation .. 2

Chapter 1
Overview to caCORE ..3

Architecture Overview ... 3
Domain Models in caCORE ... 4

Enterprise Vocabulary Services (EVS) ... 4
Cancer Data Standards Repository (caDSR) .. 4
Cancer Bioinformatics Infrastructure Objects (caBIO) 4
Common Security Model (CSM) ... 5
Common Logging Module (CLM) .. 5

Chapter 2
caCORE Architecture ..7

caCORE System Architecture .. 7
Client Technologies ... 9
Major caCORE Domain Packages ... 10

Chapter 3
Interacting with caCORE ...13

caCORE Service Interface Paradigm ... 13
Java API .. 14

Installation and Configuration .. 14
A Simple Example ... 17
Service Methods ... 17
Examples of Use .. 20

caCORE 3.2 Technical Guide

iv

EVS Service Methods .. 31
Utility Methods .. 32

Web Services API .. 33
Configuration ... 34
Operations .. 34
EVS Considerations ... 35
Examples of Use .. 37
Limitations .. 41

XML‐HTTP API ... 42
Service Location and Syntax .. 42
Examples of Use .. 43
Working With Result Sets .. 44
Limitations .. 45

Perl API ... 45
Language‐Specific Considerations .. 46
Installation and Configuration .. 46
Service Methods .. 48
Examples of Use .. 49
Limitations .. 51

Chapter 4
Enterprise Vocabulary Services ...53

Introduction .. 53
The UMLS Metathesaurus ... 54
Knowledge Representations and Description Logic 56

Description Logic .. 58
Description Logic in the NCI Thesaurus ... 59

Concept Edit History in the NCI Thesaurus ... 60
caCORE EVS API ... 62

EVS Domain Object Catalog .. 63
EVS Data Sources .. 65
EVS Search Paradigm ... 65

EVSQuery and EVSQueryImpl ... 66
EVSQuery Methods and Parameters .. 66
Examples of Use .. 69

Downloading the NCI Thesaurus ... 71
OWL Encoding of the NCI Thesaurus ... 72

Ontylog Mappings .. 75
Mapping of Gene Ontology to Ontylog ... 75
Mapping of MedDRA to Ontylog ... 76
Mapping of MGED Ontology to Ontylog .. 77

Table of Contents

v

Chapter 5
Cancer Data Standards
Repository ..79

Introduction .. 79
Modeling Metadata: The ISO/IEC 11179 Standard ... 80
caDSR Metamodel ... 83
caDSR API .. 90

caDSR Domain Object Catalog .. 92
Downloading the caDSR .. 100
caDSR API Examples .. 102

Using the caDSR Java API .. 102
Using the caDSR Web Services API .. 103
UML Project API Examples ... 105

Chapter 6
Cancer Bioinformatics
Infrastructure Objects ..109

Introduction .. 109
caBIO API ... 109
Data Sources in the caBIO Database ... 112
caGrid Identifiers ... 116
caBIO Specific Utilities .. 117

Manipulating SVG Diagrams .. 117

Chapter 7
Common Package ..121

Introduction .. 121
Common Package API .. 121
Common Package Specific Utilities .. 122

XMLUtility .. 122

Chapter 8
Common Security Module ..125

Chapter 9
Common Logging Module ..127

Introduction .. 127
CLM Overview .. 128

Explanation ... 128
Workflow for CLM Integration ... 131
Deployment Models .. 132

CLM APIs ... 132

caCORE 3.2 Technical Guide

vi

Overview to Integrating CLM APIs ... 133
Integrating with the CLMʹs Audit Logging Services 136

Appendix A
Unified Modeling Language ...139

UML Modeling .. 139
Use‐case Documents and Diagrams ... 140
Class Diagrams .. 142

Naming Conventions .. 143
Relationships Between Classes .. 143

Package Diagrams ... 146
Component Diagrams ... 147
Sequence Diagrams ... 148

Appendix B
References ...151

Technical Manuals/Articles .. 151
Scientific Publications ... 152
caBIG Material ... 153
caCORE Material ... 153
Modeling Concepts ... 153
Applications Currently Using caCORE ... 153
Software Products ... 154

Glossary ..155
Index ..159

1

PREFACE
Purpose

The caCORE 3.2 Technical Guide describes a core infrastructure called Cancer Com-
mon Ontologic Representation Environment (caCORE), an open-source standards-
based semantics computing environment and tool set created by the National Cancer
Institute Center for Bioinformatics (NCICB).

This guide describes:

the purpose, architecture and components of caCORE including Enterprise
Vocabulary Services (EVS), Cancer Data Standards Repository (caDSR), Can-
cer Bioinformatics Infrastructure Objects (caBIO), Cancer Models Database
(caMOD), Common Security Module (CSM), and Common Logging Module
(CLM).
the APIs for accessing the caCORE system including Java, Perl, Web services,
and XML-HTTP.
the data sources accessible through the caCORE APIs.
an overview of the Unified Modeling Language (UML).

Release Schedule

This guide is updated for each caCORE release. It may be updated between releases if
errors or omissions are found. The current document refers to the 3.2 version of
caCORE, which was released in December 2006 by NCICB.

Audience

The primary audience of this guide is the application developer who wants to learn
about the architecture and use of caCORE-like systems and/or requires access to one
or more caCORE APIs. A ‘caCORE-like’ system can be generated using the caCORE
Software Development Kit (SDK). For more information, see the caCORE SDK 3.2 Pro-
grammer’s Guide.

This guide assumes that you are familiar with the Java programming language and/or
other programming languages, database concepts, and the Internet. If you intend to

http://ncicb.nci.nih.gov/NCICB/infrastructure/cacoresdk#Documentation
http://ncicb.nci.nih.gov/NCICB/infrastructure/cacoresdk#Documentation

caCORE 3.2 Technical Guide

2

use caCORE resources in software applications, it assumes that you have experience
with building and using complex data systems.

Neither caCORE nor this documentation are intended for "end" users, such as individ-
ual health professionals or members of the general public - unless they are also soft-
ware developers.

How To Use This Guide

This brief overview explains what you will find in each section of this guide.

Chapter 1 provides an overview of caCORE.

Chapter 2 describes the architecture of the caCORE system.

Chapter 3 provides installation instructions and API use instructions.

Chapter 4 describes the Enterprise Vocabulary Services (EVS) and the EVS API.

Chapter 5 describes the Cancer Data Standards Repository (caDSR) and the caDSR
API.

Chapter 6 describes the Cancer Bioinformatics Infrastructure Objects (caBIO) and the
caBIO API.

Chapter 7 describes the Common Package.

Chapter 8 describes the Common Security Module (CSM).

Chapter 9 describes the Common Logging Module (CLM).

Appendix A provides a general background and notation of the Unified Modeling Lan-
guage (UML).

Appendix B provides a list of references used to produce this guide or referred to within
the text.

Additional caCORE Documentation

The caCORE 3.2 Release Notes contain a description of the end user tool enhance-
ments and bug fixes included in this release.

The caCORE 3.2 JavaDocs contain the current caCORE API specification

The caCORE SDK 3.2 Programmer’s Guide contains detailed instruction on the use of
the SDK and how it helps create a caCORE-like software system.

http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_project_doc
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs
http://ncicb.nci.nih.gov/NCICB/infrastructure/cacoresdk#Documentation

3

CHAPTER

1
OVERVIEW TO CACORE

This chapter provides an overview of the NCICB caCORE infrastructure.

Topics in this chapter include:

Architecture Overview on this page
Domain Models in caCORE on page 4

Architecture Overview

The NCI Center for Bioinformatics (NCICB) provides biomedical informatics support
and integration capabilities to the cancer research community. NCICB has created a
core infrastructure called Cancer Common Ontologic Representation Environment
(caCORE), a data management framework designed for researchers who need to be
able to navigate through a large number of data sources.

By providing a common data management framework, caCORE helps streamline the
informatics development throughout academic, government and private research labs
and clinics. The components of caCORE support the semantic consistency, clarity and
comparability of biomedical research data and information.

caCORE is an open-source enterprise architecture for NCI-supported research infor-
mation systems, built using formal techniques from the software engineering and com-
puter science communities. The four characteristics of caCORE include:

Model Driven Architecture (MDA)
n-tier architecture with open Application Programming Interfaces (APIs)
Use of controlled vocabularies, wherever possible
Registered metadata

The use of MDA and n-tier architecture, both standard software engineering practices,
allows for easy access to data, particularly by other applications. The use of controlled
vocabularies and registered metadata, less common in conventional software prac-
tices, requires specialized tools, generally unavailable.

caCORE 3.2 Technical Guide

4

As a result, the NCICB (in cooperation with the NCI Office of Communications) has
developed the Enterprise Vocabulary Services (EVS) system to supply controlled
vocabularies, and the Cancer Data Standards Repository (caDSR) to provide a
dynamic metadata registry.

When all four development principles are addressed, the resulting system has several
desirable properties. Systems with these properties are said to be “caCORE-like”.

1. The n-tier architecture with its open APIs frees the end user (whether human or
machine) from needing to understand the implementation details of the underly-
ing data system to retrieve information.

2. The maintainer of the resource can move the data or change implementation
details (Relational Database Management System, and so forth) without affect-
ing the ability of remote systems to access the data.

3. Most importantly, the system is ‘semantically interoperable’; that is, there exists
runtime-retrievable information that can provide an explicit definition and com-
plete data characteristics for each object and attribute that can be supplied by
the data system.

Domain Models in caCORE

The components that comprise caCORE are EVS, caDSR, caBIO, CSM, and CLM.
Each is described briefly below and is described in detail in its own chapter.

Enterprise Vocabulary Services (EVS)
EVS provides controlled vocabulary resources that support the life sciences domain,
implemented in a description logics framework. EVS vocabularies provide the semantic
'raw material' from which data elements, classes, and objects are constructed.

Cancer Data Standards Repository (caDSR)
The caDSR is a metadata registry, based upon the ISO/IEC 11179 standard, used to
register the descriptive information needed to render cancer research data reusable
and interoperable. The caBIO, EVS and caDSR data classes are registered in the
caDSR, as are the data elements on NCI-sponsored clinical trials case report forms.

Cancer Bioinformatics Infrastructure Objects (caBIO)

The caBIO model and architecture is the primary programmatic interface to caCORE.
Each of the caBIO domain objects represents an entity found in biomedical research.
Unified Modeling Language™ (UML) models of biomedical objects are implemented in
Java as middleware connected to various cancer research databases to facilitate data
integration and consistent representation. Examining the relationships between these
objects can reveal biomedical knowledge that was previously buried in the various pri-
mary data sources.

Chapter 1: Overview to caCORE

5

Common Security Model (CSM)
CSM provides a flexible solution for application security and access control with three
main functions:

Authentication to validate and verify a user's credentials
Authorization to grant or deny access to data, methods, and objects
User Authorization Provisioning to allow an administrator to create and assign
authorization roles and privileges.

Common Logging Module (CLM)
CLM provides a separate service under caCORE for Audit and Logging Capabilities. It
also comes with a web based locator tool. It can be used by a client application directly,
without the application using any other components like CSM.

caCORE 3.2 Technical Guide

6

7

CHAPTER

2
CACORE ARCHITECTURE

This chapter describes the architecture of the caCORE system. It includes information
about the major components, such as security, logging, database object-relational
mappings (ORM), client-server communication, and how the system connects to non-
ORM systems, such as EVS. It also describes the layout of the caCORE system pack-
ages.

Topics in this chapter include:

caCORE System Architecture on this page
Client Technologies on page 9
Major caCORE Domain Packages on page 10

caCORE System Architecture

The caCORE infrastructure exhibits an n-tiered architecture with client interfaces,
server components, backend objects, data sources, and additional backend systems
(Figure 2.1). This n-tiered system divides tasks or requests among different servers and
data stores. This isolates the client from the details of where and how data is retrieved
from different data stores. The system also performs common tasks such as logging
and provides a level of security.

Clients (browsers, applications) receive information from backend objects. Java appli-
cations also communicate with backend objects via domain objects packaged within
the client.jar. Non-Java applications can communicate via SOAP (Simple Object
Access Protocol). Back-end objects communicate directly with data sources, either
relational databases (using Hibernate) or non-relational systems (using, for example,
the Java RMI API).

caCORE 3.2 Technical Guide

8

Figure 2.1 caCORE Architecture

Most of the caCORE infrastructure is written in the Java programming language and
leverages reusable, third-party components.

The infrastructure is composed of the following layers:

The Application Service layer—consolidates incoming requests from the various
interfaces and translates them to native query requests that are then passed to the data
layers. This layer is also responsible for handling client authentication and access con-
trol using the Java API. (This feature is currently disabled for the caCORE system run-
ning at NCICB; all interfaces provide full, anonymous read-only access to all data.)

The Data Source Delegation layer—is responsible for conveying each query that it
receives to the respective data source that can perform the query. The presence of this
layer enables multiple data sources to be exposed by a single running instance of a
caCORE server.

Object-Relational Mapping (ORM)—is implemented using Hibernate. Hibernate is a
high performance object/relational persistence and query service for Java. Hibernate
provides the ability to develop persistent classes following common object-oriented
(OO) design methodologies such as association, inheritance, polymorphism, and com-
position.

The Hibernate Query Language (hql), designed as a "minimal" object-oriented exten-
sion to SQL, provides a bridge between the object and relational databases. Hibernate
allows for real world modeling of biological entities without creating complete SQL-
based queries to represent them.

Access to non-relational (non-ORM data sources), such as Enterprise Vocabulary Ser-
vices (EVS), is performed by objects that follow the façade design pattern. These
objects make the task of accessing a large number of modules/functions much simpler
by providing an additional interface layer that allows it to interact with the rest of the
caCORE system.

Chapter 2: caCORE Architecture

9

Security is provided by the Common Security Module (CSM). The CSM provides highly
granular access control and authorization schemes. For more information, see Chapter
8.

Enterprise logging is provided by the Common Logging Module (CLM). The CLM pro-
vides a separate service under caCORE for audit and logging capabilities. This is simi-
lar to the output generated by Apache log4j, but includes information for auditing. For
more information, see Chapter 9.

Client Technologies

Applications using the Java programming language can access caBIO, caDSR, and,
EVS directly through the domain objects provided by the client.jar (see Chapter 3 Inter-
acting with caCORE.) The network details of the communication to the caCORE serv-
ers are abstracted away from the developer. Hence developers need not deal with
issues such as network and database communication, but can instead concentrate on
the biological problem domain.

Perl application programmers can access the same information by using the
caCOREperl API, which is a Perl application programming interface to caCORE's
hosted vocabulary, metadata, and biomedical data.

The caCORE system also allows non-Java and Perl Applications to use SOAP clients
to interface with caCORE Web services. SOAP is a lightweight XML-based protocol for
the exchange of information in a decentralized, distributed environment. It consists of
an envelope that describes the message and a framework for message transport.
caCORE uses the open source Apache Axis package to provide SOAP-based web ser-
vices to users. This allows other languages, such as Python or Perl to communicate
with caCORE objects in a straightforward manner.

The caCORE architecture includes a presentation layer that uses a J2SE application
server (such as Tomcat or JBoss). The JSPs (Java Server Pages) are web pages with
Java embedded in the HTML to incorporate dynamic content in the page. caCORE also
employs Java Servlets, which are server-side Java programs, that web servers can run
to generate content in response to client requests. All logic implemented by the presen-
tation layer uses Java Beans, which are reusable software components that work with
Java. All caCORE objects can be transformed into XML, the eXtensible Markup Lan-
guage, as a universal format for structured data on the Web.

Communication between the client interfaces and the server components occurs over
the Internet using the HTTP protocol. The server components are deployed in a web
application container as a .war (Web archive) file which communicates with the back-
end relational database management system that contains the actual data. In some
cases, such as EVS, the caCORE server communicates to external backend systems.

By using XSL/XSLT, the extensible stylesheet language for expressing stylesheets and
XSL Transformations (XSLT), as a language for transforming XML documents, nonpro-
grammers can transform the information in the caBIO objects for use in documents or
other systems.

caCORE 3.2 Technical Guide

10

Major caCORE Domain Packages

Table 2.1 shows the major caCORE domain packages from which you can access the
Java interfaces and classes, including caBIO, EVS, caDSR, and Common. All of the
objects in the domain package implement the java.io.serializable interface. To view the
JavaDocs page for each package, go to http://ncicb.nci.nih.gov/NCICB/content/
ncicblfs/caCORE3-2_JavaDocs.

Package Description

EVS Contains the domain-specific classes in the EVS object package such
as DescLogicConcept, MetaThesaurusConcept, etc. For a list of the
domain objects, see the caCORE EVS API on page 62.

gov.nih.nci.evs.domain
gov.nih.nci.evs.query

caDSR Contains the domain-specific classes in the caDSR object package
such as DataElement, Administered-Component, etc. For a list of the
domain objects, see the caDSR API on page 90.

gov.nih.nci.cadsr.domain

caBIO Contains the domain-specific classes in the caBIO object package such
as Gene, Chromosome, etc. For a list of the domain objects, see the
caBIO API on page 109.

gov.nih.nci.cabio.domain

Common Contains one class, DatabaseCrossReference, which is used by the
caBIO domain package objects to provide links to related data hosted
by other sources. See the Common Package API on page 121.

gov.nih.nci.common.domain

Table 2.1 caCORE packages and descriptions

http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs

Chapter 2: caCORE Architecture

11

Figure 2.2 displays a package for each application area in caCORE 3.2, described
below.

Figure 2.2 caCORE packages and descriptions

In addition to domain packages, the caCORE API specification includes the following
framework packages:

Common
The common package (gov.nih.nci.system.common) contains utility classes and
network classes.

System
The system package has subpackages of application service package (described in the
Client Technologies on page 9), data access package, delegate/service locator pack-
age, proxy package, and web service package.

Data Access
The data access package (gov.nih.nci.system.dao) is the layer at which the
query is parsed from objects to the native query, the query is executed, and the result
sets are converted back to domain objects results. This layer has implementation for
internal ORM and external data access layer for querying other subsystems.

Delegate/Service Locator
The delegate/service locator package (gov.nih.nci.system.delegator) uses the
resource locator (gov.nih.nci.system.servicelocator) to identify the data
source where a query would be performed. For instance, if a query is for a Gene object
with the criterion Taxon, this layer identifies the data source information as an internal
RDBMS data base and uses the Object Relational Mapping (ORM) data access layer
instance.

caCORE 3.2 Technical Guide

12

Proxy Interface
The proxy interface package (gov.nih.nci.system.proxy) is the gateway for the
requests from Java and platform independent webservice clients.

Web Service
The Web service package (gov.nih.nci.system.webservice) contains the Web
service wrapper class that uses Apache's Axis.

13

CHAPTER

3
INTERACTING WITH CACORE

This chapter describes the service interface layer provided by the caCORE architecture
and gives examples of how to use each of the interface APIs.

Topics in this chapter include:

caCORE Service Interface Paradigm on this page
Java API on page 14
EVS Service Methods on page 31
Utility Methods on page 32
Web Services API on page 33
XML-HTTP API on page 42
Perl API on page 45

caCORE Service Interface Paradigm

The caCORE architecture includes a service layer that provides a single, common
access paradigm to clients using any of the provided interfaces. As an object-oriented
middleware layer designed for flexible data access, caCORE relies heavily on strongly-
typed objects and an object-in/object-out mechanism. The methodology used for
obtaining data from caCORE systems is often referred to as query-by-example, mean-
ing that the inputs to the query methods are themselves domain objects that provide
the criteria for the returned data. The major benefit of this approach is that it allows for
run-time semantic interoperability when used as part of the caCORE infrastructure,
which provides shared vocabularies and a metadata registry.

The basic order of operations required to access and use a caCORE system is as fol-
lows:

1. Ensure that the client application has knowledge of the objects in the domain
space.

2. Formulate the query criteria using the domain objects.

caCORE 3.2 Technical Guide

14

3. Establish a connection to the server.
4. Submit the query objects and specify the desired class of objects to be returned.
5. Use and manipulate the result set as desired.

There are four primary application programming interfaces (APIs) native to caCORE
systems. Each of the available interfaces described below uses this same paradigm to
provide access to the caCORE domain model, but with minor changes relating primarily
to the syntax and structure of the clients. The following sections describe each API,
identify installation and configuration requirements, and provide code examples.

Java API

The Java API provides direct access to domain objects and all service methods.
Because caCORE is natively built in Java, this API provides the fullest set of features
and capabilities.

Installation and Configuration
The caCORE Java API uses the following on the client machine (Table 3.1).

Accessing the caCORE system also requires an Internet connection.

Software Version Required?

Java 2 Platform Standard Edition
Software 5.0 Development Kit
(JDK 5.0)

1.5.0 or higher Yes

Apache Ant 1.6.5 or higher Yes

Table 3.1 caCORE Java API Client software

Chapter 3: Interacting with caCORE

15

To use the Java API, download the client package provided on the NCICB web site
(Figure 3.1).

Figure 3.1 Downloads section on the NCICB website

1. Open your browser and go to http://ncicb.nci.nih.gov.
2. Click the Download link on the menu bar.
3. Scroll down to the section titled caBIO and click on the Download link.
4. In the provided form, enter your name, email address and institution name and

click to Enter the Download Area.
5. Accept the license agreement.
6. On the caCORE downloads page, download the caCORE Zip file from the Pri-

mary Distribution section.
7. Extract the contents of the downloadable archive to a directory on your hard

drive (for example, c:\cacore on Windows or /usr/local/cacore on
Linux). The extracted directories and files include the following:

Directories and
Files Description Component

build.xml Ant build file Build file

Table 3.2 Extracted directories and files in caCORE client package

http://ncicb.nci.nih.gov

caCORE 3.2 Technical Guide

16

TestClient.java Java API client sample Sample code

TestDSR.java Java API caDSR client sample

TestEVS.java Java API EVS client sample

TestXML.java XML utility sample

WSTestClient.java Web services Java sample

EVSWSClient.java Web services EVS sample

lib directory contains required jar files

*-client.jar domain objects

spring.jar Spring framework HTTP remoting

hibernate3.jar Hibernate ORM layer

axis.jar Apache Axis web services
(Java implementation)saaj.jar SOAP API for Java

jaxrpc.jar Java API for XML-based RPC

wsdl4j-1.5.1.jar WSDL for Java

log4j-1.2.13.jar logging utilities logging

commons-log-
ging.jar

commons-discov-
ery-0.2.jar

castor-1.0.2.jar Castor serializer/deserializer XML conversion

xercesImpl.jar Apache Xerces XML parser

*.xsd XML schemas for objects

activation.jar

cglib-2.1.3.jar

xml.properties

xml-mapping.xml

conf directory

remoteService.xml

deploy.wsdd

log4j.properties Logging utilities configuration
properties

Directories and
Files Description Component

Table 3.2 Extracted directories and files in caCORE client package (Continued)

Chapter 3: Interacting with caCORE

17

All of the jar files provided in the lib directory of the caCORE client package in addition
to the files in the conf directory are required to use the Java API. These should be
included in the Java classpath when building applications. The build.xml file that is
included demonstrates how to do this when using Ant for command-line builds. If you
are using an integrated development environment (IDE) such as Eclipse, refer to the
tool's documentation for information on how to set the classpath.

A Simple Example
To run the simple example program after installing the caCORE client, open a com-
mand prompt or terminal window from the directory where you extracted the down-
loaded archive and enter ant rundemo. This will compile and run the TestClient class;
successfully running this example indicates that you have properly installed and config-
ured the caCORE client. The following is a short segment of code from the TestClient
class along with an explanation of its functioning.

This code snippet creates an instance of a class that implements the ApplicationSer-
vice interface. This interface defines the service methods used to access data objects.
A criterion object is then created that defines the attribute values for which to search.
The search method of the ApplicationService implementation is called with parameters
that indicate the type of objects to return, Gene.class, and the criteria that returned
objects must meet, defined by the gene object. The search method returns objects in a
List collection, which is iterated through to print some basic information about the
objects.

Although this is a fairly simple example of the use of the Java API, a similar sequence
can be followed with more complex criteria to perform sophisticated manipulation of the
data provided by caCORE. Additional information and examples are provided in the
sections that follow.

Service Methods
The methods that provide programmatic access to running the caCORE server are
located in the gov.nih.nci.system.applicationservice package. The
ApplicationServiceProvider class uses the factory design pattern to return an
implementation of the ApplicationService interface. The provider class determines
whether there is a locally running instance of the caCORE system or whether it should
use a remote instance. The returned ApplicationService implementation exposes the
service methods that enable read/write operations on the domain objects. (Note that,
although the infrastructure is capable of write operations, this functionality has been
disabled for caCORE because it is primarily meant as a read-only data system.)

 1 ApplicationService appService = ApplicationServiceProvider.getApplicationService();
 2 Gene gene = new Gene();
 3 gene.setSymbol("brca*"); // searching for all genes whose symbols start with brca
 4 try {
 5 List resultList = appService.search(Gene.class, gene);
 6 for (Iterator resultsIterator = resultList.iterator(); resultsIterator.hasNext();)
 7 {
 8 Gene returnedGene = (Gene) resultsIterator.next();
 9 System.out.println("Symbol: " + returnedGene.getSymbol() +
10 "\tName " + returnedGene.getFullName()) +
11 "\tTaxon:" + returnedGene.getTaxon().getScientificName();
12 }
13 } catch (Exception e) {
14 e.printStackTrace();
15 }

caCORE 3.2 Technical Guide

18

The separation of the service methods from the domain classes is an important archi-
tectural decision that insulates the domain object space from the underlying service
framework. As a result, new business methods can be added without needing to
update any of the domain model or the associated metadata information from the object
model. (This is critical for ensuring semantic interoperability over multiple iterations of
architectural changes.)

Within the ApplicationService implementation, a variety of methods are provided allow-
ing users to query data based on the specific needs and types of queries to be per-
formed. In general, there are five types of searches:

Simple searches are those that take one or more objects from the domain
models as inputs and return a collection of objects from the data repositories
that meet the criteria specified by the input objects.
Nested searches also take domain objects as inputs but determine the type of
objects in the result set by traversing a known path of associations from the
domain model.
Detached criteria searches use Hibernate detached criteria objects to provide
a greater level of control over the results of a search (such as boolean opera-
tions, ranges of values, etc.)
HQL searches provide the ability to use the Hibernate Query Language for the
greatest flexibility in forming search criteria.
SDK Query Object criteria searches were modeled similar to the Object rep-
resentation of caBIG Query Language (CQL). The SDK Query Object criteria
searches use a syntax similar to the query by example (QBE) to specify the way
results are to be retrieved. The system formulates the query based on the navi-
gation path specified in the query search criteria. The query mechanism allows
the user to search for the objects in platform independent query syntax.

Method Signature List search(
 Class targetClass,
 Object obj)

Search Type Simple (One criteria object)

Description Returns a List collection containing objects of type targetClass that
conform to the criteria defined by obj

Example search(Gene.class, gene)

Method Signature List search(
 Class targetClass,
 List objList)

Search Type Simple (Criteria object collection)

Description Returns a List collection containing objects of type targetClass that
conform to the criteria defined by a collection of objects in objList.
The returned objects must meet ANY criteria in objList (i.e. a logical
OR is performed).

Example search(Gene.class, geneCollection)

Chapter 3: Interacting with caCORE

19

Method Signature List search(
 String path,
 Object obj)

Search Type Nested

Description Returns a List collection containing objects conforming to the criteria
defined by obj and whose resulting objects are of the type reached
by traversing the node graph specified by path

Example search("gov.nih.nci.cabio.domain.Protein,
gov.nih.nci.cabio.domain.Gene", nucleicAcidSe-
quence)

Method Signature List search(
 String path,
 List objList)

Search Type Nested

Description Returns a List collection containing objects conforming to the criteria
defined by the objects in objList and whose resulting objects are of
the type reached by traversing the node graph specified by path

Example search("gov.nih.nci.cabio.domain.Protein,
gov.nih.nci.cabio.domain.Gene", sequenceList)

Method Signature List query(
 DetachedCriteria detachedCriteria,
 String targetClassName)

Search Type Detached criteria

Description Returns a List collection conforming to the criteria specified by
detachedCriteria and whose resulting objects are of the type speci-
fied by targetClassName

Example query(criteria, "gov.nih.nci.cabio.domain.Gene")

Method Signature List query(
 Object criteria,
 int firstRow,
 int resultsPerQuery,
 String targetClassName)

Search Type Detached criteria

Description Identical to the previous query method, but allows for control over
the size of the result set by specifying the row number of the first row
and the maximum number of objects to return

Example query(criteria, 101, 100, targetClassName)

caCORE 3.2 Technical Guide

20

In addition to the data access methods, the following helper methods are available via
the ApplicationService class that provide flexibility in controlling queries and result sets.

Examples of Use
This section includes a number of examples that demonstrate the use of the caCORE
APIs. Included with each example is a brief description of the type of search being per-

Method Signature List query(
HQLCriteria hqlCriteria,
String targetClassName)

Search Type HQL

Description Returns a List collection of objects of the type specified
by targetClassName that conform to the query in HQL syntax con-
tained in hqlCriteria

Example query(hqlCriteria,
"gov.nih.nci.cabio.domain.Gene")

Method Signature List query(
CQLQuery cqlQuery,
String targetClassName)

Search Type CQL

Description Returns a List collection of objects of the type specified by target-
ClassName that conform to the query in SDK Query Object syntax
contained in cqlQuery

Example query(cqlQuery, "gov.nih.nci.cabio.domain.Gene")

Method Signature int getQueryRowCount(
 Object criteria,
 String targetClassName

Description Gets the number of objects in a given query. This is useful in deter-
mining the size of the data before querying for data

Example getQueryRowCount(criteria,
"gov.nih.nci.cabio.domain.Gene")

Method Signature void setRecordsCount(int recordCount)

Description Allows users to set the maximum number of records returned by the
search or query methods

Example setRecordsCount(250)

Method Signature void setSearchCaseSensitivity(
 boolean caseSensitivity)

Description Allows users to enable/disable case sensitivity for search criteria
containing strings

Example setSearchCaseSensitivity(true)

Chapter 3: Interacting with caCORE

21

formed, a UML diagram depicting the domain objects used, and the example code
accompanied by explanatory text.

Example One: Simple Search (Single Criteria Object)
In this example, a search is performed for all genes whose symbols start with 'brca'.
The code iterates through the returned objects and prints out the symbol and name of
each object along with the name of an associated object of type Taxon. The fetch of the
associated Taxon object is done in the background and is completely transparent to the
user.

 1 ApplicationService appService = ApplicationServiceProvider.getApplicationService();
 2 Gene gene = new Gene();
 3 gene.setSymbol("brca*"); // searching for all genes whose symbols start with ‘brca’
 4 try
 5 {
 6 List resultList = appService.search(Gene.class, gene);
 7 for (Iterator resultsIterator = resultList.iterator(); resultsIterator.hasNext();)
 8 {
 9 Gene returnedGene = (Gene) resultsIterator.next();
10 System.out.println("Symbol: " + returnedGene.getSymbol() +
11 "\tName " + returnedGene.getFullName()) +
12 "\tTaxon:" + returnedGene.getTaxon().getScientificName();
13 }
14 } catch (Exception e) {
15 e.printStackTrace();
16 }

Lines Description

1 Creates an instance of a class that implements the ApplicationService
interface; this interface defines the service methods used to access data
objects.

2-3 Creates a criterion object that defines the attribute values for which to
query.

6 Calls the search method of the ApplicationService implementation and
passes it the type of objects to return, Gene.class, and the criteria that
returned objects must meet, defined by the gene object; the search
method returns objects in a List collection.

9 Casts an object from the result List and creates a variable reference to it
of type Gene.

10 Prints the symbol attribute.

11 Prints the fullName attribute.

caCORE 3.2 Technical Guide

22

Example Two: Simple Search (Criteria Object Collection)
This example demonstrates a search with multiple criteria objects that are passed to
the search() method. The result set will include all objects of the specified type that
match ANY of the criteria objects. In this case, the search will return all objects of type
Gene that are associated with Taxon objects whose abbreviation attribute is either "hs"
or "ms". In biological terms, this search will return all human and mouse genes.

Example Three: Simple Search (Compound Criteria Object)
In this example, the object that is passed to the search() method contains criteria val-
ues that are found in associated objects and collections of objects. This query will
return those objects that match all of the criteria in the compound object. Note the dis-
tinction between this type of search and the previous example in which a collection of
objects is passed into the search method. In the last example, the results will match
ANY of the criteria objects. In this example, however, where a single compound object
is used, ALL criteria are matched. In biological terms, this search will return all path-
ways associated with the human Interleukin 5 gene.

12 Fetches an associated object of type Taxon and prints its scientificName
attribute.

Lines Description

 1 Taxon taxon1 = new Taxon();
 2 taxon1.setAbbreviation("hs"); // Homo sapiens
 3 Taxon taxon2 = new Taxon();
 4 taxon2.setAbbreviation("m"); // Mus musculus
 5 List taxonList = new ArrayList();
 6 taxonList.add(taxon1);
 7 taxonList.add(taxon2);
 8 try
 9 {
10 List resultList = appService.search(Gene.class, taxonList);
11 for (Iterator resultsIterator = resultList.iterator(); resultsIterator.hasNext();) 12
13 Gene returnedGene = (Gene)resultsIterator.next();
14 System.out.println(“Symbol: “ + returnedGene.getSymbol() +
15 “\tName: ” + returnedGene.getFullName());
16 }
17 } catch (Exception e) {
18 e.printStackTrace();
19 }

Lines Description

1-4 Creates two Taxon objects describing the search criteria.

5-7 Creates a List collection containing the two Taxon objects.

10 Searches for all Gene objects where the associated Taxon object
matches ANY of the objects found in the taxonList collection.

Chapter 3: Interacting with caCORE

23

 1 Taxon taxon = new Taxon();
 2 taxon.setAbbreviation("hs"); // Homo sapiens
 3 Gene gene = new Gene();
 4 gene.setTaxon(taxon);
 5 gene.setSymbol("IL5"); // Interleukin 5
 6 List geneList = new ArrayList();
 7 geneList.add(gene);
 8 Pathway pathway = new Pathway();
 9 pathway.setGeneCollection(geneList);
10 try
11 {
12 List resultList = appService.search("gov.nih.nci.cabio.domain.Pathway", pathway);
13 for (Iterator resultsIterator = resultList.iterator(); resultsIterator.hasNext();) 14
15 Pathway returnedPathway = (Pathway)resultsIterator.next();
16 System.out.println(returnedPathway.getDisplayValue());
17 }
18 } catch (Exception e) {
19 e.printStackTrace();
20 }

Lines Description

1-5 Creates a Gene object and sets the symbol to "IL5" and the associated
Taxon to an object whose abbreviation is set to "hs".

6-7 Because the Pathway and Gene classes are related by a many-to-many
association, it is necessary to create a collection to contain the Gene
object that will act as part of the compound criteria; multiple Gene objects
could be added to this collection as needed.

caCORE 3.2 Technical Guide

24

Example Four: Nested Search
A nested search is one where a traversal of more than one class-class association is
required to obtain a set of result objects given the criteria object. This example demon-
strates one such search in which the criteria object passed to the search method is of
type Gene, and the desired objects are of type ProteinSequence. Because there is no
direct association between these two classes, the path of the traversal is passed to the
search method enabling the query to be performed.

8-9 Creates a Pathway object and sets the value of its geneCollection to the
geneList object just created.

12 Searches for all Pathway objects whose geneCollection contains objects
that match the set criteria (i.e. the symbol is "IL5" and the associated
Taxon objects' abbreviations are set to "hs").

Lines Description

 1 Gene gene = new Gene();
 2 gene.setSymbol("TP53"); // Tumor protein p53 (Li-Fraumeni syndrome)
 3 try
 4 {
 5 List resultList = appService.search(
 6 "gov.nih.nci.cabio.domain.ProteinSequence,gov.nih.nci.cabio.domain.Protein”,
 7 gene);
 8 for (Iterator resultsIterator = resultList.iterator(); resultsIterator.hasNext();)
 9 {
10 ProteinSequence returnedProtSeq = (ProteinSequence)resultsIterator.next();
11 System.out.println(“ID: “ + returnedProtSeq.getId() +
12 “Length: “ + returnedProtSeq.getLength());
13 }
14 } catch (Exception e) {
15 e.printStackTrace();
16 }

Lines Description

1-2 Creates a Gene object and sets the symbol to "TP53".

6 Defines search path as traversing from the criteria object of type Gene
through Protein to ProteinSequence; note that the first element in the
path is the desired class of objects to be returned, and that subsequent
elements traverse back to the criteria object.

7 Sets the criteria object to the previously-created Gene.

Chapter 3: Interacting with caCORE

25

Example Five: Detached Criteria Search
This example demonstrates the use of Hibernate detached criteria objects to formulate
and perform more sophisticated searches (Figure 3.2). A detailed description of
detached criteria is beyond the scope of this document; for more information, please
consult the Hibernate documentation at http://www.hibernate.org/hib_docs/v3/api/org/
hibernate/criterion/DetachedCriteria.html

Figure 3.2 Example Five: Detached Criteria Search

Example Six: HQL Search
In this example, a search is performed for all genes whose symbols start with 'brca'.
This is identical to Example One but uses a Hibernate Query Language (HQL) search
string to form the query. For more information on HQL syntax, consult the Hibernate
documentation at http://www.hibernate.org/hib_docs/v3/reference/en/html/query-
hql.html.

Lines Description

1 Creates an DetachedCriteria object and sets the class on which the crite-
ria will operate to PhysicalLocation.

2 Sets a restriction on the objects that states that the attribute chromo-
somalStartPosition must be greater than ("gt") the value 86851632.

3 Sets a restriction on the objects that states that the attribute chromosoma-
lEndPosition must be less than ("lt") the value 86861632.

4 Calls the query method of the ApplicationService implementation, specify-
ing the desired object type to return, PhysicalLocation, and passing the
detached criteria object.

1 DetachedCriteria criteria = DetachedCriteria.forClass(PhysicalLocation.class);
2 criteria.add(Restrictions.gt("chromosomalStartPosition", new Long(86851632)));
3 criteria.add(Restrictions.lt("chromosomalEndPosition", new Long(86861632)));
4 List resultList = appService.query(criteria,PhysicalLocation.class.getName());

http://www.hibernate.org/hib_docs/v3/api/org/hibernate/criterion/DetachedCriteria.html
http://www.hibernate.org/hib_docs/v3/api/org/hibernate/criterion/DetachedCriteria.html
http://www.hibernate.org/hib_docs/v3/api/org/hibernate/criterion/DetachedCriteria.html
http://www.hibernate.org/hib_docs/v3/reference/en/html/queryhql.html
http://www.hibernate.org/hib_docs/v3/reference/en/html/queryhql.html

caCORE 3.2 Technical Guide

26

Lines Description

1 Creates a string that contains the query in HQL syntax.

2 Instantiates an HQLCriteria object and sets the query string.

3 Calls the query method of the ApplicationService implementation and passes it
the HQLCriteria object and the type of objects to return.

1 String hqlString = “FROM Gene g WHERE g.symbol LIKE ‘BRCA%’”;
2 HQLCriteria hqlC = new HQLCriteria(hqlString);
3 List resultList = appService.query(hqlC, Gene.class.getName());

Chapter 3: Interacting with caCORE

27

Example Seven: SDK Query Object Search

SDK Query Object Example One

SDK Query Object Example Two

Lines Description

2 Creates a new CQLQuery Object.

3-4 Creates a new search Target object (Gene).

5-8 Creates a new attribute for the search target object whose value should
be compared with the value in the database for given predicate.

10 Sets the search target object in SDK Query Object Query.

12-13 Sets the search criteria object to the previously-created CQLQuery.

1 ApplicationService appService =
 ApplicationServiceProvider.getApplicationService();

2 CQLQuery cqlQuery = new CQLQuery();
3 CQLObject target = new CQLObject(); //Create Gene Object
4 target.setName("gov.nih.nci.cabio.domain.Gene");
5 CQLAttribute attribute = new CQLAttribute();
6 attribute.setName("symbol");
7 attribute.setValue("%il%");
8 attribute.setPredicate(CQLPredicate.LIKE);
9 target.setAttribute(attribute);

10 cqlQuery.setTarget(target);

11 try {
12 List resultList = appService.query(cqlQuery,
13 "gov.nih.nci.cabio.domain.Gene");
14 //Iterate through retrieved list of objects
15 for (Iterator resultsIterator = resultList.iterator();
16 resultsIterator.hasNext();) {
17 Gene returnedGene = (Gene) resultsIterator.next();
18 System.out.println(
19 "Symbol: " + returnedGene.getSymbol() + "\n" +
20 "\tTaxon:" +
21 returnedGene.getTaxon().getScientificName() +
22 "\n" +"\tName " + returnedGene.getFullName() +
23 "\n");
24 }
25 } catch (Exception e) {
26 e.printStackTrace();
27 }

1 ApplicationService appService =
 ApplicationServiceProvider.getApplicationService();

2 CQLQuery cqlQuery = new CQLQuery();
3 CQLObject target = new CQLObject();

caCORE 3.2 Technical Guide

28

Lines Description

2 Creates a new CQLQuery Object.

3-4 Creates a new search Target object (Gene).

5-12, 13-20 Creates a new associated object (Taxon) whose attribute value should be
compared with the value in the database for a given predicate.

21-26 Creates a group (collection) of objects and associates it to the search tar-
get object.

4 target.setName("gov.nih.nci.cabio.domain.Gene");

5 //Create Taxon Object Query
6 CQLAssociation association1 = new CQLAssociation();
7 association1.setName("gov.nih.nci.cabio.domain.Taxon");
8 CQLAttribute attribute1 = new CQLAttribute();
9 attribute1.setName("abbreviation");
10 attribute1.setValue("%hs%");
11 attribute1.setPredicate(CQLPredicate.LIKE);
12 association1.setAttribute(attribute1);

13 //Create Taxon Object Query
14 CQLAssociation association2 = new CQLAssociation();
15 association2.setName("gov.nih.nci.cabio.domain.Taxon");
16 CQLAttribute attribute2 = new CQLAttribute();
17 attribute2.setName("abbreviation");
18 attribute2.setValue("%m%");
19 attribute2.setPredicate(CQLPredicate.LIKE);
20 association2.setAttribute(attribute2);

21 //Create Group(Collection) of Taxon Object Query
22 CQLGroup group = new CQLGroup();
23 group.addAssociation(association1);
24 group.addAssociation(association2);
25 group.setLogicOperator(CQLLogicalOperator.OR);
26 target.setGroup(group);

27 cqlQuery.setTarget(target);

28 try {
29 List resultList = appService.query(cqlQuery,
30 "gov.nih.nci.cabio.domain.Gene");
31 //Iterate through retrieved list of objects
32 for (Iterator resultsIterator = resultList.iterator();
33 resultsIterator.hasNext();)
34 Gene returnedGene = (Gene) resultsIterator.next();
35 System.out.println(
36 "Symbol: " + returnedGene.getSymbol() + "\n" +
37 "\tTaxon:" +
38 returnedGene.getTaxon().getScientificName() +
39 "\n" +"\tName " + returnedGene.getFullName() +
40 "\n");
41 }
42 } catch (Exception e) {
43 e.printStackTrace();
44 }

Chapter 3: Interacting with caCORE

29

SDK Query Object Example Three

27 Sets the search target object in SDK Query Object Query.

29-30 Sets the search criteria object to the previously-created CQLQuery.

Lines Description

1 ApplicationService appService =
 ApplicationServiceProvider.getApplicationService();

2 CQLQuery cqlQuery = new CQLQuery();
3 CQLObject target = new CQLObject();
4 target.setName("gov.nih.nci.cabio.domain.Pathway");

5 //Create Gene Object Query
6 CQLAssociation association1 = new CQLAssociation();
7 association1.setName("gov.nih.nci.cabio.domain.Gene");
8 CQLAttribute attribute1 = new CQLAttribute();
9 attribute1.setName("symbol");
10 attribute1.setValue("IL5");
11 attribute1.setPredicate(CQLPredicate.EQUAL_TO);
12 association1.setAttribute(attribute1);

13 //Create Taxon Object Query
14 CQLAssociation association2 = new CQLAssociation();
15 association2.setName("gov.nih.nci.cabio.domain.Taxon");
16 CQLAttribute attribute2 = new CQLAttribute();
17 attribute2.setName("abbreviation");
18 attribute2.setValue("%hs%");
19 attribute2.setPredicate(CQLPredicate.LIKE);
20 association2.setAttribute(attribute2);

21 //Set Relatonship between Gene and Taxon
22 association1.setAssociation(association2);

23 //Set Relatonship between Pathway and Gene
24 //Role name is required as it can not be determined using
25 //reflection
26 association1.setTargetRoleName("geneCollection");
27 target.setAssociation(association1);

28 cqlQuery.setTarget(target);

29 try
30 {
31 List resultList = appService.query(cqlQuery,
32 "gov.nih.nci.cabio.domain.Pathway");
33 //Iterate through retrieved list of objects
34 for (Iterator resultsIterator = resultList.iterator();
35 resultsIterator.hasNext();)
36 {
37 Pathway returnedPathway =
38 (Pathway)resultsIterator.next();
39 System.out.println(
40 returnedPathway.getDisplayValue());

caCORE 3.2 Technical Guide

30

SDK Query Object Example Four

Lines Description

2 Creates a new CQLQuery Object.

3-4 Creates a new search Target object (Pathway).

5-12 Creates a new associated object (Gene) whose attribute value should be
compared with the value in the database for a given predicate.

13-20 Creates a new associated object (Taxon) whose attribute value should be
compared with the value in the database for a given predicate.

22 Creates a relationship between two objects (Gene and Taxon).

26-27 Creates a relationship between a target object (Pathway) and its associ-
ated object (Gene). The role name is the name of the association used to
retrieve the associated object. It is required in case it can not be deter-
mined by reflection.

27 Sets the search target object in a SDK Query Object Query.

31-32 Sets the search criteria object to the previously-created CQLQuery.

41 }
42 } catch (Exception e) {
43 e.printStackTrace();
44 }

1 ApplicationService appService =
 ApplicationServiceProvider.getApplicationService();

2 CQLQuery cqlQuery = new CQLQuery();
3 CQLObject target = new CQLObject();
4 target.setName("gov.nih.nci.cabio.domain.ProteinSequence");

5 //Create Gene Object Query
6 CQLAssociation association1 = new CQLAssociation();
7 association1.setName("gov.nih.nci.cabio.domain.Gene");
8 CQLAttribute attribute1 = new CQLAttribute();
9 attribute1.setName("symbol");
10 attribute1.setValue("TP53");
11 attribute1.setPredicate(CQLPredicate.EQUAL_TO);
12 association1.setAttribute(attribute1);

13 //Create Protein Object Query
14 CQLAssociation association2 = new CQLAssociation();
15 association2.setName("gov.nih.nci.cabio.domain.Protein");

16 //Set Relatonship between Gene and Protein
17 //Role name is required as it can not be determined using
18 //reflection
19 association1.setTargetRoleName("geneCollection");
20 association2.setAssociation(association1);

21 //Set Relatonship between Protein and ProteinSequence
22 //Example of using relationship from target to source

Chapter 3: Interacting with caCORE

31

EVS Service Methods
The service methods described above apply to all object models built using the
caCORE infrastructure. In addition to these, the caCORE system hosted at the NCICB
provides a special data access method designed to simplify searching the terminolo-
gies available from the Enterprise Vocabulary Services (EVS).

Lines Description

2 Creates a new CQLQuery Object.

3-4 Creates a new search Target object (ProteinSequence).

5-12 Creates a new associated object (Gene) whose attribute value should be
compared with the value in the database for a given predicate.

14-15 Creates a new associated object (Protein).

19-20 Creates a relationship between a source object (Protein) and its associ-
ated object (Gene). The role name is the name of the association used to
retrieve the associated object. It is required in case it can not be deter-
mined by reflection.

24-25 Creates a relationship between a target object (ProteinSequence) and its
associated object (Protein).

26 Sets the search target object in a SDK Query Object Query.

29-30 Sets the search criteria object to the previously-created CQLQuery.

24 association1.setSourceRoleName("proteinSequence");
25 target.setAssociation(association2);

26 cqlQuery.setTarget(target);

27 try
28 {
29 List resultList = appService.query(cqlQuery,
30 "gov.nih.nci.cabio.domain.ProteinSequence");
31 //Iterate through retrieved list of objects
32 for (Iterator resultsIterator = resultList.iterator();
33 resultsIterator.hasNext();)
34 {
35 ProteinSequence returnedProtSeq =
36 (ProteinSequence)resultsIterator.next();
37 System.out.println("ID: " + returnedProtSeq.getId() +
38 "Length: " + returnedProtSeq.getLength());
 }
40 } catch (Exception e) {
41 e.printStackTrace();
42 }

Method Signature List evsSearch(EVSQuery evsCriterion)

Search Type EVS

caCORE 3.2 Technical Guide

32

The EVSQuery class provides a number of methods that can be used to define the
search parameters. For more information about this class, see the caCORE EVS API
on page 62.

The following code demonstrates use of the EVS service method.

Utility Methods

XML Utility
caCORE provides a utility (XMLUtility class) in the gov.nih.nci.common.util
package that provides the capability of converting caCORE domain objects between
native Java objects and XML serializations based on standard XML schemas. The XML
schemas for all domain objects in caCORE, directly generated from the UML model,
are included in the downloadable archive (in the lib directory). Currently, the XML gen-

Description Returns a List collection containing objects conforming to the criteria
defined by evsCriterion

Example evsSearch(evsCriterion1)

 1 ApplicationService appService = ApplicationServiceProvider.getApplicationService();
 2 try
 3 {
 4 String vocabularyName = "NCI_Thesaurus";
 5 EVSQuery query = new EVSQuery();
 6 evsQuery.getHistoryRecords(vocabularyName, "C16612");
 7
 8 List evsResults = new ArrayList();
 9 evsResults = (List)appService.evsSearch(evsQuery);
10
11 System.out.println(evsResults.size() + " records found");
12 for (Iterator resultsIterator = evsResults.iterator(); resultsIterator.hasNext();)
13 {
14 HistoryRecord historyRecord = (HistoryRecord)iter.next();
15 // Additional processing logic
16 }
17 } catch (Exception ex) {
18 ex.printStaceTrace();
19 }

Lines Description

1 The EVS service method, like all other Java service methods, uses an imple-
mentation of the ApplicationService interface.

4 EVS provides several vocabularies; most searches require that the name of the
desired vocabulary is specified.

5-6 Creates a new EVSQuery object and specifies that the desired search is for His-
toryRecord objects relating to the concept with code "C16612" from the
"NCI_Thesaurus" vocabulary.

9 Calls the evsSearch method of the ApplicationService implementation passing
the EVSQuery object.

13 The type of object that is returned (and consequently can be expected to popu-
late the resulting List collection) depends on the search parameters set in the
EVSQuery object; in this case, because the getHistoryRecords() method was
invoked, the resulting objects are of type HistoryRecord.

Chapter 3: Interacting with caCORE

33

erated using the XMLUtility class includes only the object attributes; associated objects
are not included.

Properties used by the XML utility are included in two files. The first, xml.proper-
ties, defines some basic information needed by the class and also contains a prop-
erty defining the filename of the second. This second file, called xml-mapping.xml
by default, defines the binding between class and attribute names and the correspond-
ing XML element and attribute names.

A default marshaller and unmarshaller are provided with the caCORE client; develop-
ers wishing to use their own should provide the fully-qualified name of the two classes
in the xml.properties file.

In the following code, the XML utility is used to serialize an object and save it to a file
stream. A new object is then instantiated from the file using the utility.

For additional details, consult the caCORE JavaDocs at http://ncicb.nci.nih.gov/NCICB/
content/ncicblfs/caCORE3-2_JavaDocs.

SVG Manipulation Utility
caCORE includes a class (SVGManipulator) in the gov.nih.nci.common.util
package that provides useful services to manipulate Scalable Vector Graphics (SVG)
diagrams retrieved from the caBIO Pathway domain object. For more information on
how to use this utility, see Manipulating SVG Diagrams on page 117.

Web Services API

The caCORE Web services API allows access to caCORE data from development
environments where the Java API cannot be used, or where use of XML Web services
is more desirable. This includes non-Java platforms and languages such as Perl, C/
C++,.NET Framework (C#, VB.Net), Python, etc.

Lines Description

2-3 Creates a new file stream where the XML serialization will be saved.

4 Creates a new XMLUtility object; in this case, the default marshaller and
unmarshaller will be used.

5 Serializes the myGene object to XML using the mapping file and writes
the output to the file stream myGene.xml.

6 Creates a new object called myNewGene by invoking the fromXML()
method of the XMLUtility class and casting it to the proper type.

7 The newly created Gene object is equivalent to the old one.

1 // Assume an object of type Gene called myGene
2 File myFile = new File("myGene.xml");
3 FileWriter myWriter = new FileWriter(myFile);
4 XMLUtility myUtil = new XMLUtility();
5 myUtil.toXML(myGene,myWriter);
6 Gene myNewGene = (Gene)myUtil.fromXML(myFile);
7 bool isSameGene = myNewGene.equals(myGene); // true

http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs

caCORE 3.2 Technical Guide

34

The Web services interface can be used in any language-specific application that pro-
vides a mechanism for consuming XML Web services based on the Simple Object
Access Protocol (SOAP). In these environments, connecting to caCORE can be as
simple as providing the endpoint URL. Some platforms and languages require addi-
tional client-side code to handle the implementation of the SOAP envelope and the res-
olution of SOAP types. A list of packages catering to different programming languages
is available at http://www.w3.org/TR/SOAP/ and at http://www.soapware.org/.

To maximize standards-based interoperability, the caCORE Web service conforms to
the Web Services Interoperability Organization (WS-I) Basic Profile. The WS-I Basic
Profile provides a set of non-proprietary specifications and implementation guidelines
enabling interoperability between diverse systems. More information about WS-I com-
pliance is available at http://www.ws-i.org.

On the server side, Apache Axis is used to provide SOAP-based inter-application com-
munication. Axis provides the appropriate serialization and deserialization methods for
the Java beans to achieve an application-independent interface. For more information
about Axis, visit http://ws.apache.org/axis/.

Configuration
The caCORE WSDL file is located at http://cabio.nci.nih.gov/cacore32/ws/caCORESer-
vice?wsdl.

In addition to describing the protocols, ports and operations exposed by the caCORE
Web service, this file can be used by a number of IDEs and tools to generate stubs for
caCORE objects. This allows code on different platforms to instantiate objects native to
each for use as parameters and return values for the Web service methods. Consult
the specific documentation for your platform for more information on how to use the
WSDL file to generate class stubs.

The caCORE Web services interface has a single endpoint called caCOREService,
which is located at http://cabio.nci.nih.gov/cacore32/ws/caCOREService. Client appli-
cations should use this URL to invoke Web service methods.

Operations
Through the caCOREService endpoint, developers have access to three operations:

Operation getVersion

Input Schema none

Output Schema <complexType>
 <sequence>
 <element
type="xsd:string"/>
 </sequence>
</complexType>

Description Returns an xsd:string containing the version of the running caCORE sys-
tem (e.g., "caCORE 3.2")

http://cabio.nci.nih.gov/cacore32/ws/caCOREService?wsdl
http://cabio.nci.nih.gov/cacore32/ws/caCOREService?wsdl
http://www.w3.org/TR/SOAP/
http://www.soapware.org/
http://www.ws-i.org
http://ws.apache.org/axis/
http://cabio.nci.nih.gov/cacore32/ws/caCOREService

Chapter 3: Interacting with caCORE

35

Developers should be aware of a significant behavioral decision that has been made
regarding the Web services interface. When a query is performed with this interface,
returned objects do not contain or refer to their associated objects (a notable exception
is with the EVS domain model-see below). This means that a separate query invocation
must be performed for each set of associated objects that need to be retrieved. One of
the examples below demonstrates this functionality.

EVS Considerations
This section briefly describes specific aspects of the caCORE Web services behavior
that relate to the EVS domain model. For a detailed description of EVS classes and the
underlying data model, see the caCORE EVS API on page 62.

EVS consists of two main vocabularies, the NCI Thesaurus and the NCI MetaThesau-
rus. Web service queries can be performed on these vocabularies to get objects of type

Operation queryObject

Input Schema <complexType>
 <sequence>
 <element name="in0"
type="xsd:string"/>
 <element name="in1"
type="xsd:anyType"/>
 </sequence>
</complexType>

Output Schema <sequence>
 <element name="queryReturn"type=
"ArrayOf_xsd_anyType"/>
</sequence>

Description Performs a search for objects conforming to the criteria defined by input
parameter in1 and whose resulting objects are of the type reached by tra-
versing the node graph specified by parameter in0; the result is a set of
serialized objects (the type ArrayOf_xsd_anyType resolves to a
sequence of xsd:anyType elements)

Operation query

Input Schema <complexType>
 <sequence>
 <element name="in0" type="xsd:string"/>
 <element name="in1" type="xsd:anyType"/>
 <element name="in2" type="xsd:int"/>
 <element name="in3" type="xsd:int"/>
 </sequence>
</complexType>

Output Schema <sequence>
 <element name="queryReturn"
type="ArrayOf_xsd_anyType"/>
</sequence>

Description Identical to the previous queryObject method, but allows for control over
the result set by specifying the row number of the first row (in2) and the
maximum number of objects to return (in3)

caCORE 3.2 Technical Guide

36

DescLogicConcept from the NCI Thesaurus or of type MetaThesaurusConcept from
the NCI MetaThesaurus. (A third EVS object class, HistoryRecord, can also be
returned by the Web services interface.) Most other objects in the EVS model are
accessible because they are properties of these two main classes.

The EVS domain objects are unique in this way when using the Web services interface.
Whereas objects in other domains do not return associations, the three EVS classes
that can be queried from Web services always provide associations to their related
objects. This enables access to the objects that are not of type DescLogicConcept,
MetaThesaurusConcept or HistoryRecord.

Because of the unique behavior and properties of the EVS domain model, queries
using the Web services interface can be performed only on the selected attribute val-
ues listed in Table 3.3.

Class Available search attributes

DescLogicConcept name

code

Property name and value

Role name and value

MetaThesaurus
Concept

name

cui (concept unique identifier)

Atom code and Source abbreviation

HistoryRecord DescLogicConcept name or code (HistoryRecord is the targetObject
and the DescLogicConcept is the criteriaObject)

Table 3.3 Allowable attributes for searching the EVS domain model

Chapter 3: Interacting with caCORE

37

Examples of Use

Example One: Simple Search
The following code demonstrates a simple query written in the Java language that uses
the Web services API. This example uses Apache Axis on the client side to handle the
type mapping, SOAP encoding, and operation invocation.

 1 Service service = new Service();
 2 Call call = (Call) service.createCall();
 3
 4 QName qnGene = new QName("urn:ws.domain.cabio.nci.nih.gov", "Gene");
 5 call.registerTypeMapping(
 6 Gene.class,
 7 qnGene,
 8 new org.apache.axis.encoding.ser.BeanSerializerFactory(Gene.class, qnGene),
 9 new org.apache.axis.encoding.ser.BeanDeserializerFactory(Gene.class, qnGene)
10);
11
12 String url = "http://cabio.nci.nih.gov/cacore32/ws/caCOREService";
13
14 call.setTargetEndpointAddress(new java.net.URL(url));
15 call.setOperationName(new QName("caCOREService", "queryObject"));
16 call.addParameter("arg1", org.apache.axis.encoding.XMLType.XSD_STRING, ParameterMode.IN);
17 call.addParameter("arg2", org.apache.axis.encoding.XMLType.XSD_ANYTYPE, ParameterMode.IN);
18 call.setReturnType(org.apache.axis.encoding.XMLType.SOAP_ARRAY);
19
20 gov.nih.nci.cabio.domain.ws.Gene gene = new gov.nih.nci.cabio.domain.ws.Gene();
21 gene.setSymbol("IL*");
22
23 try
24 {
25 Object[] resultList = (Object[])call.invoke(
26 new Object[]{"gov.nih.nci.cabio.domain.ws.Gene", gene });
27 System.out.println("Total objects found: " + resultList.length);
28 if (resultList.length > 0)
29 {
30 for(int resultIndex = 0; resultIndex < resultList.length; resultIndex++)
31 {
32 Gene returnedGene = (Gene)resultList[resultIndex];
33 System.out.println(
34 "Symbol: " + returnedGene.getSymbol() + "\n" +
35 "\tName " + returnedGene.getFullName() + "\n" +
36 "");
37 }
38 }
39 } catch (Exception e) {
40 e.printStackTrace();
41 }

Lines Description

1-2 Defines a new Web service call.

4-10 Maps a serialized object to its Java equivalent using the qualified name
of the object from the WSDL file; in this case, the XML element Gene in
the urn:ws.domain.cabio.nci.nih.gov namespace is mapped to
the Java Gene class.

12 Defines the service endpoint.

14-18 Sets the call properties including the name of the operation to invoke,
the input parameters that will be sent and the return type to expect.

20-21 Creates a Gene criteria object and sets its symbol attribute to "IL*";
note that the *.ws.* package is used.

caCORE 3.2 Technical Guide

38

Example Two: Searching Associations
This example is similar to the previous one but demonstrates how to search for associ-
ated elements by performing additional invocations of the query or queryObject opera-
tion.

25-26 Invokes the Web service operation using an array of two objects (target
class name and criteria object) as input parameters and expecting an
object array as its result.

32 Casts each object in the result array to type Gene.

Lines Description

 1 try
 2 {
 3 Object[] resultList = (Object[])call.invoke(
 4 new Object[]{"gov.nih.nci.cabio.domain.ws.Gene", gene });
 5 System.out.println("Total objects found: " + resultList.length);
 6 if (resultList.length > 0)
 7 {
 8 for(int resultIndex = 0; resultIndex < resultList.length; resultIndex++)
 9 {
10 Gene returnedGene = (Gene)resultList[resultIndex];
11 System.out.println(
12 "Symbol: " + returnedGene.getSymbol() + "\n" +
13 "\tName: " + returnedGene.getFullName() +
14 "");
15 Object[] nestedResultList = (Object[])call.invoke(
16 new Object[]{“gov.nih.nci.cabio.domain.ws.Taxon”, gene });
17 if (nestedResultList.length > 0)
18 {
19 Taxon returnedTaxon = (Taxon)nestedResultList[0];
20 System.out.println(“\tTaxon: “ + returnedTaxon.getScientificName());
21 }
22 }
23 }
24 } catch (Exception e) {
25 e.printStackTrace();
26 }

Lines Description

15-16 A second operation invocation requests objects of type Taxon based on
the same gene criteria used for the original query.

19 Casts the objects resulting from the nested query as Taxon objects.

Chapter 3: Interacting with caCORE

39

Example Three: EVS Domain Search (NCI MetaThesaurus)
The code below demonstrates use of the Web services interface to query data from the
NCI MetaThesaurus using EVS domain objects. (Certain repetitive sections have been
removed for brevity.)

 1 Service service = new Service();
 2 Call call = (Call) service.createCall();
 3
 4 QName qnMTC = new QName("urn:ws.domain.evs.nci.nih.gov", "MetaThesaurusConcept");
 5 call.registerTypeMapping(
 6 MetaThesaurusConcept.class,
 7 qnMTC,
 8 new BeanSerializerFactory(MetaThesaurusConcept.class, qnMTC),
 9 new BeanDeserializerFactory(MetaThesaurusConcept.class, qnMTC)
10);
11 QName qnMTCArray = new QName("urn:ws.domain.evs.nci.nih.gov",
12 "ArrayOf_tns1_MetaThesaurusConcept");
13 call.registerTypeMapping(
14 MetaThesaurusConcept[].class,
15 qnMTCArray,
16 new org.apache.axis.encoding.ser.ArraySerializerFactory(),
17 new org.apache.axis.encoding.ser.ArrayDeserializerFactory()
18);
19 // Similarly, define Qnames and register type mappings for all EVS objects
20 // The exact method of generating these statements depends on your platform and language
21
22 String url = "http://cabio.nci.nih.gov/cacore32/ws/caCOREService";
23
24 call.setTargetEndpointAddress(new java.net.URL(url));
25 call.setOperationName(new QName("caCOREService", "queryObject"));
26 call.addParameter("arg1", org.apache.axis.encoding.XMLType.XSD_STRING, ParameterMode.IN);
27 call.addParameter("arg2", org.apache.axis.encoding.XMLType.XSD_ANYTYPE, ParameterMode.IN);
28 call.setReturnType(qnMTCArray);
29
30 MetaThesaurusConcept mtc = new MetaThesaurusConcept();
31 mtc.setName("blood*");
32
33 Object[] metaParams = new Object[]{"MetaThesaurusConcept",mtc};
34 MetaThesaurusConcept[] meta = (MetaThesaurusConcept[])call.invoke(metaParams);
35
36 if(meta.length>0){
37 for(int m=0; m < meta.length; m++)
38 {
39 MetaThesaurusConcept concept = (MetaThesaurusConcept)meta[m];
40 System.out.println("\nConcept code: " + concept.getCui() + "\n” +
41 “\t" + concept.getName());
42 List sList = concept.getSourceCollection();
43 System.out.println("\tSource-->" + sList.size());
44 for(int y=0; y<sList.size(); y++)
45 {
46 Source s = (Source)sList.get(y);
47 System.out.println("\t - "+s.getAbbreviation());
48 }
49 List semanticList = concept.getSemanticTypeCollection();
50 System.out.println("\tSemanticType---> count ="+ semanticList.size());
51 for(int z=0; z<semanticList.size(); z++)
52 {
53 SemanticType sType = (SemanticType) semanticList.get(z);
54 System.out.println("\t- Id: " + sType.getId() + "\n” +
55 “\t- Name : " + sType.getName());
56 }
57 List atomList = concept.getAtomCollection();
58 System.out.println("\tAtoms -----> count = "+ atomList.size());
59 for(int i=0;i<atomList.size(); i++)
60 {
61 Atom at = (Atom)atomList.get(i);
62 System.out.println("\t -Code: "+ at.getCode() +
63 " -Name: " + at.getName() +
64 " -LUI: " + at.getLui() +
65 " -Source: " + at.getSource().getAbbreviation()
66);

caCORE 3.2 Technical Guide

40

67 }
68 List synList = concept.getSynonymCollection();
69 System.out.println("\tSynonyms -----> count = "+ synList.size());
70 for(int i=0; i< synList.size(); i++){
71 System.out.println("\t - "+ (String) synList.get(i));
72 }
73 }
74 }

Lines Description

4-20 Maps the serialized EVS objects to their Java equivalents using the qual-
ified names of the objects from the WSDL file; each EVS class should
have a qualified name (QName) declaration and accompanying type
mapping.

28 Declares the return type of the invocation as an array of MetaThesaurus-
Concept objects.

30-31 Creates a MetaThesaurusConcept criteria object and sets its name
attribute to "blood*".

33-34 Invokes the Web service operation using an array of two objects (target
class name and criteria object) as input parameters and expecting an
object array as its result.

39 Casts each object in the result array to type MetaThesaurusConcept.

42-72 EVS objects retrieved from the Web services interface include associ-
ated objects, therefore it is possible to call the getAssociatedObject and
getAssociatedObjectCollection methods; no additional Web services
invocations are required.

Chapter 3: Interacting with caCORE

41

Example Four: EVS Domain Search (NCI Thesaurus)
This example is similar to the previous one, except here the search is performed for
data in the NCI Thesaurus.

Limitations
By default, the queryObject operation limits the result set to 1000 objects, even
if the size of the result set is larger. To retrieve the objects past the 1000th
record, you must use the query operation and specify the first object index
(parameter in2) to be greater than 1000.
Result sets serialized and returned by the Web services interface do not cur-
rently include associations to related objects. A consequence of this behavior is
that nested criteria objects with one-to-many associations that are passed to the
query or queryObject operations will result in an exception being thrown.
The following code demonstrates a Web services invocation that would fail:

 1 // As in previous example, define Qnames and register type mappings for all EVS objects
 2
 3 call.setReturnType(qnDLCArray);
 4
 5 DescLogicConcept dlc = new DescLogicConcept();
 6 dlc.setName("blood*");
 7
 8 Object[] thesaurusParams = new Object[]{"DescLogicConcept",dlc};
 9 DescLogicConcept[] dlcs = (DescLogicConcept[])call.invoke(thesaurusParams);
10
11 for(int i=0; i < dlcs.length; i++)
12 {
13 DescLogicConcept concept = dlcs[i];
14 System.out.println("\nConcept: "+ concept.getName()+"\t"+ concept.getCode());
15 List pList = new ArrayList();
16 pList = concept.getPropertyCollection();
17 for(int x=0; x<pList.size(); x++)
18 {
19 Property prop = (Property)pList.get(x);
20 System.out.println("\tProperty :"+ prop.getName()+"\t"+ prop.getValue());
21 List qList = prop.getQualifierCollection();
22 for(int q=0; q< qList.size(); q++)
23 {
24 Qualifier qual = (Qualifier)qList.get(q);
25 System.out.println("\t\tQualifer " + qual.getName() +
26 "\t" + qual.getValue());
27 }
28 }
29 }

 1 Gene gene = new Gene();
 2 gene.setSymbol("IL*");
 3 Pathway pathway = new Pathway();
 4 pathway.setId(new Long(120));
 5 List pathwayList = new ArrayList()
 6 pathwayList.add(pathway);
 7 gene.setPathwaycollection(pathwayList);
 8 try
 8 {
 9 Object[] resultList = (Object[])call.invoke(
10 new Object[]{"gov.nih.nci.cabio.domain.ws.Gene", gene });
11 } catch (Exception e) {
12 // Web Services Exception will be caught
13 }

caCORE 3.2 Technical Guide

42

Because the Web services invocation has an inherent timeout behavior, queries
which take a long time to execute may not complete. If this is the case, use the
query method to specify a smaller result count.
Access to the EVS domain model is limited by the Web services interface, as
shown in the following table:

XML‐HTTP API

The caCORE XML-HTTP API, based on the REST (Representational State Transfer)
architectural style, provides a simple interface using the HTTP protocol. In addition to
its ability to be invoked from most internet browsers, developers can use this interface
to build applications that do not require any programming overhead other than an
HTTP client. This is particularly useful for developing web applications using AJAX
(asynchronous JavaScript and XML).

Service Location and Syntax
The caCORE XML-HTTP interface uses the following URL syntax (Table 3.4):

http://{server}/{servlet}?query={returnClass}&{criteria}&
resultCounter={counter}&startIndex={index}&
pageSize={pageSize}&pageNumber={pageNumber}

Typical Behavior EVS Model Behavior

Can query for any object in the object
model

Can query only for a DescLogicConcept, Histo-
ryRecord or a MetaThesaurusConcept

The association values of the caCORE
domain objects are not populated; need
to run a second query to get associated
values

All attributes of the result object are populated

Can perform queries on any attribute
value

Queries can be performed only on selected
attribute values (see Table 3.3)

Element Meaning Required Example

server Name of the web server on which
caCORE 3.2 web application is
deployed.

Yes cabio.nci.nih.gov

servlet URI and the name of the servlet
that will accept the HTTP GET
requests

Yes cacore32/server/GetXML
cacore32/server/GetHTML

returnClass Class name indicating the type of
objects that this query should
return

Yes query=Gene

criteria Search request criteria describing
the requested objects

Yes Gene[@id=2]

Table 3.4 URL syntax used by the caCORE XML‐HTTP interface

Chapter 3: Interacting with caCORE

43

The caCORE architecture currently provides two servlets that accept incoming
requests:

GetXML returns results in an XML format that can be parsed and consumed by
most programming languages and many document authoring and management
tools
GetHTML presents result using a simple HTML interface that can be viewed by
most modern Internet browsers

Within the request string of the URL, the criteria element specifies the search criteria
using XQuery-like syntax. Within this syntax, square brackets ("[" and "]") represent
attributes and associated roles of a class, the "at" symbol ("@") signals an attribute
name/value pair, and a forward slash character ("/") specifies nested criteria. Criteria
statements within XML-HTTP queries are generally of the following forms (although
more complex statements can also be formed):

{ClassName}[@{attributeName}={value}]
[@{attributeName}={value}]…
{ClassName}[@{attributeName}={value}]/
{ClassName}[@{attributeName}={value}]/…

Examples of Use
The following examples demonstrate use of the XML-HTTP interface. In actual use, the
queries shown here would either be submitted by a block of code or entered in the
address bar of an Internet browser. Also note that the servlet name GetXML in each of
the examples can be replaced with GetHTML to view with layout and markup in a
browser.

counter Number of top level objects
returned by the search

No resultCounter=500

index Start index of the result set No startIndex=25

pageSize Number of records to display on
each "page

No pageSize=50

pageNumber The number of the "page" for which
to display results

No pageNumber=3

Element Meaning Required Example

Table 3.4 URL syntax used by the caCORE XML‐HTTP interface (Continued)

Parameter Meaning Example

ClassName The name of a class Gene

attributeName The name of an attribute of the return class or
an associated class

symbol

value The value of an attribute brca*

Figure 3.3 Criteria statements within XML‐HTTP queries

Query http://server/servlet/GetXML?query=Gene&Gene[@symbol=brca*]

caCORE 3.2 Technical Guide

44

Working With Result Sets
Because HTTP is a stateless protocol, the caCORE server has no knowledge of the
context of any incoming request. Consequently, each invocation of GetXML or GetH-
TML must contain all of the information necessary to retrieve the request, regardless of
previous requests. Developers should consider this when working with the XML-HTTP
interface.

Syntactic
Meaning

Find all objects of type Gene whose symbol starts with 'brca'.

Biological
Meaning

Find all BRCA genes.

Query http://server/servlet/GetXML?query=Gene&Gene[@symbol=brca*]/
Taxon[@scientificName=homo sapiens]

Syntactic
Meaning

Find all objects of type Gene whose symbol starts with 'brca' and which
have an associated Taxon object whose scientificName is equal to
'homo sapiens'.

Biological
Meaning

Find all human BRCA genes.

Query http://server/servlet/GetXML? query=Tissue&Tis-
sue[@organ=eye][@histology=neoplasia]

Syntactic
Meaning

Find all objects of type Tissue associated with attribute organ equal to
'eye' and histology equal to 'neoplasia'.

Biological
Meaning

Find all tissues representing neoplasms of the eye.

Query http://server/servlet/GetXML? query=Gene&Chromosome[@number=2]/
Taxon[@scientificName=homo sapiens]

Syntactic
Meaning

Find all objects of type Gene associated with Chromosome objects with
number equal to 2 which themselves are related to Taxon objects with
scientificName equal to 'homo sapiens'.

Biological
Meaning

Find all human genes on chromosome number 2

Query http://server/servlet/GetXML? query=Gene&Chromosome[@number=2]/
Taxon[@scientificName=homo sapiens]

Syntactic
Meaning

Find all objects of type Gene associated with Chromosome objects with
number equal to 2 which themselves are related to Taxon objects with
scientificName equal to 'homo sapiens' in biological terms

Biological
Meaning

Find all human genes on chromosome number 2

Chapter 3: Interacting with caCORE

45

Retrieving Related Results using XLinks
When using the GetXML servlet to retrieve results as XML, associations between
objects are converted to XLinks within the XML. The link notation, shown below, allows
the client to make a subsequent request to retrieve the associated objects.

<class name="gov.nih.nci.cabio.domain.Gene" recordNumber="1">
 …
 <field name="taxon"
 xlink:type="simple"
 xlink:href="http://cabio.nci.nih.gov/cacore31/
GetXML?query=Taxon&Gene[@id=5]">
 getTaxon
 </field>
 …
</class>

Controlling the Number of Items Returned
The GetXML servlet provides a throttling mechanism to allow developers to define the
number of results returned on any single request and where in the result set to start.
For example, if a search request yields 500 results, specifying resultCounter=450 will
return only the last 50 records. Similarly, specifying startIndex=50 will return only the
first 50 records.

Paging Results
In addition to controlling the number of results to display, the GetXML servlet also pro-
vides a mechanism to support "paging". This concept, common to many web sites,
allows results to be displayed over a number of pages, so that, for example, a request
that yields 500 objects could be displayed over 10 pages of 50 objects each. When the
paging feature is used, the GetXML servlet will include XLinks to each of the result
pages in an XML <page/> element. The element data of the <page/> element is the
number of the page, suitable for output as text or HTML when using an XSL stylesheet:

Limitations
When specifying attribute values in the query string, use of the following characters
generates an error: [] / \ # & %.

Perl API

Programmatic access to the caCORE system for Perl users is provided through a Perl
package called caCOREperl. This package implements the caCORE object model and
integrates with the caCORE server via the caCORE web services client built using
SOAP::Lite and XML parsing. Developers using caCOREperl can take advantage of
the capability to deal with caCORE data in the form of native Perl objects.

<page number="1"
 xlink:type="simple"
 xlink:href="http://cabio.nci.nih.gov/cacore31/GetXML?query={query}&
 pageNumber=4&resultCounter=1000&startIndex=0"> 4 </page>

caCORE 3.2 Technical Guide

46

The following diagram illustrates the overall architecture of caCOREperl and its rela-
tionship with the caCORE server.

Figure 3.4 caCORE Perl API architecture

Language‐Specific Considerations
All caCORE domain objects are represented as Perl objects in caCOREperl and follow
a standard pattern:

A domain object can be created with a constructor method
All attributes of the domain object are accessible via getter and setter methods
All associated domain objects are accessible via getter and setter methods

In order to conform to Perl conventions, the package naming structure (described for
each domain object model in this guide) has been slightly modified, as follows:

Installation and Configuration
caCOREperl will work on any operating system (Windows, Solaris, Linux, etc.) that
supports Perl version 5.6.0 or higher. Most UNIX and Linux platforms come with Perl
already installed. Windows users can download Perl from http://www.activestate.com.

caCOREperl is dependent on two Perl modules, XML::DOM and LWP::UserAgent.
These must be present on the client machine in order for caCOREperl to work. If you
do not already have these installed, use one of the methods below to obtain them and
install caCOREperl.

Fully-Qualified Package Name caCOREperl Package

gov.nih.nci.cabio.domain CaCORE::CaBIO

gov.nih.nci.cadsr.domain CaCORE::CaDSR

gov.nih.nci.common.domain CaCORE::Common

gov.nih.nci.evs.domain CaCORE::EVS

http://www.activestate.com

Chapter 3: Interacting with caCORE

47

First, download the caCOREperl package from the Downloads section of the NCICB
web site (Figure 3.5):

Figure 3.5 Downloads section on the NCICB website

1. Open your browser and go to http://ncicb.nci.nih.gov
2. Click the Download link on the menu bar
3. Scroll down to the section titled caBIO and click on the Download link
4. In the provided form, enter your name, email address and institution name and

click to Enter the Download Area
5. Accept the license agreement
6. On the caCORE downloads page, download the caCOREperl Zip file from the

Primary Distribution section
7. Extract the contents of the downloadable archive to a temporary directory on

your hard drive (for example, c:\temp\caCOREperl on Windows or /tmp/
cacoreperl on Linux).

Alternatively, you can also download caCOREperl from the CPAN archive
(www.cpan.org).

Installation Option One: Using make
Open a command window or terminal prompt and go to the directory where you
extracted the downloadable archive (for example, enter cd c:/temp/caCOREperl).
Then enter:

perl Makefile.PL

www.cpan.org
http://ncicb.nci.nih.gov

caCORE 3.2 Technical Guide

48

Alternatively, if you plan to install caCOREperl somewhere other than your system's
Perl library directory, you can specify the location by entering:

perl Makefile.PL PREFIX=/home/me/perl INSTALLDIRS=perl
Then build caCOREperl by entering

make
To test whether the module has been properly build, enter:

make test
If you have write access to the Perl library directories, you may then install caCOREperl
by entering

make install

Installation Option Two: Using Perl Package Manager (PPM)
Perl Package Manager (PPM) is a tool that is installed with ActiveState Perl and is used
to manage Perl packages. After installing ActiveState Perl, start PPM (the exact method
depends on the version, but is typically done through the Start menu by going to Pro-
grams | ActiveState Perl | PPM, or from the command prompt by running PPM in the
directory that contains the Perl executable files).

Once you have started PPM, a window containing the PPM prompt will appear. At the
prompt, enter:

install XML-DOM
This will install the XML::DOM module on your PC.

Installation Option Three: Using CPAN
This will work on any version of Perl and on all platforms. From a command prompt,
enter:

perl -MCPAN -e shell
Refer to the CPAN documentation for more details on how to use this command.

Installation Option Four: Manual Installation
This is only recommended if none of the above methods works. After extracting the
caCOREperl distribution, copy the entire lib/caCORE folder to the lib/site folder in
your Perl installation folder. For example, if you extracted caCOREperl to c:/temp and
your Perl installation is in c:/perl, at the command prompt enter

copy c:/temp/caCORE/lib/CaCORE c:/perl/lib/site

Service Methods
The methods that provide programmatic access to running the caCORE server are
exposed by the ApplicationService class located in the caCORE package. This class
encapsulates the calls to the Web services API required for the functioning of
caCOREperl.

The ApplicationService object follows the singleton pattern, in that each program will
ONLY contain one instance of such class. It can be constructed using the instance(url)
method, where "url" is the URL of the service endpoint of the caCORE webservice. If no
URL is provided, it will default to the caCORE production server, http://
cabio.nci.nih.gov/cacore32/ws/caCOREService.

http://cabio.nci.nih.gov/cacore32/ws/caCOREService
http://cabio.nci.nih.gov/cacore32/ws/caCOREService

Chapter 3: Interacting with caCORE

49

my $appsvc = CaCORE::ApplicationService->
 instance("http://cabio.nci.nih.gov/cacore32/ws/
caCOREService");

The ApplicationService class provides two query methods that allow users to search for
data based on the specific needs and types of queries to be performed:

Examples of Use
This section includes a number of examples that demonstrate the use of the caCOREp-
erl package. Included with each example is a brief description of the type of search
being performed, a UML diagram depicting the domain objects used, and the example
code accompanied by explanatory text.

Example One: Simple Search (Single Criteria Object)
In this example, a search is performed for all genes whose symbols start with 'brca'.
The code iterates through the returned objects and prints out the symbol and name of
each object along with the name of an associated object of type Taxon. The fetch of the
associated Taxon object is done in the background and is completely transparent to the
user.

Method Signature queryObject(targetPath, sourceObject)

Description Returns an array of objects of the type specified by targetPath and
that conform to the criteria specified by sourceObject

Example queryObject("CaCORE::CaBIO::Gene", $gene)

Method Signature query(targetPath, sourceObject,
 startIndex, requestSize)

Description Identical to the previous queryObject method, but allows for control
over the size of the result set by specifying the index of the first
result to return and the maximum size of the result set

Example query("CaCORE::CaBIO::Gene", $gene, 301, 100)

caCORE 3.2 Technical Guide

50

Example Two: Nested Search
A nested search is one where a traversal of more than one class-class association is
required to obtain a set of result objects given the criteria object. This example demon-
strates one such search in which the criteria object passed to the search method is of
type Gene, and the desired objects are of type ProteinSequence. Because there is no
direct association between these two classes, the path of the traversal is passed to the
search method enabling the query to be performed.

Lines Description

3-4 Returns the instance of the singleton class ApplicationService; this class
defines the service methods used to access caCORE server.

5-6 Creates a criterion object that defines the attribute values for which to
query.

7 Calls the queryObject method of the ApplicationService implementation
and passes it the type of objects to return and the criteria that returned
objects must meet, defined by the $geneCriteria object; the search
method returns objects in an array.

8 Iterates through the Gene objects in the @genes array.

9 Prints the symbol attribute.

10 Prints the fullName attribute.

11 Fetches an associated object of type Taxon (note that this is an extra call
to caCORE server) and prints its scientificName attribute.

 1 use CaCORE::ApplicationService;
 2 use CaCORE::CaBIO;
 3 my $appsvc = CaCORE::ApplicationService->
 4 instance(“http://cabio.nci.nih.gov/cacore32/ws/caCOREService”);
 5 my $geneCriteria = new CaCORE::CaBIO::Gene;
 6 $geneCriteria ->setSymbol(“brca*”);
 7 my @genes = $appsvc->queryObject(“CaCORE::CaBIO::Gene”, $geneCriteria);
 8 foreach my $gene (@genes) {
 9 print “Symbol: “ . $gene->getSymbol .
10 “ Name: “ . $gene->getFullName .
11 “ Taxon: “ . $gene->getTaxon->getScientificName .
12 “\n”;
13 }

Chapter 3: Interacting with caCORE

51

Example Three: Throttled Search
Depending on the search criteria, a search may yield a large result set, which cause
slower response time and increase the likelihood of failure. A throttle mechanism is pro-
vided by:

ApplicationServive->query(targetClassName, criteria,
startIndex, requestedSize);
In the following example:

Limitations
Since caCOREperl depends on the caCORE Web services API, the limitations of that
interface apply here as well, most notably:

By default, the ApplicationService->queryObject method limits the result set to
1000 objects, even if the size of the result set is larger. To retrieve the objects
past the 1000th record, you must use the ApplicationService->query method.

Lines Description

1-2 Creates a Gene object and sets the symbol to "TP53".

6 Defines search path as traversing from the criteria object of type Gene
through Protein to ProteinSequence; note that the first element in the
path is the desired class of objects to be returned, and that subsequent
elements traverse back to the criteria object.

7 Sets the criteria object to the previously-created Gene.

 1 my $geneCriteria = new CaCORE::CaBIO::Gene;
 2 $geneCriteria ->setSymbol(“TP53”);
 3 my $appsvc = CaCORE::ApplicationService->
 4 instance(“http://cabio.nci.nih.gov/cacore32/ws/caCOREService”);
 5 my @proteinSequences = $appsvc->queryObject(
 6 “CaCORE::CaBIO::ProteinSequence,CaCORE::CaBIO::Protein”,
 7 $geneCriteria);
 8 foreach my $proteinSequence (@proteinSequences) {
 9 print “Id: “ . $proteinSequence->getId .
10 “ Value: “ . $proteinSequence->getValue .
11 “\n”;
12 }

Lines Description

7 Request return result to start from 301, request 200 objects.

 1 use CaCORE::ApplicationService;
 2 use CaCORE::CaBIO;
 3 my $appsvc = CaCORE::ApplicationService->
 4 instance(“http://cabio.nci.nih.gov/cacore32/ws/caCOREService”);
 5 my $geneCriteria = new CaCORE::CaBIO::Gene;
 6 $geneCriteria ->setSymbol(“brca*”);
 7 my @genes = $appsvc->query (“CaCORE::CaBIO::Gene”, $geneCriteria, 301, 200);
 8 foreach my $gene (@genes) {
 9 print “Symbol: “ . $gene->getSymbol .
10 “ Name: “ . $gene->getFullName .
11 “\n”;
12 }

caCORE 3.2 Technical Guide

52

Because the Web services invocation has an inherent timeout behavior, queries
which take a long time to execute may not complete. If this is the case, use the
ApplicationService->query method to specify a smaller result count.

53

CHAPTER

4
ENTERPRISE VOCABULARY SERVICES
This chapter describes the Enterprise Vocabulary Services (EVS) project and its appli-
cation programming interface.

Topics in this chapter include:

Introduction on this page
Description Logic on page 58
Concept Edit History in the NCI Thesaurus on page 60
caCORE EVS API on page 62
EVS Search Paradigm on page 65
Downloading the NCI Thesaurus on page 71
Ontylog Mappings on page 75

Introduction

The Enterprise Vocabulary Services (EVS) project is a collaborative effort of the NCI
Center for Bioinformatics and the NCI Office of Communications. Controlled vocabular-
ies are important to any application involving electronic data sharing. Two areas where
the need is perhaps most apparent are clinical trials data collection and reporting and
more generally, data annotation of any kind. The NCI Thesaurus is a biomedical the-
saurus developed by EVS in response to a need for consistent shared vocabularies
among the various projects and initiatives at the NCI as well as in the entire cancer
research community. The EVS project also produces the NCI Metathesaurus, which is
based on NLM's Unified Medical Language System Metathesaurus (UMLS) supple-
mented with additional cancer-centric vocabulary.

A critical need served by the EVS is the provision of a well designed ontology covering
cancer science. Such an ontology is required for data annotation, inferencing and other
functions. The data to be annotated might be anything from genomic sequences to
case report forms to cancer image data. The NCI Thesaurus covers all of these

http://oc.nci.nih.gov
http://www.nlm.nih.gov/research/umls/

caCORE 3.2 Technical Guide

54

domains. A few of the included specialties it includes are pertinent to disease, biomedi-
cal instrumentation, anatomical structure, and gene/protein information. The NCI The-
saurus is updated monthly to keep up with developments in cancer science.

The NCI Thesaurus is implemented as a Description Logic vocabulary and, as such, is
a self-contained and logically consistent terminology. Unlike the NCI Thesaurus, the
purpose of the NCI Metathesaurus is not to provide unequivocal or even necessarily
consistent definitions. The purpose of the NCI Metathesaurus, like the UMLS Metathe-
saurus, is to provide mappings of terms across vocabularies. The caCORE EVS
objects described in this chapter provide access to both the NCI Thesaurus and the
NCI Metathesaurus.

The caCORE EVS API provides access to the NCI Metaphrase, which hosts the Met-
athesaurus database, and the NCI Distributed Terminology Server (DTS), which hosts
the NCI Thesaurus and several other vocabularies.

NCI licenses the Metaphrase and DTS servers from Apelon Inc. Each server has a pro-
prietary Java API. Because of the proprietary nature of these APIs, these interfaces
cannot be made available to the public. Furthermore, NCI has extended and otherwise
modified the Metaphrase and DTS servers to provide functionality that is not present in
the commercial version of these products. Therefore, NCI developed a public domain
open source wrapper that provides full access to the basic and enhanced capabilities of
both servers. This public API is a component of caCORE.

Before actually describing the caCORE Java API to the EVS, a brief overview of the
UMLS Metathesaurus is provided, upon which the NCI Metathesaurus is based. This is
followed by a short discussion of description logic, its role in the area of knowledge rep-
resentation, and its implementation in the NCI Thesaurus.

The UMLS Metathesaurus
The NCI Metathesaurus is based on the UMLS Metathesaurus, supplemented with
additional cancer-centric vocabulary. Excellent documentation on the UMLS is avail-
able at the UMLS Knowledge Sources web site.

A brief overview of the UMLS Metathesaurus is included here, but it is strongly recom-
mended that users who wish to gain a deeper understanding refer to the above web
site. Only those features of the UMLS Metathesaurus that are relevant to accessing the
NCI Metathesaurus are described here.

The UMLS Metathesaurus is a unifying database of concepts that brings together terms
occurring in over 100 different controlled vocabularies used in biomedicine. When add-
ing terms to the Metathesaurus, the UMLS philosophy has been to preserve all of the
original meanings, attributes, and relationships defined for those terms in the source
vocabularies, and to retain explicit source information as well. In addition, the UMLS
editors add basic information about each concept and introduce new associations that
help to establish synonymy and other relationships among concepts from different
sources.

Given the very large number of related vocabularies incorporated in the Metathesau-
rus, there are instances where the same concept may be known by many different
names, as well as instances where the same names are intended to convey different
concepts. To avoid ambiguity, the UMLS employs an elaborate indexing system, the
central kingpin of which is the concept unique identifier (CUI). Similarly, each unique
concept name or string in the Metathesaurus has a string unique identifier (SUI).

http://ncimeta.nci.nih.gov/indexMetaphrase.html
http://www.nlm.nih.gov/research/umls/umlsdoc.html
http://nciterms.nci.nih.gov/NCIBrowser/Dictionary.do

Chapter 4: Enterprise Vocabulary Services

55

In cases where the same string is associated with multiple concepts, a numeric tag is
appended to that string to render it unique as well as to reflect its multiplicity. In addi-
tion, the UMLS Metathesaurus editors may create an alternative name for the concept
that is more indicative of its intended interpretation. In these cases, all three names for
the concept are preserved.

Several types of relationships are defined in the UMLS Metathesaurus, and four of
these are captured by the NCI Metaphrase interface:

The UMLS Semantic Network is an independent construct whose purpose is to provide
consistent categorization for all concepts contained in the UMLS Metathesaurus, and to
define a useful set of relationships among these concepts. As of the 2005AC release,
the Semantic Network defined a set of 135 basic semantic types or categories, which
could be assigned to these concepts, and 54 relationships that could hold among these
types.

The major groupings of semantic types include organisms, anatomical structures, bio-
logic function, chemicals, events, physical objects, and concepts or ideas. Each UMLS
Metathesaurus concept is assigned at least one semantic type, and in some cases,
several. In all cases, the most specific semantic type available in the network hierarchy
is assigned to the concept.

The NCI Metathesaurus includes most of the UMLS Metathesaurus, with certain propri-
etary vocabularies of necessity excluded. In addition, the NCI Metathesaurus includes
terminologies developed at NCI along with external vocabularies licensed by NCI. The
local vocabularies developed at NCI are described in Table 4.1. As noted there, a lim-
ited model of the NCI Thesaurus is also accessible via the NCI Metathesaurus, as the
NCI Source. Additional external vocabularies include MedDRA, SNOMED, ICD-O-3,
and other proprietary vocabularies.

The NCI Metathesaurus is available through the Java API described in this chapter.

Broader (RB) The related concept has a more general meaning.

Narrower (RN) The related concept has a more specific meaning.

Synonym (SY) The two concepts are synonymous.

Other related (RO) The relationship is not specified but is something
other than synonymous, narrower, or broader.

Vocabulary Content Usage

NCI Source Limited model of the NCI The-
saurus

Reference terminology for cancer
research applications

NCIPDQ Expanded and re-organized
PDQ

CancerLit indexing and clinical trials
accrual

NCISEER SEER terminology Incidence reporting

CTEP CTEP terminology Clinical trials administration

MDBCAC Topology and morphology Cancer genome research

ELC2001 NCBI tissue taxonomy Tissue classification for genetic data
such as cDNA libraries.

Table 4.1 NCI local source vocabularies included in the Metathesaurus

http://www.meddramsso.com/NewWeb2003/index.htm
http://www.snowmed.org/main.html
http://training.seer.cancer.gov/module_icdo3/icdo3_home.html

caCORE 3.2 Technical Guide

56

Knowledge Representations and Description Logic
Knowledge representation has long been a prime focus in artificial intelligence
research. This area of research asks how one can accurately encode the rich and
highly detailed world of information that is required for the application area being mod-
eled and yet, at the same time, capture the implicit commonsense knowledge. One of
the most common approaches to this problem in the 1970s was to utilize frame-based
representations.

The basic idea of a frame is that important objects in our world fall into natural classes,
and that all members of these classes share certain properties or attributes, called
slots. For example, all dogs have four legs, a tail (or vestige of one), whiskers, etc. Res-
taurants generally have tables, chairs, eating utensils, and menus. Thus, when we
enter a new restaurant or encounter a new dog, we already have a "frame of reference"
and some expectations about the properties and behaviors of these entities.

In a seminal paper by Marvin Minsky published in 1975, he placed the frame represen-
tation paradigm in the context of a semantic network of nodes, attributes, and relations.
Figure 4.1 shows a simple frame-based representation of an earthquake, as it might be
used in a semantic network of news stories.1

Figure 4.1 An earthquake in a semantic network of news stories

ICD03 Oncology classifications Cancer genome research and
incidence reporting

MedDRA Regulatory reporting terminol-
ogy

Adverse event reporting

MMHCC Mouse Cancer Database ter-
minology

Mouse Models of Human Cancer
Consortium

CTRM Core anatomy, diagnosis and
agent terminology

Translational research by NCICB
applications

Vocabulary Content Usage

Table 4.1 NCI local source vocabularies included in the Metathesaurus (Continued)

1. This example is excerpted from Artificial Intelligence, by Patrick Winston, Addison-Wesley, 1984.

Chapter 4: Enterprise Vocabulary Services

57

At the same time that frame-based representations were being explored, a popular
alternative approach was to use (some subset of) first-order predicate logic (FOL)-often
implemented as a Prolog program. While propositional logic allows one to make simple
statements about concrete entities, a complete first-order logic allows one to make gen-
eral statements about anonymous elements, with the introduction of variables as place-
holders. The example below contrasts the difference in expressivity between
propositional logic and FOL:

In other words, in FOL it is possible to express general rules of inference that can be
applied to all entities whose attributes satisfy the left-hand side of the inference
operator. Thus, simply asserting Man(Socrates) entails Mortal(Socrates).

Since logic programming is based on the tenets of classical logic and comes equipped
with automated theorem-proving mechanisms, this approach allowed the development
of inference systems whose soundness and completeness could be rigorously demon-
strated. But while many of these early inference systems were logically sound and
complete, they were often not very useful, as they could only be applied to highly pro-
scribed areas or "toy problems." The problem was that a complete first-order predicate
logic is itself computationally intractable, as certain statements may prove undecidable.

Suppose for example that we are trying to establish that some theorem, P(x), is true.
The way a theorem prover works is to first negate the theorem and, subsequently, to
combine the negated theorem () with stored axioms in the body of knowledge to
show that this leads to a logical contradiction. Ultimately, when the theorem prover
derives the conclusion , the program terminates and the theorem is con-
sidered proven.

This method of proof by refutation is guaranteed to terminate when it is indeed upheld
by the body of knowledge. The problems arise when the initial theorem is not valid, as
its negation may not produce a logical contradiction, and thus the program may not ter-
minate.

In contrast, the frame representations offered a rich, intuitive means of expressing
domain knowledge, yet they lacked the inference mechanisms and rigor that predicate
logic systems could provide. As suggested by Figure 4.1, the frame representation cap-
tures a good deal of implicit knowledge. For example, we expect that all disaster
events, including earthquakes, have information about fatalities and injuries and the
extent of loss and property damage. In addition, we expect that these events will have
locations, dates, and individuals associated with them.

Early efforts to apply predicate logic to frame representations in order to make this
information explicit however, soon revealed that the problem was computationally
intractable. This occurred for two reasons: (1) The frame representation was too per-
missive; more rigorous definitions were required to make the representation computa-
tional; and (2) the intractability of first-order predicate logic itself.

Several subsets of complete FOL have since been defined and successfully applied to
develop useful computational models capable of significant reasoning. For example,
the Prolog programming language is based on a subset of FOL that severely limits the

Propositional Logic First-order Predicate Logic

All men are mortal.
Socrates is a man.
Socrates is mortal.

: Man(x) Mortal(x)
Man(Socrates)

x∀

P x()¬

P x() P x()¬∧

caCORE 3.2 Technical Guide

58

use of negation. The family of description logic (DL) systems is a more recent develop-
ment, and one that is especially well-suited to the development of ontologies, taxono-
mies, and controlled vocabularies, as an important function of a DL is as an auto-
classifier.

Description Logic

Description logic can be viewed as a combination of the frame-based approach with
FOL. In the process, both models had to be scaled back to achieve an effective solu-
tion. Like frames, the DL representation allows for concepts and relationships among
concepts, including simple taxonomic relations as well as other meaningful types of
association. Certain restrictions however, are placed on these relations. In particular,
any relation that involves class membership, such as the isa or inverse-isa relations,
must be strictly acyclic.

The predicate logic used in a description logic system is also limited in various ways,
depending on the implementation. For example, the most minimal form of a DL does
not allow any form of existential quantification. This limitation allows for a very easily
computed solution space, but the resulting expressivity is severely diminished. The
next step up in representational power allows limited existential quantification but with-
out atomic negation.

Indeed, there is today a large family of description logics that have been realized, with
varying levels of expressivity and resulting computational complexities. In general, DLs
are decidable subsets of FOL, and the decidability is due in large part to their acyclicity.
The theory behind these models is beyond the scope of this discussion, and the inter-
ested reader is referred to The Description Logic Handbook, by Franz Baader, et al.
(eds.), Cambridge University Press, 1993, ISBN number 0-521-78176-0.

The two main ingredients of a DL representation are concepts and roles. A major dis-
tinction between description logics and other subsets of FOL is its emphasis on set
notations. Thus a DL concept never corresponds to a particular entity but rather to a set
of entities, and the notations used for logical conjunction and disjunction are set inter-
section and union.

DL concepts can also be thought of as unary predicates in FOL. Thus the DL expres-
sion can be interpreted as the set of all children, with the corre-
sponding FOL expression . Syntactically then, DL expressions
are variable free, with the understanding that the concepts always reference sets of ele-
ments.

A DL role is used to indicate a relationship between the two sets of elements refer-
enced by a pair of concepts. In general, DL notations are rather terse, and the concept
(or set of elements) of interest is not explicitly represented. Thus, to represent the set of
individuals whose children are all female, we would use: hasChild.Female. The
equivalent expression in FOL might be something like:

In terms of set theory, a role potentially defines the Cartesian product of the two sets.
Roles can have restrictions, however, which place limitations on the possible relations.
A value restriction limits the type of elements that can participate in the relation; a num-
ber restriction limits the number of such relations an element can participate in.

Person Young∩
Person x() Young x()∧

x∀

:hasChild(y,x) female(x)x∀

Chapter 4: Enterprise Vocabulary Services

59

In addition, each role defines a directed relation. For example, if x is the child of y, y is
not also the child of x. In the above example hasChild, the parent concept is considered
the domain of the relation, and the child is considered the range. Elements belonging to
the set of objects defined by the range concept are also called role fillers. Number
restrictions apply to the number of role fillers that are required or allowed in a relation.
For example, a parent can be defined as a person having at least one child:

A DL representation is constructed from a ground set of atomic concepts and atomic
roles, which are simply asserted. Defined concepts and defined roles are then derived
from these atomic elements, using the set operations of intersection, union, negation,
etc. Most DLs also allow existential and universal quantifiers, as in the above exam-
ples. Note, however, that these quantifiers always apply to the role fillers only.

The fundamental inference operation in DL is subsumption, and is usually indicated
with subset notation. Concept A is said to subsume B, or , when all members of
concept B are contained in the set of elements defined by concept A, but not vice
versa. That is, if B is a proper subset of A, then A subsumes B. This capability has far-
reaching repercussions for vocabulary and ontology developers, as it enables the sys-
tem to automatically classify newly introduced concepts. Moreover, correct subsump-
tion inferencing can be highly nontrivial, as, in general, this requires examining all of the
relationships defined in the system and the concepts that participate in those relations.

Description Logic in the NCI Thesaurus
The NCI Thesaurus is currently developed using the proprietary Apelon Inc. Ontylog™
implementation of description logic. Ontylog is distributed as a suite of tools for termi-
nology development, management, and publishing. Although the underlying inference
engine of Ontylog is not exposed, the implementation has the characteristics of what is
called an AL- (attributive language) or FL- ("Frame Language") description logic. It
does not support atomic negation but does appear to provide all other basic description
logic functionality.

The NCI Thesaurus is edited and maintained in the Terminology Development Environ-
ment (TDE) provided by Apelon. The TDE is an XML-based system that implements
the DL model of description logic based on Apelon's Ontylog Data Model. The Data
Model uses four basic components: Concepts, Kinds, Properties, and Roles.

As in other DL systems, Concepts correspond to nodes in an acyclic graph, and Roles
correspond to directed edges defining relations between concept members. Each Con-
cept has a unique Kind. Formally, Kinds are disjoint sets of Concepts and represent
major subdivisions in the NCI Thesaurus.

More concretely, Kinds are used in the Role definitions to constrain the domain and
range values for that Role. Each Role is a directed relation that defines a triplet consist-
ing of two concepts and the way in which they are related. The domain defines the Con-
cept that the Role applies to, and the Range defines the possible values-in other words,
Concepts, that can fill that Role. For example, the Role geneEncodes might have its
domain restricted to the Gene_Kind and its range to the Protein_Kind. This Role then,
essentially states that Genes encode Proteins.

As in all DLs, all roles are passed from parent to child in the inheritance hierarchy. For
example, a "Malignant Breast Neoplasm" has the role located-in, connecting it to the
concept "Breast." Thus, since the concept "Breast Ductal Carcinoma" is-a "Malignant

Person child()∩

A B⊆

caCORE 3.2 Technical Guide

60

Breast Neoplasm," it inherits the located_in relation to the "Breast" concept. These lat-
eral nonhierarchical relations among concepts are referred to as associative or seman-
tic roles - in contrast to the hierarchical relations that reflect the is-a roles.

In the first-order algebra upon which Ontylog DL is based, every defined relationship
also has a defined inverse relationship. For example, if A is contained by B, then B con-
tains A. Inverse relationships are useful and are expected by human users of ontolo-
gies. However, they have a computational cost. If the edges connecting concept nodes
are bi-directional, then the computation quickly becomes intractable. Therefore in the
Ontylog implementation of DL, inverse relationships are not stored explicitly but com-
puted on demand.

Figure 4.2 gives an overview of how the NCI Thesaurus is deployed. Apelon provides
both graphical and programmatic interfaces to its Distributed Terminology System and
its Terminology Development Environment.

Figure 4.2 An overview of the NCI Thesaurus infrastructure

The graphical interfaces to the DTS are available for browsing at the NCICB EVS
Download site; the APIs however are proprietary, and thus not available to the public.
The domain objects described in this chapter have been implemented to provide a pub-
lic API to the DTS, including the NCI-specific extensions to the DTS that support func-
tionality such as concept history.

Concept Edit History in the NCI Thesaurus

One of the primary uses of the NCI Thesaurus is as a resource for defining tags or
retrieval keys for the curation of information artifacts in various NCI repositories. Since
these tags are defined at a fixed point in time, however, they necessarily reflect the
content and structure of the NCI Thesaurus at that time only. Given the rapidly evolving
terminologies associated with cancer research, there is no guarantee that the tags
used at the time of curation in the repository will still have the same definition in subse-
quent releases of the Thesaurus. In most cases the deprecation or redefinition of a pre-
viously defined tag is not disastrous, but it may compromise the completeness of the
information that can be retrieved.

In order to address this issue, the EVS team has developed a history mechanism for
tracing the evolution of concepts as they are created, merged, modified, split, or retired.
(In the NCI Thesaurus, no concept is ever deleted.) The basic idea is that each time an
edit action is performed on a concept, a record is added to a history table. This record
contains information about relations that held for that concept at the time of the action
as well as other information, such as version number and timestamp that can be used

http://ncicb.nci.nih.gov/download/
http://ncicb.nci.nih.gov/download/

Chapter 4: Enterprise Vocabulary Services

61

to reconstruct the state when the action was taken. Table 4.2 summarizes the informa-
tion stored in the history table.

Capturing the history data for a Split, Merge, or Retire action is more complicated. In a
Split, a concept is redefined by partitioning its defining attributes between two concepts,
one of which retains the original concept's code and one that is newly created. This
action is taken when ambiguities in the original concept's meaning require clarification
by narrowing its definition.

In the case of a Split, three history records will be created: one for the newly created
concept, (with a null Reference_Code), and two for the original concept that is being
split. In the first of these two records, the Reference_Code is the code for the new con-
cept; in the second it is the code of the split concept.

Figure 4.3 History records for the split action

For Merge actions, the situation is similar to a Split. In this case, two ambiguous con-
cepts must be combined, and only one of the original concepts is retained. Again there
will be three history records created: two for the concept that will be retired during the
merge, and one for the "winning" concept. The Reference_Code in the history record
for the "winning" concept will be the same as the Concept_Code; i.e., the concept
points to itself as a descendant in the Merge action. The Reference_Code will be null in
one of the entries for the retiring concept, while the second entry will have the code of
the "winning" concept; thus, this Reference column points to the concept into which the
concept in the Concept_Code column is being merged.

Finally, if the action is Retire, there will be as many history entries as the concept has
parent concepts. The Reference column in these entries will contain the concept code

Column Name Description

History_ID Unique consecutive number for use as the database primary key

Concept_Code The concept code for the concept currently being edited

Action Edit Action: {Create, Modify, Split, Merge, Retire}

Baseline_Date Date of NCI Thesaurus Baseline (see discussion below)

Reference_Code This field contains the concept code of a second concept either
participating in or affected by the editor's action.
Captures critical information concerning the impact of the edit
actions on other concepts. The value will always be null if the
action is Create or Modify.

Table 4.2 The NCI Thesaurus concept history table

caCORE 3.2 Technical Guide

62

of the parent concepts, one parent concept per history entry. The motivation for this is
that end-users with documents coded by such retired concepts may find a suitable
replacement among the concept's parents at the time of retirement.

The caCORE EVS APIs support concept history queries, and for programmatic consis-
tency, a minimal history is added to all vocabularies served from the DTS that are not
edited by the EVS group. Concepts in vocabularies that are not edited by EVS will have
a single history entry associated with them-a Create action with date "May 1, 2003."

In the case of the NCI Thesaurus, concept history tracking has been ongoing internally
since December 2002. However, for the purpose of publication in the DTS, a specific
baseline has been selected to serve as "time zero" for concept history. This baseline is
(internal) version 03.08c, which immediately preceded the NCI Thesaurus Version 2.0
released in caCORE 2.0. All of the concepts in this baseline have a Create action asso-
ciated with them, dated "August 12, 2003", the date of the 03.08c build.

caCORE EVS API

The caCORE 3.2 EVS API is a public domain open source wrapper that provides full
access to the basic and enhanced capabilities of the Metaphrase and DTS (Distributed
Terminology Server) Servers. The NCI Metaphrase Server hosts the Metathesaurus
database and the NCI DTS Server hosts the NCI Thesaurus and several other vocabu-
laries. Java clients accessing the NCI Thesaurus and Metathesaurus vocabularies
communicate their requests via the open source caCORE EVS API. The proprietary
APIs are included as jar files in the caCORE 3.2 Server distribution.

The NCI Metathesaurus and the NCI Thesaurus (Description Logic Vocabulary) are
maintained by NCICB. The caCORE EVS API also provides access to Description
Logic vocabularies maintained by external entities like "GO", "LOINC","HL7" etc.

The UML Class diagram in Figure 4.4 provides an overview of the caCORE 3.2 EVS
domain object classes. The DescLogicConcept and MetaThesaurusConcept are two
central Concept classes in the model, with most of the other classes organizing them-
selves around these entities.

The Vocabulary and SecurityToken classes were added to the model in the 3.2 release.
The SecurityToken class can be used to specify security credentials like username,
password, security token etc.

A DAO Security model has also been implemented in this release to provide data level
security to Vocabularies. The MedDRASecurity class, the class that implements the
DAOSecurity interface, validates a token against the MedDRA vocabulary and prevents

Chapter 4: Enterprise Vocabulary Services

63

unauthorized users from performing any of the queries against MedDRA. To access
MedDRA via the caCORE EVS API, a user must obtain a valid token from NCICB.

Figure 4.4 The caCORE EVS API domain object classes

The EVS API diverges somewhat from the other caCORE domain models in its search
mechanisms, as described in the next section. While the other APIs have direct access
to their databases, the EVS API does not. Since all EVS queries are passed through
the proprietary APIs provided by Apelon, the search and retrieval capabilities are effec-
tively proscribed by the features implemented by these third-party tools.

EVS Domain Object Catalog
The caCORE EVS domain objects are implemented as Java beans in the
gov.nih.nci.evs.domain package. Table 4.3 lists each class and a description. Detailed
descriptions about each class and its methods are present in the caCORE 3.2 Java-

 cd caCORE 3.2 EVS

domain::AttributeSetDescriptor

- name: String
- WITH_ALL_ATTRIBUTES: int = 1
- WITH_ALL_PROPERTIES: int = 3
- WITH_ALL_ROLES: int = 2
- WITH_NO_ATTRIBUTES: int = 0

domain::DescLogicConcept

- code: String
- hasChildren: Boolean
- hasParents: Boolean
- inverseAssociationCollection: Vector
- inverseRoleCollection: Vector
- isRetired: Boolean
- name: String
- namespaceId: int
- semanticTypeVector: Vector

domain::History

- editAction: String
- editActionDate: Date
- namespaceId: int
- referenceCode: String

domain::MetaThesaurusConcept

- cui: String
- name: String
- synonymCollection: ArrayList

domain::Property

- name: String
- value: String

domain::Role

- name: String
- value: String

domain::Source

- abbreviation: String
- code: String
- description: String

domain::SemanticType

- id: String
- name: String

domain::Definition

- definition: String

domain::HistoryRecord

- descLogicConceptCode: String

domain::Atom

- code: String
- lui: String
- name: String
- origin: String

domain::
Qualifier

- name: String
- value: String

domain::
Association

- name: String
- value: String

domain::TreeNode

- isA: boolean
- l inks: HashSet
- name: String
- traverseDown: boolean

domain::EdgeProperties

- isA: boolean
- l inks: HashSet
- name: String
- traverseDown: boolean

domain::Silo

- id: int
- name: String

domain::Vocabulary

- description: String
- name: String
- namespaceId: int

security::
SecurityToken

- accessToken: String
- password: String
- userName: String

+atomCollection

1..*

+propertyCollection

0..*

+roleCollection

0..*

+roleCollection 0..*

+semanticTypeCollection

0..*

+sourceCollection 0..*

+propertyCollection 0..*

+source

0..1

+historyCollection

0..*

+source 1

+securityToken

0..1

+qualifierCollection 0..*

+qualifierCollection

0..*

+associationCollection 0..*

+treeNode

0..1

+edgeProperties

0..1

+DescLogicConcept.code 1

+siloCollection

0..*

+vocabulary 1

+definitionCollection 0..*

http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs

caCORE 3.2 Technical Guide

64

Docs. The only interface implemented by the EVS domain objects is java.io.serializ-
able.

EVS Domain Object Description

Association Relates a concept or a term to another concept or term.
Association falls into three categories; concept associa-
tion, term association, and synonyms, which are concept-
term associations.

Atom An occurrence of a term in a source.

AttributeSetDescriptor set of concept attributes that should be retrieved by a
given operation.

Definition Textual definition from an identified source

DescLogicConcept the fundamental vocabulary entity in the NCI Thesaurus.

EdgeProperties Specifies the relationship between a concept and its
immediate parent when a DefaultMutableTree is gener-
ated using the getTree method.

EditActionDate Stores edit action and date information. This class is dep-
recated and will be removed from a future release. Please
use History class instead.

History Stores the concept history information.

HistoryRecord Stores the DescriptionLogicConcept code.

MetaThesaurusConcept fundamental vocabulary entity in the NCI MetaThesaurus

Property an attribute of a concept. Examples of properties are
"Synonym", "Preferred_Name", "Semantic_Type" etc.

Qualifier Attached to associations and properties of a concept.

Role Defines a relationship between two concepts.

SemanticType a category defined in the semantic network that can be
used to group similar concepts

Silo A repository of customized concept terminology data from
a knowledge base. There can be a single silo or multiple
silos, each consisting of semantically related concepts
and extracted character strings associated with those con-
cepts.

SecurityToken Stores security information for a Vocabulary.

Source The source is a knowledge base.

TreeNode Specifies the relationship between a concept and its
immediate parent when a DefaultMutableTree is gener-
ated using the getTree method. This class is deprecated
and will be removed from a future release. Please use
EdgeProperties instead.

Vocabulary Vocabulary entity or namespace.

Table 4.3 caCORE EVS domain objects and descriptions

http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/evs/domain/Association.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/evs/domain/Atom.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/evs/domain/AttributeSetDescriptor.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/evs/domain/Definition.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/evs/domain/DescLogicConcept.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/evs/domain/EdgeProperties.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/evs/domain/EditActionDate.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/evs/domain/History.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/evs/domain/HistoryRecord.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/evs/domain/MetaThesaurusConcept.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/evs/domain/Property.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/evs/domain/Qualifier.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/evs/domain/Role.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/evs/domain/SemanticType.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/evs/domain/Silo.html
message URL http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/evs/securityToken/Source.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/evs/domain/Source.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/evs/domain/TreeNode.html
message URL http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/evs/vocabulary/Source.html

Chapter 4: Enterprise Vocabulary Services

65

EVS Data Sources

The EVS provides NCI with services and resources for controlled biomedical vocabu-
laries, and includes both the NCI Thesaurus and the NCI Metathesaurus. The NCI The-
saurus is composed of over 27,000 concepts represented by about 78,000 terms. The
Thesaurus is organized into 18 hierarchical trees covering areas such as Neoplasms,
Drugs, Anatomy, Genes, Proteins, and Techniques. These terms are deployed by NCI
in its automated systems for uses such as keywording and database coding.

The NCI Metathesaurus maps terms from one standard vocabulary to another, facilitat-
ing collaboration, data sharing, and data pooling for clinical trials and scientific data-
bases. The Metathesaurus is based on the NLM's Unified Medical Language System
(UMLS) and is composed of over 70 biomedical vocabularies.

Both the data tier and API for the backend terminology servers, the DTS serving the
standalone vocabularies and the Metaphrase serving the NCI Metathesaurus, are com-
mercial software products licensed from Apelon. Neither these backend server compo-
nents nor the databases, or the schemas, are released in the caCORE distribution.

EVS Search Paradigm

The sequence diagram below provides an overview of the caCORE 3.2 EVS API
search mechanism implemented to access the NCI EVS vocabularies.

An EVS search is performed by calling the evsSearch operation defined in the Applica-
tionService class.

List evsSearch(EVSQuery evsQuery);

 sd caCORE EVS_3.2

EVS User

ApplicationServiceTestEVS SpringFrameworkEVSQuery EVSDAOImpl

DTSRPC

DAOSecurity MedDRASecurity

MSSOUserValidation

Securi tyToken

runevsdemo

searchDescLogicConcepts(MedDRA)

addSecuri tyToken(MedDRA, token)

evsSearch(evsQuery)
response= evsQuery(request)

response= query(request)

MedDRASecurity= getSecuri tyAdapter
getAccessCode(token)

val idateToken(token)

true=

accessCode=

searchDescLogicConcepts

vector=

response=

List=

caCORE 3.2 Technical Guide

66

EVSQuery and EVSQueryImpl
The gov.nih.nci.evs.query package consists of the EVSQuery.java interface and the
EVSQueryImpl.java class. The methods defined in the EVSQuery.java file can be
used to query the Metaphrase and DTS Servers. The query object generated by this
class can hold one query at a time. The following example code segment demonstrates
an EVSQuery object that calls the searchDescLogicConcept method.

Example:

String vocabularyName = "GO";
String conceptCode = "GO:0005667";
EVSQuery evsQuery = new EVSQueryImpl();
evsQuery.searchDescLogicConcept(vocabularyName,
conceptCode,true);

To perform a search on the Description Logic Vocabulary you must specify the vocabu-
lary name. In most instances methods that do not require vocabulary names are NC
MetaThesaurus queries.

EVSQuery Methods and Parameters
Most of the methods defined in the EVSQuery accept concept names or concept
codes. If a vocabulary name is required as a parameter along with a concept code or
name, a valid DescLogicConcept name or code needs to be passed to the search
method.

Note: A search term is a String and is not considered as a valid concept name. To get a valid
DescLogicConcept name you must perform a search using the searchDescLogicCon-
cept method. Likewise to get a valid MetaThesaurusConcept name or CUI (Concept
Unique Identifier) you must perform a search using the searchMetaThesarus method.
Most of the search methods defined in the EVSQuery require a valid concept name or
code.

Some of the methods defined in the EVSQuery are listed in the following table.

Method name Parameter Comments Returned by evsSearch

searchDescLogic-
Concept

String
vocabu-
laryName

A valid Description Logic
vocabulary name such
as "NCI_Thesaurus",
"GO", "HL7" etc

Returns one or more Des-
cLogicConcepts in a List.

String
searchTerm

Any string value

int limit Maximum number of
records

Table 4.4 Methods defined in the EVSQuery

http://ncicb-dev.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs

Chapter 4: Enterprise Vocabulary Services

67

searchMetaThe-
saurus

String
searchTerm

Any String value or a
valid Concept Unique
Identifier. A Concept
Unique identifier is used
to uniquely identify con-
cepts in the MetaThe-
saurus.

Returns one or more Met-
aThesaurusConcepts in a
List.

int Limit Maximum number of
records

String Source Source abbreviation.
Each Source has a
source abbreviation that
can uniquely identify a
source.

boolean Cui This value is set to true if
a concept unique identi-
fier is used as a search
term

boolean
shortRe-
sponse

Set to true for short
response

boolean
score

Set to true for score

getHistoryRecords String vocab-
ularyName

A valid Description Logic
vocabulary name such
as "NCI_Thesaurus",
"GO", "HL7" etc

Returns one or more Histo-
ryRecords in a List.

String con-
ceptCode

A valid code of a Des-
cLogicConcept.

getVocabu-
laryNames

Returns one or more
Description Logic vocabu-
lary names in a List

getMetaSources Returns one or more
Source objects in a List.

searchSourceBy-
Code

String code A valid Atom code. Returns one or more Met-
aThesaurusConcepts in a
List.String

sourceAbbre-
viation

Valid source abbrevia-
tion

Method name Parameter Comments Returned by evsSearch

Table 4.4 Methods defined in the EVSQuery (Continued)

caCORE 3.2 Technical Guide

68

Accessing Secured Vocabularies
MedDRA is a Secured vocabulary for which a user must obtain a valid security token to
access. The example below depicts the syntax of setting a security token to access a
secured Vocabulary.

gov.nih.nci.evs.query.EVSQuery evsQuery = new
gov.nih.nci.evs.query.EVSQueryImpl();
gov.nih.nci.evs.security.SecurityToken token = new
gov.nih.nci.evs.security.SecurityToken();
/*

You must obtain a valid security token from NCICB to access MedDRA via the caCORE
EVS API. Note that the security token value used in the following example is not valid.

*/
token.setAccessToken(“123456”);
evsQuery.addSecurityToken(“MedDRA”, token);
evsQuery.getDescLogicConcept(“MedDRA”, “Blood”, false);

Use the following instructions to create an EVS search request.

1. Create an ApplicationService instance.
ApplicationService appService = ApplicationServicePro-
vider.getApplicationService()

2. Instantiate an EVSQuery instance and set the method name and parameters.
EVSQuery evsQuery = new EVSQueryImpl();

evsQuery.searchDescLogicCon-
cepts("NCI_Thesaurus","blood*",10);

3. Set the security token value. This step can be omitted if the vocabulary does not
require a security token.
gov.nih.nci.evs.security.SecurityToken token = new
gov.nih.nci.evs.security.SecurityToken();
token.setAccessToken("xxxxxx");
evsQuery.addSecurityToken(vocabularyName, token);

getTree String vocab-
ularyName

A valid Description Logic
vocabulary name

Returns a DescLogicCon-
cept tree in a List

String root-
Name

A valid DescLogicCon-
cept name

boolean
direction

Set to true if traverse
down

boolean
isaFlag

Set to true if relationship
is child

int attributes Sets a AttributeSetDe-
scriptor value

int levels Depth of the tree

Vector roles Valid role names

Method name Parameter Comments Returned by evsSearch

Table 4.4 Methods defined in the EVSQuery (Continued)

Chapter 4: Enterprise Vocabulary Services

69

4. Call the evsSearch method defined in the ApplicationService class to query
EVS.
List evsResults = (List)appService.evsSearch(evsQuery);

5. The result objects are populated. The return type varies based on the search
method call set in the EVSQuery instance.

Examples of Use

Example 1: Search for DescLogicConcepts Starting Term ʹBloodʹ
1 public static void main(String[] args) {
2 try{
3 ApplicationService appService =
ApplicationServiceProvider.getApplicationService();
4 EVSQuery evsQuery = new EVSQueryImpl();
5
evsQuery.searchDescLogicConcepts("NCI_Thesaurus","blood*",10)
;
6 List evsResults = (List)appService.evsSearch(evsQuery);
…
7 }catch(ApplicationException ex){
 …
9 }
10 }

Example 2: Search MetaThesaurusConcepts by Atom
1 try{
2 ApplicationService appService =
ApplicationServiceProvider.getApplicationService();
3 EVSQuery evsQuery = new EVSQueryImpl();
4 evsQuery.searchSourceByAtomCode("10834-0","*");
5 List evsResults = (List)appService.evsSearch(evsQuery);
6 for(int m=0; m<evsResults.size(); m++){
7 MetaThesaurusConcept concept =
(MetaThesaurusConcept)evsResults.get(m);
8 System.out.println("\nConcept code: "+concept.getCui()
+"\n\t"+concept.getName());

Lines Description

3 Creates an instance of a class that implements the ApplicationService inter-
face; this interface defines the service methods used to access data objects.

4 Creates a new EVSQuery object.

5 Specifies the search method and parameters. The searchDescLogicConept
method performs a search in the "NCI_Thesaurus" vocabulary for a term
that starts with "blood" and returns a maximum of ten Concepts if found.

6 Calls the evsSearch method of the ApplicationService implementation pass-
ing the EVSQuery object. This method returns a List Collection. The type of
object that is returned depends on the search parameters set in the
EVSQuery object; in this case the searchDescLogicConcept method was
invoked, the resulting objects are of type DescLogicConcept.

caCORE 3.2 Technical Guide

70

9 List sList = concept.getSourceCollection();
10 System.out.println("\tSource-->" + sList.size());
11 for(int y=0; y<sList.size(); y++){
12 Source s = (Source)sList.get(y);
13 System.out.println("\t - "+s.getAbbreviation());
21 }
14 List semanticList = concept.getSemanticTypeCollection();
15 System.out.println("\tSemanticType---> count ="+
semanticList.size());
16 for(int z=0; z<semanticList.size(); z++){
17 SemanticType sType = (SemanticType) semanticList.get(z);
18 System.out.println("\t- Id: "+sType.getId()+"\n\t- Name
: "+sType.getName());
19 }
20 List atomList = concept.getAtomCollection();
21 System.out.println("\tAtoms -----> count = "+
atomList.size());
22 for(int i=0;i<atomList.size(); i++){
23 Atom at = (Atom)atomList.get(i);
24 System.out.println("\t -Code: "+ at.getCode()+" -Name:
"+ at.getName()
25 +" -LUI: "+ at.getLui()+" -Source: "+
at.getSource().getAbbreviation());
26 }
27 List synList = concept.getSynonymCollection();
28 System.out.println("\tSynonyms -----> count = "+
synList.size());
29 for(int i=0; i< synList.size(); i++){
30 System.out.println("\t - "+ (String) synList.get(i));
31 }
32 }
33 }catch(ApplicationException ex){
34 …
35 }

Lines Description

2 Creates an instance the ApplicationService.

3 Creates a new EVSQuery object.

4 Specifies the search method and parameters. The searchSourceByAtomCode
method performs a search on all the sources specified in the MetaThesaurus for
MetaThesaurusConcepts that has an Atom code value "10834-0 ". The source
abbreviation specified is "*"; therefore all sources are searched for the Atom spec-
ified.

5 Calls the evsSearch method of the ApplicationService implementation passing the
EVSQuery object. This method returns a List Collection. The type of object that is
returned depends on the search parameters set in the EVSQuery object; in this
case the searchSourceByAtomCode method was invoked, the resulting objects
are of type MetaThesaurusConcept.

6 Traverse through the result set.

Chapter 4: Enterprise Vocabulary Services

71

Downloading the NCI Thesaurus

The NCI Thesaurus can be downloaded in several formats, including simple tab-delim-
ited ASCII format, Apelon's proprietary Ontylog XML format, and OWL format (the Web
Ontology Language). The ASCII- and XML-formatted files are available for download at
the NCICB download site, as ThesaurusV2_0Flat.zip and ThesaurusV2_0XML.zip. The
OWL formatted version is available at http://ncicb.nci.nih.gov/xml/owl/EVS/Thesau-
rus.owl. Users who prefer to use FTP for download can go to the caCORE FTP site.

The format of the ASCII flat file is extremely simple. For each concept, the download
file includes the following information:

1. The concept code: all terms have the "C" prefix, followed by its integer index;
2. The concept name: this name may contain embedded punctuation and spaces;
3. A pipe-delimited list of parent concepts, as identified in the NCI Thesaurus by

isa relations;
4. A pipe-delimited list of synonyms, the first of which is the preferred name; and
5. One of the NCI definitions for the term-if one exists.

Each of these separate types of information is tab-delimited; within a given category,
the individual entries are separated by pipes ("|"). Only the third and fourth categories,
i.e., the parent concepts and synonyms, have multiple entries requiring the pipe sepa-
rators. Note that while much of the information available from the interactive Meta-
phrase server is included in the download, any information outside the NCI Thesaurus
description logic vocabulary (e.g., Diagnosis, Laboratory, Procedures, etc.) is not.

For example, the flat file download for the term "Mercaptopurine" is as follows:

C6 Mercaptopurine Immunosuppressants|Purine Antagonists
Mercaptopurine|1,3-AZP|1,7-Dihydro-6H-purine-6-thione|3H-
Purine-6-thiol|6
Thiohypoxanthine|6 Thiopurine|6-MP|6-Mercaptopurine|6-
Mercaptopurine
Monohydrate|6-Purinethiol|6-Thiopurine|6-Thioxopurine|6H-
Purine-6-thione,
1,7-dihydro- (9CI)|6MP|7-Mercapto-1,3,4,6-
tetrazaindene|AZA|Alti-
Mercaptopurine|Azathiopurine|BW 57-323H|CAS
50442|Flocofil|Ismipur|Leukerin|Leupurin|MP|Mercaleukim|Merca
leukin|Mercap|Me
rcaptina|Mercapto-6-
purine|Mercaptopurinum|Mercapurin|Mern|NCI-C04886|NSC
755|Puri-Nethol|Purimethol|Purine-6-thiol (8CI)|Purine-6-
thiol
Monohydrate|Purine-6-thiol,
Monohydrate|Purinethiol|Purinethol|U-4748|WR-2785

7 Cast the result object to a MetaThesaurusConcept.

6-31 Prints the attributes and association values of the MetaThesaurusConcept.

Lines Description

http://www.w3.org/TR/2003/CR-owl-features-20030818/
http://ncicb.nci.nih.gov/download/
http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl
http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl
ftp://ftp1.nci.nih.gov/pub/cacore/

caCORE 3.2 Technical Guide

72

An anticancer drug that belongs to the family of drugs called
antimetabolites.

Users who have access to the Apelon Ontylog software may wish to download the XML
encoded file. All other users who prefer to use an encoded format rather than the sim-
ple ASCII form should download the OWL encoding of the NCI Thesaurus, which is
described below.

OWL Encoding of the NCI Thesaurus
OWL, as specified and proposed by the World Wide Web Consortium (W3C), is an
emerging standard for the representation of semantic content on the web. Building on
the earlier groundwork laid by XML, the Resource Description Framework (RDF) and
RDF schema; and subsequently, by DAML+OIL, OWL represents the culmination of
what has been learned from these previous efforts.

While XML provides surface syntax rules and XML Schema provides methods for vali-
dating a document's structure, neither of these can in itself impose semantic constraints
on how a document is interpreted. RDF provides a data model for specifying objects
(resources) and their relations, and RDF Schema allows one to associate properties
with the individual resources as well as taxonomic relations among the objects. Yet
even these extensions could not provide the breadth and depth of representation
needed to encode nontrivial real-world information. OWL adds vocabulary for describ-
ing arbitrary nonhierarchical relations between classes, cardinality constraints,
resource equivalences, richer typing of properties, and enumerated classes.

A major focus of the W3C is the establishment of the The Semantic Web-a far-reaching
infrastructure whose purpose is to provide a framework whereby autonomous self-doc-
umenting agents and web services can exchange meaningful information without
human intervention. OWL is the first step towards realizing this vision. As a result of
collaborative efforts with Dr. James Hendler and the University of Maryland, the NCI
Thesaurus is now available for download in OWL format; this section describes the
mapping of the NCI Thesaurus to OWL.

The mapping of the NCI Thesaurus into OWL format proceeds via the Ontylog XML
elements declared in Apelon's Ontylog DTD. The four basic elements are Kinds, Con-
cepts, Roles, and Properties, where:

Kinds are the top-level super classes in the Thesaurus; they enumerate the dif-
ferent possible categories of all concepts, and include such things as Anatomy,
Biological Processes, Chemicals and Drugs, etc. Each NCI Thesaurus Kind is
converted to an owl:Class.
An NCI Thesaurus Concept describes a specific concept under one of the Kind
categories. Each NCI Thesaurus Concept is converted to an owl:Class.
Roles capture how concepts relate to one another. Generally, Roles have
restricted domains and ranges, that limit the sets of concepts which can partici-
pate in the Role according to their categories-i.e., Kinds. The "defining roles"
within a concept definition provide these local restrictions on the ranges of roles.
Each NCI Thesaurus Role is converted to an owl:ObjectProperty.
NCI Thesaurus Properties encode the attributes that pertain to a class; they
contain metadata that describes the class, but not its instantiations or sub-
classes. Each NCI Thesaurus Property is converted to an owl:AnnotationProp-
erty.

http://www.w3.org/TR/2003/CR-owl-features-20030818/
http://www.w3.org/
http://www.w3.org/2001/sw/

Chapter 4: Enterprise Vocabulary Services

73

The bulk of the Thesaurus comprises concept definitions; this is also where the most
complex semantics occur. Each concept in the Thesaurus has three main types of
associated data: defining concepts, defining roles, and properties. A "defining concept"
is essentially a super class; the defined concept in OWL has an rdfs:subClassOf rela-
tionship to the defining concept.

The defining roles and properties are mapped as described above; the owl:Annotation-
Property is actually a subclass of rdf:Property, and, like rdfs:comment and rdfs:label,
can be attached to any class, property or instance. This allows properties from the The-
saurus to be associated directly with a concept's corresponding class, without violating
the rules of OWL.

In addition to any explicitly named properties, each element in the Thesaurus also has
a uniquely defined "code" and "id" attribute associated with it. These are used as
unique identifiers in the Apelon development software, and, as such, are not defined
explicitly as roles or properties. In mapping these identifying attributes to OWL, we
have treated these as special cases of the explicit property elements, and just like other
properties in the Thesaurus, they are mapped as owl:AnnotationProperties. Table 4.5
summarizes the mapping of elements in the Ontylog DTD to OWL elements.

Ontylog Name Conversion
In mapping to OWL, all Ontylog concept names must be converted to proper RDF iden-
tifiers (rdf:id) following the RDF naming rules. This is achieved by removing any spaces
in the original names and substituting all illegal characters with underscores. Names
that begin with numbers are also prefixed with underscores to make them legal. The
original concept name however, is preserved as an rdfs:label. The following steps sum-
marize the conversion of names:

1. Any "+" characters are replaced with the text "plus."
2. All role names are prefixed with an "r" to ensure that roles and properties with

the same name do not clash.
3. Any characters that are not alphanumeric, or one of "-" and "_," are replaced

with an underscore ("_").
4. All names with leading digits are prefixed with an underscore.
5. Multiple adjacent underscores in the corrected name are replaced with a single

underscore.

Ontylog Element Owl Element Comment

kindDef owl:Class

roleDef owl:ObjectProperty

propertyDef owl:AnnotationProperty

conceptDef owl:Class

name* rdf:ID Applies to the name subelement of
kindDef, roleDef, propertyDef, and
conceptDef.*

Table 4.5 Ontylog DTD to OWL conversions

caCORE 3.2 Technical Guide

74

* name Ontylog elements are converted to rdf:ID as described in the Ontylog Name Conver-
sion section. namespaceDef and namespace elements are not mapped to OWL.

Additional information about the Ontylog encoding is available in the Ontylog DTD,
which can be downloaded from the NCICB EVS FTP site, along with the zipped ASCII
flat file and the Ontylog XML encoding. The current OWL translation of the NCI Thesau-
rus contains over 500,000 triples and is available in zipped format from the FTP site, as
well as in unzipped format at http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl, the
mindswap web site for download or online viewing.

name rdfs:label Because the conceptDef name con-
tains some useful semantics, the
original form is retained as an
rdfs:label. No other name elements
are retained in rdfs:label.

code owl:AnnotationProperty Defined as an owl:AnnotationProp-
erty with rdf:ID="code". Code values
remain the same for each concept.

id owl:AnnotationProperty Defined as an owl:AnnotationProp-
erty with rdf:ID="ID". ID values
remain the same for each concept.

definingCon-
cepts

rdfs:subClassOf The concept subelement of defin-
ingConcepts is mapped to the
rdf:resource attribute of the
rdfs:subClassOf element.

domain rdfs:domain

range rdfs:range

definingRoles /
role / name

owl:onProperty definingRoles are converted to owl
restrictions on properties. The name
child element of definingRoles/role
is taken as the rdf:resource attribute
of the owl:onProperty element.

definingRoles /
role / value

owl:someValuesFrom definingRoles are converted to owl
restrictions on properties. The value
child element of definingRoles/role
is taken as the rdf:resource attribute
of the owl:someValuesFrom ele-
ment.

Ontylog Element Owl Element Comment

Table 4.5 Ontylog DTD to OWL conversions (Continued)

http://ncicb.nci.nih.gov/NCICB/core/EVS/EVSpublicLFS/
http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl
http://www.mindswap.org/2003/CancerOntology/

Chapter 4: Enterprise Vocabulary Services

75

Ontylog Mappings

Mapping of Gene Ontology to Ontylog
The NCI DTS provides access to the Gene OntologyTM Consortium's (GO) controlled
vocabulary. The GO ontologies are widely used-most likely due to their simplicity of
design and their potential for automated transfer of biological annotations, from model
organisms to more complex organisms based on sequence similarities. GO comprises
three independent controlled vocabularies (ontologies) encoding biological process,
molecular function, and cellular components for eukaryotic genes. GO terms are con-
nected via two relations, is-a and part-of, that define a directed acyclic graph. Although
concepts in the ontologies were initially derived from only three model systems (yeast,
worm, and fruitfly), the goal was to encode concepts in such a way that the information
is applicable to all eukaryotic cells. Thus, species-specific anatomies are not repre-
sented, as this would not support a unifying reference for species-divergent nomencla-
tures.

Each month NCI will load the latest version of GO into a test instance of the DTS
server, and, following validation in the Ontylog environment, will promote it to a produc-
tion server for programmatic access by NCI applications. NCI converts GO into the
Ontylog XML representation (necessary for import into the DTS server) via a stylesheet
transformation followed by some post-processing to satisfy Ontylog constraints. It is
NCI's intent that the version of GO on the DTS server will not be more than a month
behind the current version available from http://www.geneontology.org. However, it
might be necessary to skip releases if unforeseen complications arise.

The tables in this section summarize the encoding of GO elements into Ontylog.

Ontylog Entity Instance Name (and optional description)

namespaceDef GO
kindDef GO_Kind
RoleDef part-of: This role is unused; however, the software

requires that at least one role be declared.

propertyDef Preferred_Name
propertyDef Synonym
propertyDef DEFINITION
propertyDef dbxref: complex property containing two XML-

marked up GO entities: "go:database_symbol,"
and "go:reference," using tags "database_symbol"
and "reference," respectively.

propertyDef part-of: complex property containing two XML-
marked up GO entities: "go:name" and "go:acces-
sion," using tags "go-term" and "go-id," respec-
tively.

Table 4.6 Ontylog elements used for GO mapping

http://www.geneontology.org/
http://www.geneontology.org

caCORE 3.2 Technical Guide

76

The go:name stored in Preferred_Name is as declared in GO. However, the go:name
used in the Ontylog name might have been modified during the conversion process (by
appending underscores) to make the Ontylog name unique.

Mapping of MedDRA to Ontylog

Vocabulary Hierarchy Structure
The Ontylog version of MedDRA reflects the native hierarchy, with terms organized
according to their term type as shown in Figure 4.5.

Figure 4.5 Hierarchy of MedDRA

The Special Search Categories (SSC) are under the concept AssociativeTerm-
Group(SSCs), which has been created by the EVS as a header concept for the SSC
terms to be grouped together. All the System Organ Class (SOC) concepts as well as
the top header concept for the SSCs are under the MedDRA[V-MDR] root node.
Although Low Level Terms (LLTs) can have any type of relationship to their Preferred
Term (PT) (for example, a synonym of the PT), the Ontylog version presents them all as
children concepts. The Associative Term Group (SSCs) concept has a special code
and term type not found in MedDRA to distinguish it from other terms in the vocabulary.

Concept Codes and Names
The concept name is created from the MedDRA term followed by the MedDRA code
enclosed in brackets. The Ontylog concept name must be unique so including the code
in the name guarantees uniqueness. For display purposes, the property
Preferred_Name should be used instead of the concept name; it contains the
unadorned MedDRA term. The Ontylog concept code is the MedDRA code.

GO term element conceptDef element (propertyDef)

go:accession code

go:name name

go:isa definingConcepts

go:name property Preferred_Name

go:synonym property Synonym

go:definition property DEFINITION

go:part-of property part-of

go:dbxref property dbxref

Table 4.7 Mapping of GO term to Ontylog conceptDef

Chapter 4: Enterprise Vocabulary Services

77

Roles
A single role has been defined. The role has_associated_term is utilized to relate
SSC top level categories with their associated PT terms. All the concepts in the vocab-
ulary are primitive.

Properties
The properties defined for MedDRA 6 in Ontylog are shown in Table 4.8; their prove-
nance in the MedDRA distribution is indicated.

Of the MedDRAderived properties, only Cross-reference is not a straightforward name-
value pair. This property has subfields encoded in xml; the xml elements are source
and sourcecode, where the sourcecode contains a code or symbol assigned by an
external vocabulary source to a specific term.

Two properties are not derived from MedDRA: NCI_META_CUI and UMLS_CUI. These
properties contain the Concept Unique Identifier (CUI) of concepts in the NCI Metathe-
saurus containing MedDRA terms. The property name indicates whether the CUI is
assigned to the concept by Unified Medical Language System (UMLS) or by NCI. The
Term_Type property is indirectly derived from MedDRA and indicates the hierarchy
level of a term with the term types as shown in Figure 4.5; in addition, the term type for
Obsolete Lower Level Terms (OLLT) is also used.

Mapping of MGED Ontology to Ontylog
The native MGED Ontology (MO) is edited in OilEd and distributed in the Defense
Advanced Research Projects Agency (DARPA) Agent Markup Language (DAML) +
Ontology Inference Layer (OIL) XML format. DAML+OIL can be converted to the Onty-
log Description Logic (DL) in a relatively straightforward manner. However, some valid
DAML+OIL constructions cannot be represented in Ontylog DL, including enumerations
and specific combinations of ObjectProperties that result in classification cycles in

Ontylog Property MedDRA Entity

Code_in_Source MedDRA code (llt_code, pt_code, hlt_code,
and so forth)

Cross-reference, cross reference to
WHOART

COSTART, ICD9-CM, and so forth

Descriptor_ID pt_code of an LLT

MedDRA_Abbreviation soc_abbrev, spec_abbrev

NCI_META_CUI -

Preferred_Name MedDRA name (llt_name, pt_name,
hlt_name, and so forth)

Primary_SOC pt_soc_code of a PT

Serial_Code_International_SOC_Sort_Order intl_ord_code

Term_Type -

UMLS_CUI -

Table 4.8 Properties defined in the Ontylog version of MedDRA. Properties that are not
derived directly from MedDRA have a dash in the MedDRA Entity column.

caCORE 3.2 Technical Guide

78

Ontylog. In MO version 1.1.9, two ObjectProperties have been asserted near the top of
the hierarchy on the MGEDCoreOntology class. On conversion to Ontylog these asser-
tions generate classification cycles, however, the data cannot be massaged as was
done in preliminary conversions with previous versions of MO because the fix would
have required modifications to every converted concept. Consequently, beginning with
MO v 1.1.9, all the ObjectProperties in DAML+OIL are converted to Ontylog properties
(rather than Ontylog roles), which are annotations ignored by the classifier.

Vocabulary Hierarchy Structure
The MO class hierarchy structure is preserved in the Ontylog conversion. One minor
difference is that MO class instances are also represented in the Ontylog concept hier-
archy (since there is no distinction between classes and instances in Ontylog). A
nonMO top level concept, OrphanConcepts, has been added in the Ontylog represen-
tation to hold MO instances of Thing.

Concept IDs, Codes, and Names
MO classes and instances are identified solely by their name; no codes or numeric IDs
are assigned. For the conversion to Ontylog, MO class or instance names are retained
as concept names. As Ontylog concepts also require unique codes and IDs, a code
and an ID are created during the conversion. The ID reflects the position of the class or
instance in the XML tree. The code is derived from the ID by adding an “X-MO-” prefix
to it; therefore, the code is not guaranteed to remain invariant from version to version of
the MO. A mapping table is made available whenever the MO is updated.

Roles
No roles have been defined; all the concepts are primitive.

Properties
All the object and datatype properties defined in MO have been converted to Ontylog
properties. With the exception of has_reason_for_deprecation and has_database, all
the properties have been 'manually” propagated to children concepts in the database in
order to mimic the expected role inheritance. In addition, new properties have been
defined as shown in Table 4.9.

The Preferred_Name property is recommended for display purposes, while Synonym
is recommended for searches by dependent applications (even though the value of
both properties is the same, the EVS tries to maintain a certain consistency in the
usage of properties for the benefit of all users). The Concept_Type property holds one
of two values: mged_class, or mged_instance.

Ontylog Property MGED Ontology Entity

DEFINITION rdfs:comment value

Preferred_Name rdf:about value

Synonym rdf:about value

Concept_Type -

Table 4.9 New properties defined in the Ontylog version of the MGED Ontology and their
provenance (if applicable) in the daml+oil file

79

CHAPTER

5
CANCER DATA STANDARDS

REPOSITORY
This chapter describes the Cancer Data Standards Repository (caDSR) and its applica-
tion programming interface.

Topics in this chapter include:

Introduction on this page
Modeling Metadata: The ISO/IEC 11179 Standard on page 80
caDSR Metamodel on page 83
caDSR API on page 90
Downloading the caDSR on page 100
caDSR API Examples on page 102

Introduction

The Cancer Data Standards Repository (caDSR) at NCI is part of a larger effort associ-
ated with the 11179 standard defined by the ISO (International Organization for Stan-
dardization) and IEC (International Electrotechnical Commission). The purpose of the
ISO/IEC 11179 is to regularize the metadata used in representing and annotating
shared electronic data. This chapter describes the Java API to the repository and intro-
duces the Java classes that participate in this programmatic interface. The first two sec-
tions provide a brief review of the ISO/IEC 11179 standard and its realization as an
Oracle database at NCI. The caDSR is a conforming implementation of ISO/IEC 11179
Edition 2 with extensions, though some of the attributes in the ISO 11179 pertaining to
Stewardship/Submission and Registrar are not exposed in the user interfaces.

http://metadata-standards.org/11179/

caCORE 3.2 Technical Guide

80

Modeling Metadata: The ISO/IEC 11179 Standard

Regardless of the application domain, any particular data item must have associated
with it a variable name or tag, a conceptualization of what the item signifies, a value,
and an intended interpretation of that value. For example, an entry on a case report
form may be intended to capture the patient's place of birth, and the corresponding
value may be tagged electronically as Patient_placeOfBirth. But what is the intended
concept? Is the data element designed to capture the country, the city, or the specific
hospital where the person was born? Assuming that the intended concept is country,
how is the resulting value to be represented electronically? Possible representations
might include the full name of the country, a standard two- or three-letter abbreviation, a
standard country code, or perhaps a specific encoding unique to the application.

Metadata is "data about data," and refers to just this type of intentional information that
must be made explicit in order to ensure that electronically exchanged data can be cor-
rectly interpreted. The purpose of the ISO/IEC 11179 standard is to define a framework
and protocols for how such metadata can be specified, consistently maintained, and
shared across diverse domains. The caDSR conforms to this standard; while it contains
extensions developed specifically to support registration of forms used in clinical trials
data management, usage of the caDSR is not limited to clinical applications.

The ISO/IEC 11179 standard defines a fairly complex meta-model; even the notion of
metadata itself is a rather abstract concept. To facilitate understanding the model, this
discussion uses a divide-and-conquer approach, and defines two very general types of
components:

1. Information components whose purpose is to represent content; and
2. Organizational and administrative components whose purpose is to manage the

repository.
This partitioning is not intrinsic to the ISO/IEC 11179, and indeed, some of the compo-
nents do not neatly fit into the separate categories. Nevertheless, it provides a useful
framework.

The fundamental information component in the ISO/IEC 11179 model is the data ele-
ment, which constitutes a single unit of data considered indivisible in the context in
which it is used. Another way of saying this is that a data element is the smallest unit of
information that can be exchanged in a transaction between cooperating systems.
More specifically, a data element is used to convey the value of a selected property of a
defined object2, using a particular representation of that value.

A critical notion in the metadata model is that any concept represented by a data ele-
ment must have an explicit definition that is independent of any particular representa-
tion. In order to achieve this in the model, the ISO/IEC 11179 standard specifies the
following four components:

1. A DataElementConcept consists of an object and a selected property of that
object;

2. The ConceptualDomain is the set of all intended meanings for the possible val-
ues of an associated DataElementConcept;

2. The term object is used here in the sense defined by the ISO/IEC 11179 (see definition in Table 5.1
1) and does not have any literal correspondence to a caCORE Java object.

Chapter 5: Cancer Data Standards Repository

81

3. The ValueDomain is a set of accepted representations for these intended
meanings; and

4. A DataElement is a combination of a selected DataElementConcept and a Val-
ueDomain.

The example in Figure 5.1 diagrams these definitions.

Figure 5.1 Representing data in the ISO/IEC 11179 model

Figure 5.1 shows a DataElement that might be used to represent hair color. The associ-
ated DataElementConcept uses the ObjectClass Hair and the Property Color to
define the intended concept. The intended meanings for this data element are the
familiar hair colors blonde, brunette, etc., but the ValueDomain uses a numeric repre-
sentation that is mapped to these intended meanings. Both the DataElementConcept
and the ValueDomain are components of the DataElement, and each references the
same ConceptualDomain, which is defined outside the DataElement. Important princi-
ples of this design are:

The DataElementConcept (DEC) is used to signify a concept independent of
representation.
The ValueDomain (VD) specifies a set of representational values independent
of meaning.
The DataElement (DE) combines a specific object and property with a value
representation.
The ConceptualDomain (CD) specifies the complete set of value meanings for
the concept and allows the interpretation of the representation.

Figure 5.2 uses a UML Class diagram to show the cardinality constraints that hold for
these relations.

Figure 5.2 Abstract and concrete components of the data representation

Each DataElement must specify exactly one DataElementConcept and one ValueDo-
main, in order to fully specify the data element. Similarly, each DataElementConcept
and ValueDomain must specify exactly one ConceptualDomain. Conversely, a Concep-

caCORE 3.2 Technical Guide

82

tualDomain may be associated with any number of ValueDomains and any number of
DataElementConcepts.

Figure 5.3 shows an example of this, using the color property of different geometric
objects as DataElementConcepts, and alternate color representations for the ValueDo-
mains.

Figure 5.3 Many‐to‐one mappings of information elements in the metadata model

A constraint not shown in any of these figures is that it is not possible to reuse the same
DataElementConcept-ValueDomain pair to define a new DataElement, as this defines a
logical redundancy. Thus, the "0..*" cardinality constraints implied by Figure 5.2 are not
quite as open-ended as they imply. Specifically,

a DataElement specifies exactly one DataElementConcept and one ValueDo-
main;
a DataElementConcept specifies exactly one ConceptualDomain;
a ValueDomain specifies exactly one ConceptualDomain;
a ConceptualDomain may be associated with any number of ValueDomains;
a ConceptualDomain may be associated with any number of DataElementCon-
cepts;
a DataElementConcept may be associated with as many DataElements as
there are ValueDomains (i.e. alternate representations) associated with the
ConceptualDomain; and
a ValueDomain may be associated with as many DataElements as there are
DataElementConcepts associated with the ConceptualDomain. Many additional
information components collaborate with these four core elements to provide
the ISO/IEC 11179 infrastructure for content representation. These are
described in the caDSR model in the next section, along with the organizational
and administrative components that are used to document, classify, and in gen-
eral, manage the information components.

Chapter 5: Cancer Data Standards Repository

83

caDSR Metamodel

Figure 5.4 again shows the four elements discussed thus far, but this time in the con-
text of other components that collectively define the infrastructure for content represen-
tation.

Figure 5.4 Information classes in the caDSR metamodel

All of the components in Figure 5.4 that are highlighted in light gray are Administered
Components and must be administered. Pragmatically, this means that there is a for-
mal protocol for creating these components; that there is an approval process in place
for accepting newly proposed elements; and that there is a designated authority in
charge of stewarding the component. Technically, this means that each of the high-
lighted components is derived from a parent class named AdministeredComponent.
Table 5.1 provides definitions for the new components introduced in Figure 5.4.

Component
Name Definition Administered

Component

Conceptual-
Domain

A subclass of Administered Component
that depicts the set of all valid value mean-
ings of a Data Element Concept
expressed without representation.

Yes

Table 5.1 Information classes in the caDSR metamodel

caCORE 3.2 Technical Guide

84

DataElement A subclass of Administered Component
that depicts a unit of data for which the
definition, identification, representation,
and permissible values are specified by
means of a set of attributes.

Yes

DataElement-
Concept

A subclass of an Administered Compo-
nent that depicts a characteristic of some-
thing in the real world that can be
represented in the form of a data element,
independent of any particular representa-
tion.

Yes

ObjectClass-
Relationship

An affiliation between two instances of
ObjectClass.

Enumerated-
ValueDomain

A subtype of value domain expressed as
a list of all permissible values.

Nonenumerat-
edValueDo-
main

A subtype of value domain expressed by
a generative rule or formula; for example:
"all even integers less than 100."

ObjectClass A subclass of an Administered Compo-
nent that depicts a set of ideas, abstrac-
tions, or things in the real world that can
be identified with explicit boundaries and
meaning and whose properties and
behavior follow the same rules.

Yes

Permissibl-
eValue

The exact names, codes, and text that can
be stored in a data field in an information
management system.

Property A A subclass of an Administered Compo-
nent that depicts a characteristic common
to all members of an Object Class. It may
be any feature naturally used to distin-
guish one individual object from another. It
is conceptual and thus has no particular
associated means of representation.

Yes

Qualifier A term that helps define and render a con-
cept unique. For example, given the
ObjectClass household and the Property
annual income, a Qualifier for the Prop-
erty could be used to indicate previous
year. One or more Qualifiers can be
present for ObjectClass or Property.

Component
Name Definition Administered

Component

Table 5.1 Information classes in the caDSR metamodel (Continued)

Chapter 5: Cancer Data Standards Repository

85

An AdministeredComponent is literally a component for which administrative informa-
tion must be recorded. It may be a DataElement itself or one of its associated compo-
nents (Representation, ValueDomain, DataElementConcept, ConceptualDomain,
ObjectClass, or Property) that requires explicit specifications for reuse in or among
enterprises-an AdministeredComponent is a generalization for all of the descendant
components that are highlighted in Figure 5.4. Table 5.2 lists the class attributes of the
Administration Record common to all AdministeredComponents.

Representa-
tion

A subclass of Administered Component
that depicts a mechanism by which the
functional and/or presentational category
of an item may be conveyed to a user.
Examples: 2-digit country code, currency,
YYYY-MM-DD, etc.

Yes

ValueDomain A subclass of an Administered Compo-
nent that describes the attributes of a set
of permissible values for a data element.

Yes

ValueDomain-
Permissibl-
eValue

The many-to-many relationship between
value domains and permissible values;
allows one to associate a value domain to
a permissible value.

ValueMeaning The significance or intended meaning of a
permissible value.

Yes

Attribute Name Type Required/
Options

caDSR UI
Name

id (Public ID) String required

shortName String required

preferredDefinition String required

longName* String required

version Float required

workflowStatusName String required

workflowStatusDescription String required

latestVersionIndicator Boolean required

beginDate Date required

endDate Date required

deletedIndicator Boolean optional

changeNote String optional

Table 5.2 Class attributes of an AdministeredComponent

Component
Name Definition Administered

Component

Table 5.1 Information classes in the caDSR metamodel (Continued)

caCORE 3.2 Technical Guide

86

*Note: The longName in caDSR equates to the ISO/IEC 11179 "PreferredName".

The attributes listed in Table 5.2 tell only part of the story; additional critical information
about an AdministeredComponent derives from its associations with the organizational
and administrative items depicted in Figure 5.5. Of these components, the only element
that is also itself an Administered Component is the ClassificationScheme.

Three "regions" are outlined in Figure 5.5: (1) the Naming and Identification region
(upper right), (2) the Classification region (lower left), and (3) the Contact Information
section (bottom center). The ReferenceDocument component is not included in either
region. Each AdministeredComponent may be associated with one or more Reference-

unresolvedIssue String optional

origin String optional

dateCreated Date required

dateModified Date required

registration (Registration Status) String optional

Attribute Name Type Required/
Options

caDSR UI
Name

Table 5.2 Class attributes of an AdministeredComponent

Chapter 5: Cancer Data Standards Repository

87

Documents that identify where and when the component was created and provide con-
tact information for the component's designated registration authority.

Figure 5.5 Administrative and organizational components of the caDSR metamodel

The purpose of the Naming and Identification region is to manage the various names
by which components are referenced in different contexts. Many components may be
referenced by different names depending on the discipline, locality, and technology in
which they are used. In addition to the name attributes contained in the component
itself (shortName, longName), an administered component may have any number of
alternative Designations. Each Designation is associated with exactly one Context
reflecting its usage, and may be classified by one or more Classification Scheme
Items.The Classification region is used to manage classification schemes and the
administered components that are in those classification schemes. Classification is a
fundamental and powerful way of organizing information to make the contents more
accessible. Abstractly, a classification scheme is any set of organizing principles or
dimensions along which data can be organized. In the ISO/IEC 11179 model, a Classi-
ficationScheme may be something as simple as a collection of keywords or as complex
as an ontology. The classification scheme element in Figure 5.5 is highlighted in light
gray to reflect that it is an administered component.

Classification schemes that define associations among components can greatly assist
navigation through a large network of elements; the associations may describe simple

domain::AdministeredComponent

domain::Context

domain::Definition

domain::
ClassSchemeClassSchemeItem

domain::
ClassificationScheme

domain::
ClassificationSchemeItem

domain::
ReferenceDocument

domain::
DesignationClassSchemeItem

domain::AdministeredComponentContact

domain::Address

domain::Organization domain::Person

domain::
DefinitionClassSchemeItem

0..*

0..10..*

1

0..*

1

0..*

1

1

0..*
1

0..*

1

0..*

0..*1

1 0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..*1

0..*

0..1

0..*

0..1

1

0..*

caCORE 3.2 Technical Guide

88

subsumption hierarchies or more complex relations such as causal or temporal rela-
tions. In particular, classification schemes with inheritance can enhance self-contained
definitions by contributing the definition of one or more ancestors.

The ClassificationScheme component serves as a container-like element that collects
the ClassificationSchemeItems participating in the scheme. In addition, the Classifica-
tionScheme component identifies the source of the classification system and contains
an indicator specifying that the scheme is alphanumeric, character, or numeric.

A ClassificationSchemeItem may be a node in a taxonomy, a term in a thesaurus, a
keyword in a collection, or a concept in an ontology-in all cases, it is an element that is
used to classify administered components. It is quite natural for an administered com-
ponent that is used in different contexts to participate in several classification schemes.
Classification schemes may coexist and a classified component may have a different
name in each one, since each scheme is from a different context.

The ClassSchemeClassSchemeItem in the caDSR model is not a component of the
ISO/IEC 11179 metamodel, but serves an important role in the implementation of the
many-to-many mappings between ClassificationSchemeItems and Classification-
Schemes. This component is used to associate a set of classification scheme items
with a particular classification scheme, and to store details of that association such as
the display order of the items within that scheme.

The Organization, Person, and Address classes constitute the Contact region of Figure
5.5. A Person or an Organization can be the contact for an AdministeredComponent
and either can be reached at an Address. In particular:

An Organization or Person may be the contact for multiple AdministeredCompo-
nents. Each AdministeredComponent may have only a single Person or Organi-
zation as its contact.
An Organization may have one or more Persons recorded as members. A Per-
son may be a member of only one organization in the current caDSR model.
The Organization and Person classes hold basic identifying information, such
as names, and for Persons, that person's position name.
Both Organizations and Persons may have one or more Addresses. An
Address has the attributes necessary to record a postal service delivery loca-
tion.

In addition to the caDSR components corresponding to elements of the ISO/IEC 11179
metamodel, the caDSR model defines a collection of domain-specific elements for cap-
turing data associated with a clinical trial protocol. These components are known as
Forms and are not limited to usage in clinical trials, but can be used to support any data
collection effort based on the notion of forms. All of the components described up to this
point provide the infrastructure for managing shared data. The clinical trials compo-

Chapter 5: Cancer Data Standards Repository

89

nents exercise the representational power of the metamodel, and are used to specify
how clinical trials data should be captured and exchanged.

Figure 5.6 Components in the caDSR metamodel for clinical trials data

All of the components in Figure 5.6 are highlighted in light gray, as they are Adminis-
teredComponents designed for use in NCI-sponsored clinical trials. Note that because
these elements are not part of the ISO-11179 specification, they are not technically
speaking, ISO administered components. This caDSR design decision was made to
ensure that these shared data elements could be stewarded and controlled adequately.

NCI-sponsored programs can populate the registry with instances of these components
as needed to specify the metadata descriptors needed for that program. Programs cur-
rently participating in this effort include:

The Cancer Therapy Evaluation Project (CTEP)
Specialized Programs of Research Excellence (SPOREs)
The Early Detection Research Network (EDRN)
The Division of Cancer Prevention (DCP)
The Cancer Imaging Program (CIP)
The Division of Cancer Epidemiology and Genetics (DECG)

domain::ValidValue

domain::Question

domain::Module

domain::Form

+ displayName: String
+ type: String

domain::Protocol

domain::FormElement

domain::AdministeredComponent

domain::QuestionRepetition

domain::TriggerAction

0..*

0..1

1

0..*

0..*1

1

0..*

0..*0..*

1

0..*

0..*0..*

1

0..*

1

0..*

http://ctep.cancer.gov/
http://spores.nci.nih.gov/
http://www3.cancer.gov/prevention/cbrg/edrn/
http://www3.cancer.gov/prevention/
http://imaging.cancer.gov/
http://dceg.cancer.gov/

caCORE 3.2 Technical Guide

90

The Cancer Bioinformatics Infrastructure Objects Project (caBIO)

caDSR API

The previous section described three broad categories of component in the caDSR
metamodel and presented each of these independently, thus implying that there are no
dependencies among these groupings. Figure 5.7 brings these components together
and exposes the associations actually occurring between components in different cate-
gories.

As in the previous diagram, all components highlighted in gray are descendants of the
AdministeredComponent class. We emphasize, however, that some of these elements-
i.e., those supporting clinical trials specific data are not defined in the ISO/IEC 11179
standard, are nevertheless implemented as subclasses of the AdministeredComponent
class in the caDSR implementation for pragmatic reasons.

Because so many components are AdministeredComponent subclasses, we use color
coding instead of the standard UML generalization notation (a line ending in an open
triangle) to indicate this. Other superclass-subclass relations, such as the ValueMean-
ing class derived from PermissibleValue, do however use the standard UML notation.

Component Name Component Description

Form

FormElement A generic class holding the common attributes and operations for
the more specific classes that make up a Form: Modules, Ques-
tions, QuestionRepetitions, and ValidValues.

Module A logical grouping of data elements on a Form.

Question The text that accompanies a data element being collected on a
Form; used to clarify the information being requested.

QuestionRepetition A second or greater occurrence of a Question already on a Form.

ValidValue One or more acceptable responses to a Question.

TriggerAction A conditional branching between FormElements triggered by a cer-
tain response to a Question. For example: If the response to a Gen-
der question is "Female", go to Question nn; otherwise known as a
"skip pattern."

Protocol A document defining the scope, objectives, and approach for con-
ducting a clinical trial.

Table 5.3 caDSR component names and descriptions

Chapter 5: Cancer Data Standards Repository

91

The three categories of components are also outlined in the figure: administrative and
organizational components are in the upper left, forms components are in the upper
right, and information components are centered underneath these two.

Figure 5.7 caDSR domain objects in the caCORE Java API

Figure 5.8 summarizes the caDSR API class hierarchy. At the most abstract level, a
single distinguished object called the DomainObject class is the ancestor to all other
classes. At the next level, the AdministeredComponent class is defined, along with all
other classes that do not represent elements requiring administration. Among the

domain::
ReferenceDocument

domain::
ClassificationScheme

domain::
ClassSchemeClassSchemeItem

domain::
ClassificationSchemeItem

domain::AdministeredComponent

domain::
Context

domain::ValidValue

domain::
Question

domain::Module

domain::Protocol

domain::FormElement

domain::
DataElementConcept

domain::DataElement
domain::

DataElementConceptRelationship

domain::
ObjectClass

domain::Property domain::
ConceptualDomain

domain::
PermissibleValue

domain::
ValueMeaning

domain::
EnumeratedValueDomain

domain::
NonenumeratedValueDomain

domain::ValueDomain

domain::
Representation

domain::
ValueDomainPermissibleValue

domain::Form

caCORE 3.2 Technical Guide

92

AdministeredComponent subclasses, only the ValueDomain class has further special-
ization, i.e., the EnumeratedValueDomain and NonEnumeratedValueDomain classes.

Figure 5.8 caDSR API class hierarchy

caDSR Domain Object Catalog
The previous discussion was intended to provide a descriptive overview of the domain
objects included in the caCORE API to the caDSR. The caDSR UML model is pub-
lished as an EA (Enterprise Architect) diagram at http://ncicb.nci.nih.gov/NCICB/con-
tent/ncicblfs/EA/caCORE3-2Model/index.htm. Table 5.4 lists each class and a
description. Detailed descriptions about each class and its methods are present in the
caCORE 3.2 JavaDocs.

Domain Object

ClassificationSchemeItem

ClassSchemeClassSchemeItem

Context

DataElementConceptRelationship

AdministeredComponent

Designation

ValueDomainPermissibleValue

PermissibleValue

ReferenceDocument

ValueMeaning

FormElement

ProtocolClassificationScheme

ConceptualDomain

DataElement

DataElementConcept

Concept

Module

ObjectClass
Property

Representation

ValidValue

ValueDomain

EnumeratedValueDomain

NonEnumeratedValueDomain

Question

Form

Definition

Instruction

ObjectClassRelationship

caDSR Domain Object Description

Address A physical location at which Persons or Organizations can
be contacted.

Table 5.4 caDSR domain objects and descriptions

http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/EA/caCORE3-2Model/index.htm
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/EA/caCORE3-2Model/index.htm
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cadsr/domain/Address.html

Chapter 5: Cancer Data Standards Repository

93

Administered Component A class for which attributes (or characteristics) are collected;
Data Elements are one type of administered component.
Other administered components have relationships to data
elements as well as each other.

AdministeredComponent-
ClassSchemeItem

A class that serves to allow many to many relationships
between Administered Component (AC) and ClassScheme-
ClassSchemeItem (CS/CSI), providing uniqueness to the
CS/CSI pairing to an AC.

AdministeredComponentCon-
tact

A relationship between an Administered Component and
contact information (e.g. Address).

CaseReportForm A questionnaire that documents all the patient data stipu-
lated in the protocol and used by clinicians to record infor-
mation about patient's visits while on the clinical trial.

ClassificationScheme A class that serves to describe an arrangement or division of
objects into groups based on characteristics that the objects
have in common, e.g., origin, composition, structure, appli-
cation, function, etc. Adds information not easily included in
definitions, helps organize the registry and facilitates access
to the registry. ISO DEF: the descriptive information for an
arrangement or division of objects into groups based on
characteristics, which the objects have in common.

ClassificationSchemeItem A component of content in a Classification Scheme. This
may be a node in a taxonomy or ontology or a term in a the-
saurus, etc.

ClassificationSchemeItemRe-
lationship

The affiliation between two occurrences of Classification
Scheme Items.

ClassificationSchemeRelation-
ship

The affiliation between two occurrences of Classification
Schemes.

ClassSchemeClassS-
chemeItem

Information pertaining to the association between Classifica-
tion Schemes and Classification Scheme Items. This infor-
mation is used to get all Classification Scheme Items that
belong to a particular Classification Scheme as well as the
information about it

ComponentConcept The concept component(s) used for a concept derivation

ComponentLevel Level of the component of the derivation rule

Concept A class that serves to describe an administered component

ConceptDerivationRule The derivation rule between one or more concepts.

ConceptualDomain The set of all possible Valid Value meanings of a Data Ele-
ment Concept expressed without representation.

Context A designation or description of the application environment
or discipline in which a name is applied or from which it orig-
inates.

caDSR Domain Object Description

Table 5.4 caDSR domain objects and descriptions (Continued)

http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cadsr/domain/AdministeredComponent.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cadsr/domain/AdministeredComponentClassSchemeItem.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cadsr/domain/AdministeredComponentContact.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cadsr/domain/CaseReportForm.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cadsr/domain/ClassificationScheme.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cadsr/domain/ClassificationSchemeItem.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cadsr/domain/ClassificationSchemeItemRelationship.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cadsr/domain/ClassificationSchemeRelationship.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cadsr/domain/ClassSchemeClassSchemeItem.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cadsr/domain/ComponentConcept.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cadsr/domain/Concept.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cadsr/domain/ConceptDerivationRule.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cadsr/domain/ConceptualDomain.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cadsr/domain/Context.html

caCORE 3.2 Technical Guide

94

DataElement A class that serves to describe a unit of data for which the
definition, identification, representation and permissible val-
ues are derived from its association with one DataElement-
Concept and one ValueDomain.

DataElementConcept A class that serves to describe a concept that can be repre-
sented in the form of a data element, described indepen-
dently of any particular representation.

DataElementConceptRelation-
ship

A description of the affiliation between two occurrences of
Data Element Concepts.

DataElementDerivation The data element component(s) used for a derived data ele-
ment.

DataElementRelationship The affiliation between two occurrences of Data Elements.

Definition A defintion for an Administered Component in a specific
Context.

DefinitionClassSchemeItem A class that serves to allow many to many relationships
between Definitions and ClassSchemeClassSchemeItem,
providing uniqueness to the CS/CSI pairing to a definition.

Please be advised this class will be removed during a future
release

DerivationType The type of Derived Data Element that is being created. For
example a Data Element that is derived/created by subtract-
ing two dates represented by other data elements would be
a Calculated Representation Type. Types include: Calcu-
lated, Complex Recode, Compound, Concatenation, Object
Class, and Simple Recode.

DerivedDataElement The Data Element that is derived from one or more data ele-
ments. ISO DEF: the relationship among a Data Element
which is derived, the rule controlling its derivation, and the
Data Element(s) from which it is derived.

Designation A name by which an Administered Component is known in a
specific Context. Also a placeholder to track the usage of
Administered Components by different Contexts.

DesignationClassSchemeItem A class that serves to allow many to many relationships
between Designation and ClassSchemeClassSchemeItem,
providing uniqueness to the CS/CSI pairing to an Designa-
tion.

EnumeratedValueDomain A ValueDomain with an associated set of discrete Permissi-
bleValues; the alternative to a NonenumeratedValueDo-
main.

Form A questionnaire that documents all the patient data stipu-
lated in the protocol and used by clinicians to record infor-
mation about patient's visits while on the clinical trial.

caDSR Domain Object Description

Table 5.4 caDSR domain objects and descriptions (Continued)

http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cadsr/domain/DataElement.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cadsr/domain/DataElementConcept.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cadsr/domain/DataElementConceptRelationship.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cadsr/domain/DataElementDerivation.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cadsr/domain/DataElementRelationship.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cadsr/domain/Definition.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cadsr/domain/DefinitionClassSchemeItem.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cadsr/domain/DerivationType.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cadsr/domain/DerivedDataElement.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cadsr/domain/Designation.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cadsr/domain/DesignationClassSchemeItem.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cadsr/domain/EnumeratedValueDomain.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cadsr/domain/Form.html

Chapter 5: Cancer Data Standards Repository

95

FormElement An element on a Case Report Form. Examples: The form
itself, groups of questions (modules), questions, valid val-
ues.

Function Function to be applied to the relationship

Instruction Instruction for a Form, Module, Question or Valid Value on a
Form

Module A collection of data elements, or Common Data Elements,
logically grouped on a case report form.

NonenumeratedValueDomain A value domain not expressed as a list of all permissible val-
ues.

ObjectClass A class that serves to describe a set of ideas, abstractions,
or things in the real world that can be identified with explicit
boundaries and meaning and whose properties and behav-
ior follow the same rules.

ObjectClassRelationship A class that provides a description of the affiliation between
two occurrences of Object Classes

Organization Information about an Organizational unit like a laboratory,
institute or consortium

PermissibleValue An enumerated list of the exact names, codes and text that
can be stored in a data field in an information management
system. ISO DEF: An expression of a value meaning in a
specific value domain.

Person Information about a contact person

Property A class that serves to describe a characteristic common to
all members of an Object Class. It may be any feature that
humans naturally use to distinguish one individual object
from another. It is conceptual and thus has no particular
associated means of representation by which property

Protocol A class that serves to provide identification of a Clinical Trial
Protocol document and its collection of Case Report Forms
(CRFs). Note: Protocols will be uniquely identified within
each of the 3 areas of caCORE - caBIO, SPORES and
caDSR- using the following three attributes: Protocol ID,
Protocol Version and Context Name. This class will serve as
a 'hook' across the three caCORE domains allowing a user
to navigate across databases.

ProtocolFormsSet Identification of a Clinical Trial Protocol document and its
collection of Case Report Forms (CRFs). Note: Protocols
will be uniquely identified within each of the 3 areas of
caCORE - caBIO, SPORES and caDSR- using the following
three attributes: Protocol ID, Protocol Version and Context
Name. This class will serve as a 'hook' across the three
caCORE domains allowing a user to navigate across data-
bases.

caDSR Domain Object Description

Table 5.4 caDSR domain objects and descriptions (Continued)

http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cadsr/domain/FormElement.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cadsr/domain/Function.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cadsr/domain/Instruction.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cadsr/domain/Module.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cadsr/domain/NonenumeratedValueDomain.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cadsr/domain/ObjectClass.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cadsr/domain/ObjectClassRelationship.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cadsr/domain/Organization.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cadsr/domain/PermissibleValue.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cadsr/domain/Person.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cadsr/domain/Property.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cadsr/domain/Protocol.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cadsr/domain/ProtocolFormsSet.html

caCORE 3.2 Technical Guide

96

ProtocolFormsTemplate The collection of components (modules, questions and valid
values) comprising a template Case Report Form. A tem-
plate form is not associated with any particular clinical trial.

Question The actual text of the data element as specified on a Case
Report Form of a Protocol

QuestionRepitition Information about the default valid values everytime the
question repeats on a form

ReferenceDocument A place to document additional information about Adminis-
tered Components that is not readily stored elsewhere.

Representation A class that serves to describe the mechanism by which the
functional and/or presentational category of an item maybe
conveyed to a user. Component of a Data Element Name
that describes how data are represented (i.e. the combina-
tion of a Value Domain, data type, and if necessary a unit of
measure or a character set.) The Representation occupies
the last position in the Data Element name (i.e. rightmost).
Examples: Code - A system of valid symbols that substitute
for specified values e.g. alpha, numeric, symbols and/or
combinations. Count: Non-monetary numeric value arrived
at by counting. Currency: Monetary representation. Date:
Calendar representation e.g. YYYY-MM-DD Graphic: Dia-
grams, graphs, mathematical curves, or the like Image: usu-
ally a vector image. Icon: A sign or representation that
stands for its object by virtue of a resemblance or analogy to
it. Picture: A visual representation of a person, object, or
scene ? usually a raster image. Quantity: A continuous num-
ber such as the linear dimensions, capacity/amount (non-
monetary) of an object. Text: A text field that is usually unfor-
matted. Time: Time of day or duration e.g.
HH:MM:SS.SSSS.

TriggerAction A conditional branching between to FormElements triggered
by a certain response to a Question.

ValidValue The allowable values for a Question on a Form.

ValueDomain A class that serves to describe the attributes for a set of per-
missible values for a data element.

ValueDomainPermissibleValue This captures the many-to-many relationship between value
domain and permissible values and allows to associate a
value domain to a permissible value.

ValueDomainRelationship The affiliation between two occurrences of Value Domains.

ValueMeaning The significance associated with an allowable/permissible
value.

caDSR Domain Object Description

Table 5.4 caDSR domain objects and descriptions (Continued)

http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cadsr/domain/TriggerAction.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cadsr/domain/ProtocolFormsTemplate.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cadsr/domain/Question.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cadsr/domain/QuestionRepetition.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cadsr/domain/ReferenceDocument.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cadsr/domain/Representation.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cadsr/domain/ValidValue.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cadsr/domain/ValueDomain.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cadsr/domain/ValueDomainPermissibleValue.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cadsr/domain/ValueDomainRelationship.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cadsr/domain/ValueMeaning.html

Chapter 5: Cancer Data Standards Repository

97

The Concept object encapsulates a concept in a vocabulary served by EVS. It is mod-
eled as a new administered component type. The following table contains a brief
description of some of its attributes.

The ConceptDerivationRule object encapsulates a rule or formula that is applied to a
collection of concepts resulting in a compound concept. It is modeled as an aggregate
that is composed of a ordered collection of concepts. Each concept in the aggregation
is referred to as a component concept and is encapsulated by ComponentConcept
object. Each ComponentConcept object is associated to exactly one Concept object.
Each ConceptDerivationRule object is also associated with one ConceptDerivation-
Type object which encapsulates a type of concept derivation rule.

ConceptDerivationRule is a very key object as it is associated to several existing
administered component types. It enables creation of various administered component
types based on concepts that are served by EVS vocabularies.

As illustrated in Figure 5.9, the following administered components types are associ-
ated with the ConceptDerivationRule object:

ObjectClass
Property
Representation
ValueDomain
ConceptualDomain

Concept Object
Attribute Description

Concept Attribute Data

Short Name Contains the immutable concept code of an EVS concept

Long Name Contains the preferred name of an EVS concept

Preferred Definition Contains the definition of an EVS concept

Preferred Name Contains the immutable concept code of an EVS concept

Long Name Contains the preferred name of an EVS concept

Preferred Definition Contains the definition of an EVS concept

Table 5.5 Concept object attributes

caCORE 3.2 Technical Guide

98

Figure 5.9 Extensions to the caDSR model

The ObjectClassRelationship object encapsulates relationship/association information
between two object classes.

Each object listed above is associated to zero or one ConceptDerivationRule object.
Each ConceptDerivationRule object could be used by one or more administered com-
ponent type objects.

Chapter 5: Cancer Data Standards Repository

99

The ObjectClassRelationship object encapsulates relationship/association between
two object classes and is only used to store the details of association between two UML
classes.

Figure 5.10 UML Project Class Diagram

caDSR UMLProject Domain
Objects Description

AttributeTypeMetadata Class attribute type. Contains value domain name,
data type, and a reference to the corresponding
value domain in caDSR

Table 5.6 caDSR UML project domain objects

caCORE 3.2 Technical Guide

100

Downloading the caDSR

The following caDSR distributions can be downloaded from the NCICB download site.

Project Used by the UML loader to group UML models, e.g.
caCORE. Contains a reference to the corresponding
classification scheme.

SemanticMetadata Concept related information. Also is the superclass
of all metadata classes.

SubProject Optional groupings of UML models within one
project, e.g. caBIO. A subproject contains reference
to the project to which it belongs and a collection of
UMLPackageMetaData.

TypeEnumerationMetadata A subclass of SemanticMetadata that corresponds to
an enumerated value domain.

UMLAssociationMetadata A description of the affiliation between two UML
classes.

UMLAttributeMetadata UML Attribute. Contains a reference to the corre-
sponding data element.

ClassMetadata UML Class.

UMLGeneralizationMetadata A description of the inheritance relationship between
two classes.

UMLPackageMetadata UML package. Contains a reference the correspond-
ing classification scheme item, the project, and sub-
ject to which it belongs, and a collection of
ClassMetadata objects that correspond to the UML
classes in this package.

caDSR UMLProject Domain
Objects Description

Table 5.6 caDSR UML project domain objects (Continued)

caDSR Tool Description

CDE Curation Tool Distribution Contains the cdecurate.war file and the CDE Curation
Tool Installation Guide.

CDE Browser Distribution Contains cdebrowser.ear file and installation instructions
for the application. CDE Browser makes Java Database
Connectivity (JDBC) connections to caDSR repository
database so it is a prerequisite to have access to caDSR
repository for installing CDE Browser.

caDSR Sentinel Tool Contains source, third party libraries, configuration files,
documentation and installation instructions for the appli-
cation. Access to a caDSR repository is required.

caDSR Repository/
Administration Tool Distribution

Contains the caDSR Installation Guide and scripts for
both the caDSR repository and Administration Tool.

Table 5.7 caDSR tools available for download

http://ncicb.nci.nih.gov/download/

Chapter 5: Cancer Data Standards Repository

101

Follow the instructions provided with the distributions to install the software. caDSR
content is not downloaded via this process. caDSR data element content may be down-
loaded via the online CDE Browser.

caDSR Repository/
Administration Tool
Source Code Distribution

Contains the complete PL/SQL scripts for both the reposi-
tory and the Administration Tool.

UML Model Browser
Distribution

Contains umlmodelbrowser.ear file and installation
instructions for the application.

caDSR Tool Description

Table 5.7 caDSR tools available for download

http://ncicb.nci.nih.gov/download/

caCORE 3.2 Technical Guide

102

caDSR API Examples

Using the caDSR Java API

Example One: Querying the latest version of a DataElement
This example queries the latest version of a DataElement. It then queries associated
objects such as DataElementConcept, ValueDomain and prints, out the PermissibleVal-
ues for the ValueDomain.
// Import the caDSR api objects
import gov.nih.nci.cadsr.domain.*;
import gov.nih.nci.cadsr.umlproject.domain.*;
// Import the ApplicationService objects
import gov.nih.nci.system.applicationservice.ApplicationService;
import gov.nih.nci.system.applicationservice.ApplicationServiceProvider;

import java.util.Collection;
import java.util.Iterator;
import java.util.List;

/**
 * A sample use of the caDSR api.
 * @author caDSR team.
 */
public class TestCaDsrApi {

 ApplicationService appService = null;

 public static void main(String[] args) {
 ApplicationService appService =
ApplicationServiceProvider.getRemoteInstance("http://cabio.nci.nih.gov/
cacore32/http/remoteService");
 System.out.println("Searching for DataElements");
 DataElement dataElement = new DataElement();
 // * is used as a wild card.
 // Set the search criteria
 dataElement.setLongName("Patient Race Category*");
 dataElement.setLatestVersionIndicator("Yes");
 try {
 // Set the case sensitivity of search to false
 appService.setSearchCaseSensitivity(false);
 // Search for objects of type DataElement
 List results = appService.search(DataElement.class,
dataElement);
for(Iterator iterate=results.iterator();iterate.hasNext();){
 DataElement dataElementQ = (DataElement)iterate.next();
 System.out.println("Data Element
"+dataElementQ.getLongName());
 // query the DataElementConcept
 DataElementConcept dataElementConcept =
dataElementQ.getDataElementConcept();
System.out.println("Data Element Concept
"+dataElementConcept.getLongName());
 // query the ValueDomain
 ValueDomain valueDomain = dataElementQ.getValueDomain();
 System.out.println("Value Domain
"+valueDomain.getLongName());

Chapter 5: Cancer Data Standards Repository

103

.

Using the caDSR Web Services API

Example Two: Using datatypes generated from Apache Axis
This example uses the stubs, skeletons and data types generated with Apache Axis
1.2.1 WSDL-to-java tool. This also queries the latest version of a DataElement. It then
queries associated objects such as DataElementConcept, ValueDomain and prints out
the PermissibleValues for the ValueDomain.

 if (valueDomain instanceof
EnumeratedValueDomain){
 // Get the PermissibleValues for the ValueDomain
 EnumeratedValueDomain evd =
(EnumeratedValueDomain)valueDomain;
 Collection vdpvs=
evd.getValueDomainPermissibleValueCollection();
 for (Iterator
iter2=vdpvs.iterator();iter2.hasNext();){
 ValueDomainPermissibleValue vdpv =
(ValueDomainPermissibleValue)iter2.next();
 PermissibleValue pv =
vdpv.getPermissibleValue();
 System.out.println(" Permissible Value :
"+pv.getValue());
 }
 }
 }
 }
 catch (Exception exception){
 exception.printStackTrace();
 System.out.println("Error in the TestCaDsrApi");
 }
 }
}

// Import the generated stubs.
import gov.nih.nci.cabio.cacore32.ws.caCOREService.WSQuery;
import gov.nih.nci.cabio.cacore32.ws.caCOREService.WSQueryService;
import gov.nih.nci.cabio.cacore32.ws.caCOREService.WSQueryServiceLocator;
// Import the api
import gov.nih.nci.cadsr.domain.ws.*;

/**
 * A sample use of the caDSR webservice API. This uses the stubs,
skeletons, and data types
 * generated using apache axis 1.2.1 WSDL-to-java tool.
 *
 * @author caDSR team
 */
public class TestCaDsrWSApi {

 public static void main(String[] args) {
 try {
 // Get a caCORE Service instance.
 WSQuery wsQuery = new

caCORE 3.2 Technical Guide

104

WSQueryServiceLocator().getcaCOREService();
 System.out.println("Query a DataElement");
 DataElement dataElement = new DataElement();
 // Set the search criteria. * is used as a wild card.
 dataElement.setLongName("Patient Race Category*");
 dataElement.setLatestVersionIndicator("Yes");
 //Search for DataElements
 System.out.println("Searching for data elements");
 Object[] results =
wsQuery.queryObject("gov.nih.nci.cadsr.domain.ws.DataElement",
dataElement);
for (int i=0;i<results.length;i++){
 DataElement dataElementQ = (DataElement)results[i];
 System.out.println("Queried DataElement
"+dataElementQ.getLongName());
 //Query DataElementConcept
 DataElement de= new DataElement();
 de.setId(dataElementQ.getId());
 DataElementConcept dec =
(DataElementConcept)wsQuery.queryObject("gov.nih.nci.cadsr.domain.ws.Data
ElementConcept",de)[0];
System.out.println("Queried DataElementConcept "+dec.getLongName());
 //Query ValueDomain
 ValueDomain vd =
(ValueDomain)wsQuery.queryObject("gov.nih.nci.cadsr.domain.ws.ValueDomain
", de)[0];
 System.out.println("Queried ValueDomain "+vd.getLongName());
 if (vd instanceof EnumeratedValueDomain){
 //Query Permissible Values
 EnumeratedValueDomain evd = new EnumeratedValueDomain();
 evd.setId(vd.getId());
 Object[] valueDomainPermissibleValues=
wsQuery.queryObject("gov.nih.nci.cadsr.domain.ws.ValueDomainPermissibleVa
lue", evd);
 for (int j=0;j<valueDomainPermissibleValues.length;j++){
 ValueDomainPermissibleValue vdpv =
(ValueDomainPermissibleValue)valueDomainPermissibleValues[j];
 ValueDomainPermissibleValue vdpv2 = new
ValueDomainPermissibleValue();
 vdpv2.setId(vdpv.getId());
 PermissibleValue pv =
(PermissibleValue)wsQuery.queryObject("gov.nih.nci.cadsr.domain.ws.Permis
sibleValue", vdpv2)[0];
 System.out.println("Queried permissible value
"+pv.getValue());
 }
 }
 }
 }
 catch(Exception exception){
 exception.printStackTrace();
 System.out.println("Error testing web service api.");
 }
 }
}

Chapter 5: Cancer Data Standards Repository

105

UML Project API Examples

Example one: Using the caCORE client Java API
This example queries the UML model related objects through the caCore API. It first
queries for all UML projects sorted by name. It prints out the name, version and context
of the project. The second part of the example retrieves all classes named "gene", dis-
play class related information. The search criteria are not case sensitive. The last part
of the example shows how to retrieve all attributes related information of a class.

caCORE 3.2 Technical Guide

106

import gov.nih.nci.cadsr.umlproject.domain.Project;
import gov.nih.nci.cadsr.umlproject.domain.UMLAttributeMetadata;
import gov.nih.nci.cadsr.umlproject.domain.UMLClassMetadata;
import gov.nih.nci.system.applicationservice.ApplicationService;

import gov.nih.nci.system.applicationservice.ApplicationServiceProvider;

import java.util.Iterator;
import java.util.List;

import org.hibernate.criterion.DetachedCriteria;
import org.hibernate.criterion.Order;

/**
 * @author Jane Jiang
 * @version 1.0
 */

/**
 * TestClient.java demonstartes various ways to execute searches with and without
 * using Application Service Layer (convenience layer that abstracts building
criteria
 * Uncomment different scenarios below to demonstrate the various types of searches
*/
public class

TestUml {

 public static void main(String[] args) {
 Project project = null;
 System.out.println("*** TestUml...");
 try {
 ApplicationService appService =
ApplicationService.getRemoteInstance("http://cabio.nci.nih.gov/cacore32/http/remoteServic
e");

 System.out.println("Using basic search. Retrieving all projects");
 DetachedCriteria projectCriteria =
 DetachedCriteria.forClass(Project.class);
 projectCriteria.addOrder(Order.asc("shortName"));

 try {
 System.out
 .println("Scenario 1: Using basic search. Retrieving all projects, display
version and context information...");

 List<Project> resultList =
 appService.query(projectCriteria, Project.class.getName());
 ;
 System.out.println(resultList.size() + " projects retrieved..");
 for (Iterator resultsIterator = resultList.iterator();
 resultsIterator.hasNext();) {
 project = (Project)resultsIterator.next();
 System.out.println("Project name: " + project.getShortName());
 System.out.println(" version: " + project.getVersion());
 System.out
 .println(" context: " + project.getClassificationScheme()
 .getContext().getName());
 }

Chapter 5: Cancer Data Standards Repository

107

 System.out.println();
 System.out
 .println("Scenario 2: Retrieving class named Gene, display class
information");
 UMLClassMetadata umlClass = new UMLClassMetadata();
 umlClass.setName("gene");
 resultList = appService.search(UMLClassMetadata.class, umlClass);
 System.out.println(resultList.size() + " classes retrieved..");
 for (Iterator resultsIterator = resultList.iterator();
 resultsIterator.hasNext();) {
 umlClass = (UMLClassMetadata)resultsIterator.next();
 System.out
 .println(" class full name: " + umlClass.getFullyQualifiedName());
 System.out
 .println(" class description: " + umlClass.getDescription());
 System.out
 .println(" project version: " + umlClass.getProject().getVersion());
 System.out
 .println(" object class public id: " + umlClass.getObjectClass()
 .getPublicID());
 }

 System.out.println();
 System.out
 .println("Scenario 3: Retrieving attributes for a class, display attribute
information");
 if (umlClass != null) {
 for (Iterator resultsIterator =
 umlClass.getUMLAttributeMetadataCollection().iterator();
 resultsIterator.hasNext();) {
 UMLAttributeMetadata umlAttribute =
 (UMLAttributeMetadata)resultsIterator.next();
 printAttributeInfo(umlAttribute);

 }
 }

 System.out.println();
 System.out
 .println("Scenario 4: Retrieving attributes named *id, display attribute
information");
 UMLAttributeMetadata umlAttr = new UMLAttributeMetadata();
 umlAttr.setName("*:id");
 resultList = appService.search(UMLAttributeMetadata.class, umlAttr);
 System.out.println(resultList.size() + " attributes retrieved..");

 } catch (Exception e) {
 e.printStackTrace();
 }
 } catch (RuntimeException e2) {
 e2.printStackTrace();
 }
 }
 private static void printAttributeInfo(UMLAttributeMetadata umlAttribute) {
 System.out.println(" Attribute name: " + umlAttribute.getName());
 System.out
 .println(" Attribute type: " + umlAttribute.getAttributeTypeMetadata()
 .getValueDomainDataType());
 System.out
 .println(" Data Element public id: " + umlAttribute.getDataElement()
 .getPublicID());
 }
}

caCORE 3.2 Technical Guide

108

109

CHAPTER

6
CANCER BIOINFORMATICS
INFRASTRUCTURE OBJECTS

This chapter describes the Cancer Bioinformatics Infrastructure Objects (caBIO) model
and its application programming interfaces.
Topics in this chapter include:

Introduction on this page
caBIO API on page 109
Data Sources in the caBIO Database on page 112
caBIO Specific Utilities on page 117

Introduction

The Cancer Bioinformatics Infrastructure Objects (caBIO) model and architecture was
the first of several model-driven information systems that make up caCORE and contin-
ues to be an on-going effort to model the genomic domain. The caBIO objects simulate
the behavior of actual genomic components such as genes, chromosomes, sequences,
libraries, clones, ontologies, etc. They provide access to a variety of genomic data
sources including GenBank, Unigene, LocusLink, Homologene, Ensemble, Golden-
Path, and NCICB’s CGAP (Cancer Genome Anatomy Project) data repositories. The
full list of data sources is listed starting on page 112.

caBIO API

Most of the domain objects defined in the caBIO API are objects that specialize in bioin-
formatics applications. The caBIO domain objects are implemented as Java beans in
the gov.nih.nci.cabio.domain package and include those classes that correspond to
biological entities and bioinformatic concepts. The caBIO UML model is published as

http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs

caCORE 3.2 Technical Guide

110

an EA (Enterprise Architect) diagram at http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/
EA/caCORE3-1Model/index.htm. Table 6.1 lists each class and a description. Detailed
descriptions about each class and its methods are present in the caCORE 3.2 Java-
Docs.

caBIO Domain Object Description

Agent A therapeutic agent (drug, intervention therapy) used in a clinical
trial protocol.

Anomaly An irregularity in either the expression of a gene or its structure
(i.e., a mutation).

Chromosome An object representing a specific chromosome for a specific
taxon; provides access to all known genes contained in the chro-
mosome and to the taxon.

ClinicalTrialProtocol The protocol associated with a clinical trial; organizes administra-
tive information about the trial such as Organization ID, partici-
pants, phase, etc., and provides access to the administered
Agents.

Clone An object used to hold information pertaining to I.M.A.G.E. clones;
provides access to sequence information, associated trace files,
and the clone's library.

CloneRelativeLocation Provides the end (5'/3') of a clone insert read.

Cytoband Represents the positions of cytogenetic bands within a chromo-
some.

CytogenicLocation Provides cytoband information for SNP, Gene and NucleicAcidSe-
quence objects.

DiseaseOntology Disease objects specify a disease name and ID; disease objects
also provide access to: ontological relations to other diseases;
clinical trial protocols treating the disease; and specific histologies
associated with instances of the disease.

DiseaseOntology
Relationship

Specifies the relationship among diseases.

Gene Gene objects are the effective portal to most of the genomic infor-
mation provided by the caBIO data services; organs, diseases,
chromosomes, pathways, and sequence data are among the
many objects accessible via a gene.

GeneAlias An alternative name for a gene; provides descriptive information
about the gene (as it is known by this alias), as well as access to
the Gene object it refers to.

GeneOntology An object providing entry to a Gene object's position in the Gene
Ontology Consortium's controlled vocabularies, as recorded by
LocusLink; provides access to gene objects corresponding to the
ontological term, as well as to ancestor and descendant terms.

GeneOntology
Relationship

Specifies the Gene Ontology relationship.

Table 6.1 caBIO domain objects and descriptions

http://ncicb.nci.nih.gov/content/ncicblfs/caCORE3-2_JavaDocs
http://ncicb.nci.nih.gov/content/ncicblfs/caCORE3-2_JavaDocs
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cabio/domain/Agent.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cabio/domain/Anomaly.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cabio/domain/Chromosome.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cabio/domain/ClinicalTrialProtocol.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cabio/domain/Clone.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cabio/domain/CloneRelativeLocation.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cabio/domain/Cytoband.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cabio/domain/CytogeneticLocation.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cabio/domain/DiseaseOntology.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cabio/domain/DiseaseOntologyRelationship.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cabio/domain/Gene.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cabio/domain/GeneAlias.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cabio/domain/GeneOntology.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cabio/domain/GeneOntologyRelationship.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/EA/caCORE3-2Model/index.htm
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/EA/caCORE3-2Model/index.htm

Chapter 6: Cancer Bioinformatics Infrastructure Objects

111

GeneRelativeLocation Provides the location (intron, upstream, downstream etc.) of a
SNP with respect to its associated genes.

GenericArray Represents the physical chip along with its features and the fea-
tures’ annotations.

GenericReporter Represents some biological material (clone, set of oligos, etc.) on
an array, which will report on some biosequence or biosequences.

Histopathology Represents anatomical changes in a diseased tissue sample
associated with an expression experiment; captures the relation-
ship between organ and disease.

Homologous
Association

Links Homologous Genes

Library An object representing a CGAP library; provides access to infor-
mation about: the tissue sample and its method of preparation,
the library protocol that was used, the clones contained in the
library, and the sequence information derived from the library.

Location Super class of PhysicalLocation and CytogenicLocation

NucleicAcidSequence An object representation of a gene sequence; provides access to
the clones from which it was derived, the ASCII representation of
the residues it contains, and the sequence ID.

OrganOntology A representation of an organ whose name occurs in a controlled
vocabulary; provides access to any Histopathology objects for the
organ, and, because it is "ontolog-able," provides access to its
ancestral and descendant terms in the vocabulary.

OrganOntologyRelation-
ship

An object that describes relationships among organs.

Pathway An object representation of a molecular/cellular pathway compiled
by BioCarta. Pathways are associated with specific Taxon objects,
and contain multiple Gene objects, which may be Targets for
treatment.

PhysicalLocation Provides chromosomal start and end positions and is associated
with SNP and NucleicAcidSequence objects.

PopulationFrequency Represents the major and minor alleles of a SNP and their
respective frequencies in different populations.

Protein An object representation of a protein; provides access to the
encoding gene via its GenBank ID, the taxon in which this
instance of the protein occurs, and references to homolo-
gous proteins in other species.

ProteinAlias An alternate name for a protein.

ProteinSequence The sequence of a protein.

Protocol An object representation of the protocol used in assembling a
clone library.

ProtocolAssociation An association class relating Clinical Trial Protocols to Diseases.

caBIO Domain Object Description

Table 6.1 caBIO domain objects and descriptions (Continued)

http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cabio/domain/GeneRelativeLocation.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cabio/domain/GenericArray.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cabio/domain/GenericReporter.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cabio/domain/Histopathology.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cabio/domain/HomologousAssociation.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cabio/domain/Library.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cabio/domain/Location.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cabio/domain/NucleicAcidSequence.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cabio/domain/OrganOntology.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cabio/domain/OrganOntologyRelationship.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cabio/domain/Pathway.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cabio/domain/PhysicalLocation.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cabio/domain/PopulationFrequency.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cabio/domain/Protein.html
http://www.ncbi.nih.gov/Genbank/
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cabio/domain/ProteinAlias.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cabio/domain/ProteinSequence.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cabio/domain/Protocol.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cabio/domain/ProtocolAssociation.html

caCORE 3.2 Technical Guide

112

Data Sources in the caBIO Database

This section describes the internal and external data sources for caBIO and how the
information these sources provide can be accessed via caBIO objects.

The caBIO application programming interfaces were developed primarily in response to
the need for programmatic access to the information at several NCI web sites, includ-
ing:

Cancer Genome Anatomy Project (CGAP)
CGAP Genetic Annotation Initiative (GAI)
Mouse Models of Human Cancers Consortium (MMHCC)
Cancer Molecular Analysis Project (CMAP)
Affymetrix
University of California, Santa Cruz (UCSC)
Integrated Molecular Analysis of Genomes and their Expression (IMAGE) Con-
sortium
and others

While this information is, in theory, available from multiple public sites, the number of
links to traverse and the extent of collation that would have to be performed is daunting.
The CGAP, CMAP, and GAI web sites have distilled this information from both internal
and public databases, and the caBIO data warehouses have optimized it for access
with respect to the types of queries defined in the APIs.

While the caBIO data are extracted from many sources that include information from a
wide variety of species, we emphasize that only genomic data pertaining to human and
mouse are available from caBIO.

SNP An object representing a Single Nucleotide Polymorphism; pro-
vides access to the clones and the trace files from which it was
identified, the two most common substitutions at that position, the
offset of the SNP in the parent sequence, and a confidence score

Target A gene thought to be at the root of a disease etiology, and which
is targeted for therapeutic intervention in a clinical trial.

Taxon An object representing the various names (scientific, common,
abbreviated, etc.) for a species associated with a specific instance
of a Gene, Chromosome, Pathway, Protein, or Tissue.

Tissue A group of similar cells united to perform a specific function.

Vocabulary Describes the vocabulary.

caBIO Domain Object Description

Table 6.1 caBIO domain objects and descriptions (Continued)

http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cabio/domain/SNP.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cabio/domain/Target.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cabio/domain/Taxon.html
http://genome.ucsc.edu/index.html
http://image.llnl.gov/
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cabio/domain/Tissue.html
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs/gov/nih/nci/cabio/domain/Vocabulary.html

Chapter 6: Cancer Bioinformatics Infrastructure Objects

113

caBIO provides access to curated data from both internal (NCI) and external sites.
Table 6.2 contains data sources from that NCI-related and Table 6.3 contains data
sources from sites outside of NCI.

NCI
Datasource Description

CGAP CGAP (Cancer Genome Anatomy Project) provides a collection of gene
expression profiles of normal, pre-cancer, and cancer cells taken from vari-
ous tissues. The CGAP interface allows users to browse these profiles by
various search criteria, including histology type, tissue type, library protocol,
and sample preparation methods. The goal at NCI is to exploit such expres-
sion profile information for the advancement of improved detection, diagno-
sis, and treatment for the cancer patient. Researchers have access to all
CGAP data and biological resources for human and mouse, including ESTs,
gene expression patterns, SNPs, cluster assemblies, and cytogenetic infor-
mation.
The CGAP web site provides a powerful set of interactive data-mining tools
to explore these data, and the caBIO project was initially conceived as a pro-
grammatic interface to these tools and data. Accordingly, most of the data
that are available from CGAP can also be accessed through the caBIO
objects. Exceptions are those data sets having proprietary restrictions, such
as the Mitleman Chromosome Aberration database.
CGAP also provides access to lists of sequence-verified human and mouse
cDNA IMAGE clones supplied by Invitrogen.

CMAP CMAP (Cancer Molecular Analysis Project) is powered by caCORE. The
goal of CMAP is to enable researchers to identify and evaluate molecular tar-
gets in cancer.

The CMAP Profile Query tool finds genes with the highest or lowest expres-
sion levels (using SAGE and microarray data) for a given tissue and histol-
ogy. Selecting a gene from the resulting table then leads to a Gene Info
page. This page provides information about cytogenetic location, chromo-
some aberrations, protein similarities, curated and computed orthologs, and
sequence-verified as well as full-length MGC clones, along with links to vari-
ous other databases.

Table 6.2 NCI‐related data sources in the caBIO database

http://cgap.nci.nih.gov/
http://www.invitrogen.com/content.cfm?pageid=3&nv=1&ix=1
http://cmap.nci.nih.gov/

caCORE 3.2 Technical Guide

114

CTEP CTEP (Cancer Therapy Evaluation Program) funds an extensive national
program of basic and clinical research to evaluate new anti-cancer agents,
with a particular emphasis on translational research to elucidate molecular
targets and drug mechanisms. In response to this emergent need for transla-
tional research, there has been a groundswell of translational support tools
defining controlled vocabularies and registered terminologies to enhance
electronic data exchange in areas that have heretofore been relatively non-
computational. The caCORE trials data are updated with new CTEP data on
a quarterly basis, and many of the objects are designed to support transla-
tional research.

For example, a caCORE Target object represents a molecule of special diag-
nostic or therapeutic interest for cancer research, and an Anomaly object is
an observed deviation in the structure or expression of a Target. An Agent is
a drug or other intervention that is effective in the presence of one or more
specific Targets. The ClinicalTrialProtocol object organizes administrative
information pertaining to that protocol.

 GAI GAI (CGAP Genetic Annotation Initiative) is an NCI research program to
explore and apply technology for identification and characterization of
genetic variation in genes important in cancer. The GAI utilizes data-mining
to identify "candidate" variation sites from publicly available DNA sequences,
as well as laboratory methods to search for variations in cancer-related
genes. All GAI candidate, validated, and confirmed genetic variants are
available directly from the GAI web site, and all validated SNPs have been
submitted to the NCBI dbSNP database as well.

HomoloGene HomoloGene is an NCBI resource for curated and calculated gene
homologs. The caBIO data sources capture only the calculated homologs
stored by HomoloGene. These calculated homologs are the result of nucle-
otide sequence comparisons performed between each pair of organisms
represented in UniGene clusters.

IMAGE The IMAGE Consortium provides extensive data on clones. The data for a
Clone object includes image clones from the IMAGE Consortium. The data
behind the CloneRelativeLocation object which provides the end (5'/3') of a
clone insert read comes from UniGene.

 LocusLink LocusLink contains curated sequence and descriptive information associ-
ated with a gene. Each entry includes information about the gene's nomen-
clature, aliases, sequence accession numbers, phenotypes, UniGene cluster
IDs, OMIM IDs, gene homologies, associated diseases, map locations, and
a list of related terms in the Gene Ontology Consortium's ontology.
Sequence accessions include a subset of GenBank accessions for a locus,
as well as the NCBI Reference Sequence.

NCI
Datasource Description

Table 6.2 NCI‐related data sources in the caBIO database (Continued)

http://www.geneontology.org/
http://gai.nci.nih.gov/
http://www.ncbi.nlm.nih.gov/LocusLink/
http://ctep.cancer.gov/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=homologene
http://image.llnl.gov/

Chapter 6: Cancer Bioinformatics Infrastructure Objects

115

dbSNP In collaboration with the National Human Genome Research Institute, the
NCBI has established the dbSNP database to serve as a central repository
for both single base nucleotide substitutions and short deletion and insertion
polymorphisms. Once discovered, these polymorphisms could be used by
additional laboratories, using the sequence information around the polymor-
phism and the specific experimental conditions. (Note that dbSNP takes the
looser 'variation' definition for SNPs, so there is no requirement or assump-
tion about minimum allele frequency.)

UniGene Unigene provides a nonredundant partitioning of the genetic sequences con-
tained in GenBank into gene clusters. Each cluster has a unique UniGene ID
and a list of the mRNA and EST sequences that are included in that cluster.
Related information stored with the cluster includes tissue types in which the
gene has been expressed, mapping information, and the associated Locus-
Link, OMIM, and HomoloGene IDs, thus providing access to related informa-
tion in those NCBI databases as well. Because the information in UniGene is
centered around genes, access to Unigene is provided via the caBIO Gene
objects. Specifically, the method getClusterId() associated with a Gene
object can be used to fetch the gene's UniGene ID. Similarly, the database
IDs for the NCBI OMIM and LocusLink databases can be obtained using the
getDatabaseCrossReferenceCollection() method. While there is no explicit
caBIO object corresponding to a Unigene cluster, all of the information asso-
ciated with the cluster is available directly via the caBIO Gene object's meth-
ods.

External
Datasource Description

Affymetrix Affymetrix provides the majority of data for the caBIO SNP object. The
data provides information on allele frequencies of the SNP in different
populations, and is represented by the PopulationFrequency object. The
GeneRelativeLocation object provides the location (intron, upstream,
downstream etc.) of a SNP with respect to its associated genes. The val-
idation status for a SNP comes from NCBI. The SNP Consortium (TSC)
Ltd. a non-profit foundation provides the TSC id's for SNPs.

BioCarta BioCarta and its Proteomic Pathway Project (P3) provide detailed graph-
ical renderings of pathway information concerning adhesion, apoptosis,
cell activation, cell signalling, cell cycle regulation, cytokines/chemok-
ines, developmental biology, hematopoeisis, immunology, metabolism,
and neuroscience. NCI's CMAP web site captures pathway information
from BioCarta, and transforms the downloaded image data into Scalable
Vector Graphics (SVG) representations that support interactive manipu-
lation of the online images. The CMAP web site displays BioCarta path-
ways selected by the user and provides options for highlighting
anomalies, which include under- or overexpressed genes as well as
mutations.
caCORE 3.2 provides a class for manipulating SVG diagrams, which is
described on Manipulating SVG Diagrams on page 117.

Table 6.3 External data sources in the caBIO database

NCI
Datasource Description

Table 6.2 NCI‐related data sources in the caBIO database (Continued)

http://www.biocarta.com/
http://www.w3.org/TR/SVG/
http://www.ncbi.nlm.nih.gov/SNP/index.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=unigene

caCORE 3.2 Technical Guide

116

caGrid Identifiers

The functionality provided by caGrid’s Identifier Services Framework and the integra-
tion in caBIO is to have “identifiers” for each caBIO domain object. The identifier is
essentially a forever globally unique name for the caBIO data-object such that it can be
unambiguously used to refer to the data from different application contexts.

This identifier, obtained from the caGrid Identifier Service Framework, is essentially a
string and a forever globally unique name for the caBIO domain object. Furthermore,
the identifier can be (globally) resolved to the associated caBIO domain object.

In order to abstract the identifier’s object properties, the data service implementations
and the resolution mechanisms, the identifier’s value must be treated as a “meaning-
less” opaque string by the consumer applications. Any leaking of design and implemen-
tation choices for the identifier framework in the applications is undesirable from an

UniProt
PIR

Universal Protein Resource (UniProt) is a complete annotated protein
sequence database and is a central repository of protein sequence and
function created by joining the information contained in Swiss-Prot,
TrEMBL, and PIR. The UniProt Knowledge base provides access to
extensive curated protein information, including the amino acid
sequence, protein name or description, taxonomic data and protein
aliases.

Gene Ontology
Consortium

The Gene Ontology Consortium provides a controlled vocabulary for the
description of molecular functions, biological processes, and cellular
components of gene products. The terms provided by the consortium
define the recognized attributes of gene products and facilitate uniform
queries across collaborating databases.
In general, each gene is associated with one or more biological pro-
cesses, and each of these processes may in turn be associated with
many genes. In addition, the GO ontologies define many parent/child
relationships among terms. For example, a branch of the ontology tree
under biological_process contains the term cell cycle con-
trol, which in turn bifurcates into the "child" terms cell cycle
arrest, cell cycle checkpoint, control of mitosis, etc.
caBIO does not extract ontology terms directly from the Gene Ontology
Consortium but, instead, extracts those terms stored with the LocusLink
entry for that gene.

SNP Consortium The SNP Consortium Ltd. is a non-profit foundation organized for the
purpose of providing public genomic data. Its mission is to develop up to
300,000 SNPs distributed evenly throughout the human genome and to
make the information related to these SNPs available to the public with-
out intellectual property restrictions.

 UCSC UCSC (University of California, Santa Cruz Distributed Annotation Sys-
tem) provides the data for the Chromosomal start and end positions of
mRNA sequences. The positions of cytogenetic bands within a chromo-
some, represented by the caBIO Cytoband object, are also obtained
from the UCSC.

External
Datasource Description

Table 6.3 External data sources in the caBIO database (Continued)

message URL http://genome.ucsc.edu/index.html
http://www.ebi.uniprot.org/index.shtml
http://pir.georgetown.edu
http://www.ebi.ac.uk/
http://www.geneontology.org/
http://snp.cshl.org/

Chapter 6: Cancer Bioinformatics Infrastructure Objects

117

architecture point of view as it makes the implementations brittle and susceptible to
future changes. Of course resolution information will have to be embedded in identifier
name, but this should only be meaningful for resolution service related components that
are layered below the application.

caBIO Specific Utilities

Manipulating SVG Diagrams
caBIO 3.2 provides a utility class called SVGManipulator for manipulating pathway
SVG diagrams. BioCarta and its Proteomic Pathway Project (P3) provide detailed
graphical renderings of pathway information. NCI's CMAP web site captures pathway
information from BioCarta, and transforms the downloaded image data into Scalable
Vector Graphics (SVG) representations that support interactive manipulation of the
online images. The SVGManipulator utility class provides the capability to do the follow-
ing:

Change the display colors for each gene contained in an SVG diagram.
Modify the URL linking a gene in the SVG diagram to external gene information.
The default gene URL links to the CMAP website.
Disable all genes or nodes within an SVG diagram.
Retrieve a gene’s color.
Reset a gene or node to its original state.
Retrieve/set SVG diagram attributes via getter/setter methods.

http://www.w3.org/TR/SVG/

caCORE 3.2 Technical Guide

118

Figure 6.1 shows an example of how to use SVGManipulator class to modify content of
an SVG diagram. This example uses the gov.nih.nci.cabio.domain.Pathway and
gov.nih.nci.cabio.domain.Gene objects.

Figure 6.1 Sequence diagram using caBIO Pathway and Gene objects

SVG Diagram Manipulation Utility Example
The following test client demonstrates how to use the SVGManipulation class to
change the appearance of a pathway diagram associated with a given pathway.

import gov.nih.nci.system.applicationservice.*;
import java.util.*;

import gov.nih.nci.camod.domain.*;
import gov.nih.nci.camod.domain.impl.*;

import gov.nih.nci.cadsr.domain.*;
import gov.nih.nci.cadsr.domain.impl.*;

import gov.nih.nci.cabio.domain.*;
import gov.nih.nci.cabio.domain.impl.*;
import gov.nih.nci.common.util.*;

import org.hibernate.criterion.*;

Chapter 6: Cancer Bioinformatics Infrastructure Objects

119

public class TestClient {

 public static void main(String[] args) {

 System.out.println("*** TestClient...");
 try{

ApplicationService appService =
ApplicationServiceProvider.getApplicationService();

 /**** Test scenarios for SVG Pathway Diagram using SVGManipulator.java
*****/

 try {

 System.out.println("Using basic search. Retrieving Pathway");
 Pathway pw = new PathwayImpl();
 pw.setId(new Long(251));

 try {
 List resultList = appService.search(Pathway.class, pw);
 System.out.println("result count: " + resultList.size());
 for (Iterator resultsIterator = resultList.iterator();
 resultsIterator.hasNext();) {
 Pathway returnedPw = (Pathway) resultsIterator.next();
 String pathwayDiagram = returnedPw.getDiagram();

 SVGManipulator svgM = new SVGManipulator(returnedPw);
 Document orgSvgDoc = svgM.getSvgDiagram();

 Document org0 = svgM.reset();

 svgM.disableAllGenes();
 Document disableGenesDoc = svgM.getSvgDiagram();
 disableGenesDoc);

 Document org1 = svgM.reset();

 svgM.disableAllNodes();
 Document disableNodesDoc = svgM.getSvgDiagram();
 disableNodesDoc);

 Document org = svgM.reset();

 Gene[] genes= new Gene[2];
 String[] colors=new String[2];

 Gene p53=new GeneImpl();
 p53.setId(new Long(1031));
 List resultList1 = appService.search(Gene.class, p53);
 if(resultList1.size()> 0)
 genes[0]=(Gene)resultList1.get(0);

 Gene p54=new GeneImpl();

caCORE 3.2 Technical Guide

120

 p54.setId(new Long(2));
 List resultList2 = appService.search(Gene.class, p54);
 genes[1] = (Gene)resultList2.get(0);
 colors[0]="255,255,255";
 colors[1]="0,255,255";

 svgM.setSvgColors(genes, colors);

 Document geneColors = svgM.getSvgDiagram();

 String genep53color = svgM.getSvgColor(genes[0]);
 System.out.println("geneP53 color: " + genep53color);

 Document org10 = svgM.reset();

 String genep53color1 = svgM.getSvgColor(genes[0]);
 System.out.println("geneP53 color1: " + genep53color1);
 String svgString = svgM.toString();
 System.out.println("toString:\n" + svgString);

 svgM.setGeneInfoLocation("http://www.google.com");

 Document geneLocation = svgM.getSvgDiagram();

 // Using Map
 Map geneColors = new HashMap();
 geneColors.put("rab7", "0,255,255");
 geneColors.put("rab1", "0,255, 255");

 svgM.setSvgColors(geneColors);

 Document d = svgM.getSvgDiagram();

 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 } catch (RuntimeException e2) {
 // TODO Auto-generated catch block
 e2.printStackTrace();
 }
 }
}

121

CHAPTER

7
COMMON PACKAGE

This chapter describes the Common Package of the caCORE API.
Topics in this chapter include:

Introduction on this page
Common Package API on this page
Common Package Specific Utilities on page 122

Introduction

The "common" package of the caCORE API contains objects that can be shared across
all domain packages of caCORE to find information about data provenance and related
data stores.

Common Package API

The following table lists each class in the Common Package and its description.
Detailed descriptions about each class and its methods are present in the caCORE 3.2
JavaDocs at http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs.

Common Domain Object Description

DatabaseCrossReference Provides links to related data hosted by other sources.

Source A class representing a source. Will be subclassed into a vari-
ety of specialized classes.

InternetSource An implementing subclass of Source. Describes a source for
which an electronic online version is available.

Table 7.1 Classes in the Common Package and their descriptions

http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs

caCORE 3.2 Technical Guide

122

Common Package Specific Utilities

XMLUtility
The caCORE 3.2 release includes an XMLUtility class that can be used to transform
java bean representations of domain objects to and from XML. The XMLUtility class
takes advantage of the open source Castor XML project to handle this conversion. The
utility uses the caCOREMarshaller and caCOREUnmarshaller classes contained within
the gov.nih.nci.common.util package, which in turn uses Castor. However, the
XMLUtility class was designed to be flexible and allow developers to create their own
marshaller and unmarshaller classes should they choose to do so as long as the
gov.nih.nci.common.util.Unmarshaller and gov.nih.nci.common.util.Mar-
shaller interfaces are implemented.

The caCORE client also contains a file named xml-mapping.xml that is used by
Castor to determine how to process an object's attributes and associations to and from
xml. It is important to note that the xml-mapping file used in caCORE limits serializa-
tion and deserialization to an object's immediate attributes and not its associated rela-
tionships.

Also packaged with the caCORE client are xml schema files, one for each domain
package. These xsd files can be used to validate xml representations of caCORE
domain objects.

PublicationSouce An implementing subclass of Source. Describes a source for
which an electronic online version is not available, but for
which a printed version of the data is available.

ResearchInstitutionSource An implementing subclass of Source that describes a
research institution (commercial, academic, or government).
This is used for information with attribution, which lacks an
online electronic format.

SourceReference A reference (an electronic reference, publication citation, etc.)
to the untransformed data at a source.

URLSourceReference An implementation of the abstract SourceReference that con-
tains a URL to the original information.

WebServicesSourceRefer-
ence

Provenance A record describing the source of an assertion (datum) con-
tained in an object.

Common Domain Object Description

Table 7.1 Classes in the Common Package and their descriptions (Continued)

http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs
http://ncicb.nci.nih.gov/NCICB/content/ncicblfs/caCORE3-2_JavaDocs

Chapter 7: Common Package

123

The following sample client demonstrates how to use the XMLUtility class to convert a
caBIO Gene object to and from xml and also how to validate the xml against the
gov.nih.nci.cabio.domain.xsd file:

public class TestXML {
 public static void main(String[] args) {

try{
 ApplicationService appService = ApplicationService.getRemoteInstance(
 "http://cabio.nci.nih.gov/cacore32/server/HTTPServer");
 try {
 Gene gene = new Gene();
 gene.setId(Long.valueOf(2));
 try {
 XMLUtility myUtil = new XMLUtility();
 List resultList = appService.search(Gene.class, gene);
 System.out.println("Result list size: " + resultList.size() + "\n");
 long startTime = System.currentTimeMillis();
 for (Iterator resultsIterator = resultList.iterator();
 resultsIterator.hasNext();) {
 Gene returnedGene = (Gene)resultsIterator.next();
 System.out.println("Id: "+ returnedGene.getId() + "\n");
 System.out.println("Fullname: "+ returnedGene.getFullName());
 System.out.println("ClusterId: "+ returnedGene.getClusterId());
 System.out.println("Symbol: "+ returnedGene.getSymbol());
 File myFile = new File("C:/test.xml");
 FileWriter myWriter = new FileWriter(myFile);
 myUtil.toXML(returnedGene,myWriter);
 DocumentBuilder parser
 DocumentBuilderFactory.newInstance().newDocumentBuilder();
 Document document = parser.parse(myFile);
 SchemaFactory factory =
 SchemaFactory.newInstance(XMLConstants.W3C_XML_SCHEMA_NS_URI);
 Source schemaFile = new StreamSource(new
 File("C:/gov.nih.nci.cabio.domain.xsd"));
 Schema schema = factory.newSchema(schemaFile);
 Validator validator = schema.newValidator();
 System.out.println("Validating gene against the schema......);
 validator.validate(new DOMSource(document));
 System.out.println("Retrieving gene from xml\n\n");
 Gene myGene = (Gene) myUtil.fromXML(myFile);
 System.out.println(“Id: "+ myGene.getId());
 System.out.println("Fullname: "+ myGene.getFullName());
 System.out.println("ClusterId: "+ myGene.getClusterId());
 System.out.println(" Symbol: "+ myGene.getSymbol());
 }
 } catch (ParserConfigurationException e) {
 ea.printStackTrace();
 } catch (SAXException e) {
 eb.printStackTrace();
 } catch (IOException e) {
 ec.printStackTrace();
 } catch (Exception e) {
 e.printStackTrace();
 }
} catch (RuntimeException e) {
 e2.printStackTrace();
}
} catch (RuntimeException e) {
 e2.printStackTrace();
}

}
catch(Exception ex){

caCORE 3.2 Technical Guide

124

ex.printStackTrace();
}
}
}

125

CHAPTER

8
COMMON SECURITY MODULE

For a complete description of the Common Security Module, please refer to the docu-
ment CSM_Guide_ApplicationDevelopers.pdf located on GForge.

https://gforge.nci.nih.gov/docman/index.php?group_id=58&selected_doc_group_id=540&language_id=1

caCORE 3.2 Technical Guide

126

127

CHAPTER

9
COMMON LOGGING MODULE

This chapter describes the Common Logging Module (CLM), which provides a sepa-
rate service under caCORE for Audit and Logging Capabilities. The CLM also includes
a web-based locator tool, which can be used by a client application directly without
using any other components like CSM. For this purpose, it is a stand alone module.

Topics in this chapter include:

Introduction on this page
CLM Overview on page 128
Workflow for CLM Integration on page 131
Deployment Models on page 132

Introduction

This chapter provides all the information application developers need to successfully
integrate with NCICB's Common Logging Module (CLM). The CLM was chartered to
provide a comprehensive solution to Audit and Logging objectives and also to prevent
the duplication of the effort and time involved in developing a logging solution. CLM is
flexible enough to allow application developers to integrate audit logging into almost
any code design with minimal coding effort. This phase of the Common Logging Mod-
ule brings the NCICB team one step closer to the goal of CFR 21 / part 11 (FDA) com-
pliance.To use the information in this chapter, begin by reading CLM Overview on
page 128 to learn the CSM concepts and how they apply to your own application. Next,
read Workflow for CLM Integration on page 131 to understand how to successfully inte-
grate with CSM. Deployment Models on page 132 describes how to deploy the services
and how to integrate with them.

This chapter shows how to deploy and integrate the CLM services, including event log-
ging and automated object state logging. It also shows how to deploy and configure the
web locator tool for the purpose of browsing through the logs.

caCORE 3.2 Technical Guide

128

Begin by reading CLM Overview on page 128 to learn the CLM concepts and how they
apply to your own application. Next read Workflow for CLM Integration on page 131 to
understand how to successfully integrate with CLM. Finally, Deployment Models on
page 132 describes how to deploy CLM services.

CLM Overview

Explanation
CLM is a powerful set of auditing and logging tools implemented in a flexible and com-
prehensive solution. CLM provides the following features:

Event Logging - This feature provides a log4j-based solution allowing users to
log events. Since this feature provides the ability to propagate and store user
information, it can be used for anything from auditing a user to detecting secu-
rity breaches.
Automated Object State Logging - This tool provides an automated, hibernate
based, object state logging mechanism used to log the changes to an object's
state.
Asynchronous Logging to database - This feature provides a log4j based
JDBC appender that can log the messages to the database asynchronously.
Asynchronous logging increases performance for applications that generate a
high volume of log messages.
Query APIs - This feature provides the interface to query the log messages
programmatically. The Query APIs allows specifying a SearchCriteria and meth-
ods to retrieve the results in various ways. Refer the JavaDocs for details. The
web-based log locator tool uses Query APIs to retrieve the logs.
Web-based Log Locator tool (LLT) - This tool is a web-based application that
displays, searches, and filters log messages. The interface can be used to
retrieve logs based on a timestamp, user ID, Object ID, Object Name, Opera-
tion, log level, etc. Refer the LLT Application Developers Guide for more infor-
mation on LLT.

Chapter 9: Common Logging Module

129

Figure 9.1 shows how CLM works with an application and independent entities, such as
the credential providers and authorization schema, to perform authentication and
authorization.

Figure 9.1 CLM interactions Audit Logging and Web Locator Tool

The CLM APIs provide the following major components of the Audit and Logging capa-
bilities provided by CSM.

Event Logger
CLM APIs are based on log4j framework. To allow the client application to integrate
easily, this framework provides its logging capabilities through the log4j logger. To log
an event for the purpose of audit tracking, a client application must first obtain a logger
using the log4j's Logger class. Using this logger, the client class can log all the events.
Obtaining this logger is similar to obtaining a logger for regular logging from log4j. It is
advisable to maintain the same logger name while obtaining the logger in various
classes. Also it is advisable to the keep the log level consistent. By keeping these ele-
ments consistent makes configuring this logger easier in the log4j configuration file.

The events that an application can log for audit purposes include: logins, logouts,
invalid login attempts, data manipulations actions triggered by the user etc. The event
is actually passed as a string message to log4j. This message is persisted into a per-
sistent store using a special appender provided by CLM. In order to enable this logger,
it should be configured in the log4j.xml config file of JBoss.

Object State Logger
Along with the Event Logger, CLM provides an automated Object State Logger for
Hibernate. This Logger automatically track changes in the object state whenever the
object is updated, created or deleted using hibernate. It implements an interceptor
which listens to the hibernate session. This logger is transaction aware and only logs
the object state changes if the transaction is committed. However in case of a transac-
tion rollback, the logs are discarded. Whenever the client application performs any cre-
ate, update or delete operation on this session, the interceptor is invoked. This

Application server

 Log4J

CLM’s Log4j
JDBC APPENDER

CLM API

Common
Authorization

Schema

Client Application

Webserver
server

CLM’s Log
Locator Web

Tool

Log M
essage

caCORE 3.2 Technical Guide

130

interceptor introspects the object and converts its contents into a message string.
Finally, it logs it using log4j logger. When there is a create or delete operation, the cur-
rent state of the object is logged. However, when there is an update operations both the
previous object state and the current values are logged. However if any other operation
is performed on the object within the context of the same transaction then the previous
state of the object is lost, and hence unavailable for logging.

In order to use the object state logger, the client application needs to obtain the session
using the help class provided by the CLM APIs. The session returned is a hibernate
session with an attached interceptor to track all the object state changes. This is the
only code specific to object state logger that is required to use this facility. The object
state logger also needs to be configured in the ObjectStateLoggerConfig.xml file. Here
the application needs to specify the logger name that it intends to use for the object
state log4j logger. Also the log4j log level needs to be specified to set the correspond-
ing log4j log level for all the object state logs. A list of objects that needs to be logged
should also be added in this file. If no objects are specified then the object state loggers
ignores all the object state changes and no logs are generated. In order to enable this
object state logger, it should be configured in the log4j.xml config file of JBoss.

User Information
In order to track which user is performing the specific operation for the purpose of Audit
Logging, CLM needs to know user information like user id and session id. Since these
values are only available with the client application, they need to be passed to the CLM
APIs. To accomplish this, the client application must use the utility class "UserInfo-
Helper" provided by the CLM APIs. This information needs to be set before any of the
event logs or any hibernate actions. Also this information needs to be set only once
throughout a thread of execution which caters to a client request. It means, in case of a
web application, this information should be set only once during the start of the doPost
method.

Common Logging Database
This is the persistence storage that the JDBC appender uses to store the Audit Logs.
The Log Locator application of CLM connects to this database to allow the user to
browse the logs. This database consists of tables that consists of fields which are
used to store the audit message and Object Attributes. A common schema can be
deployed and shared across applications. The application name is part of the log mes-
sage and can be used to pull logs only for a particular application. Admin for a particular
application can view logs only for that application. CSM is used to security and admins
need privileges to access logs of particular applications. Please refer the security sec-
tion for details.

JDBC Appender
To persist the generated audit logs the CLM provides an asynchronous JDBC
Appender. This appender is asynchoronous and maintains a configurable internal
buffer. This buffer is used to store the logs before a parallel thread is spawned which
writes these logs into the database. This appender is also capable of extracting the
user information set by the client application and uses it while writing the data into the

Chapter 9: Common Logging Module

131

database. Thus, an application that wants to enable the audit logging should also con-
figure this Appender. A sample log4j entry for the CSM APIs is show below.

Figure 9.2 Example log4j.xml file

Note: CSM is capable of performing both event and object state audit logging only for the
operations and data pertaining to CSM. In order to use the similar functionality, the cli-
ent application can separately download and install CLM. In this case CLM can be used
(even without using CSM) to provide event logging and automated object state logging
capabilities using the special appender and schema. Also the log locator tool can be
used for the purpose of viewing the logs.

Query APIs
To retrieve the generated logs, CLM Query APIs provide a very easy and flexible
Search Criteria to query the logs from the CLM log database.

Workflow for CLM Integration

This workflow section outlines the basic steps, both strategic and technical, for suc-
cessful CLM integration.

1. Decide which services of CLM you want to integrate with an application. If the
application needs to maintain an audit log of each and every action that takes
place then you can use the CLM's Audit logging capabilities. If the application
needs to log object state changes for audit purposes then use CLM's automated
object logger capabilities.

2. Read the CLM Guide for Application Developers (this chapter). It provides an
overview, workflow, and specific deployment and integration steps.

3. Determine a logging strategy. Based on the logging mode selected configure
the appropriate configuration files. Also set up the logging database to capture
all the audit logs as discussed in Deployment Steps on page 133.

<appender name="CLM_APPENDER" class="gov.nih.nci.logging.api.appender.jdbc.JDBCAppender">
 <param name="application" value="csm" />
 <param name="maxBufferSize" value="1" />
 <param name="dbDriverClass" value="com.mysql.jdbc.Driver" />
 <param name="dbUrl" value="jdbc:mysql://cbiodev104.nci.nih.gov:3306/clmlog" />
 <param name="dbUser" value="user" />
 <param name="dbPwd" value="password" />
 <param name="useFilter" value="true" />
 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value=":: [%d{ISO8601}] %-5p %c{1}.%M() %x - %m%n"
/>
 </layout>
</appender>
<logger name="CSM.Audit.Logging.Event.Authentication">
 <level value="info" />
 <appender-ref ref="CLM_APPENDER" />
</logger>
<logger name="CSM.Audit.Logging.Event.Authorization">
 <level value="info" />
 <appender-ref ref="CLM_APPENDER" />
</logger>
<logger name="CSM.Audit.Logging.ObjectState.Authoriaztion">
 <level value="info" />
 <appender-ref ref="CLM_APPENDER" />
</logger>

caCORE 3.2 Technical Guide

132

4. Deploy the web-based tool for the purpose of browsing through the logs. Enter
the configuration details to point to the database server that holds the logs

5. Integrate the application code using the integration steps for EventLogging,
and/or ObjectStatelogging

6. Test and refine CLM integration with your application. Confirm that your audit
logging implementation meets requirements.

Deployment Models

CLM APIs

Introduction
The logging API's facilitate the audit and logging needs of a developer at run time.
These APIs use Java and log4j for the purpose of logging, so it is assumed that devel-
opers are familiar with both.

Software Products
Table 9.1 displays descriptions of software products used for logging.

Software Product Description

JBoss Server The JBoss/Server is the leading open-source, standards-compli-
ant, J2EE-based application server implemented as pure Java. A
majority of caCORE applications use this server to host their
applications.

MySQL Database MySQL is an open source database. Its speed, scalability, and
reliability make it a popular choice for web developers. CLM rec-
ommends storing authorization data in a MySQL database
because it is a light database and is easy to manage and main-
tain.

Hibernate Hibernate is an object/relational persistence and query service
for Java. CSM requires developers to modify a provided Hiber-
nate configuration file (hibernate.cfg.xml) in order to con-
nect to the appropriate application authorization schema.

Log4j Log4j is a open source logging framework. It is used by an appli-
cation for the purpose of logging. It provides a configurable
mechanism for an application to be able to persist logs onto dif-
ferent media.

Table 9.1 Logging software products

Chapter 9: Common Logging Module

133

Configuration and SQL Files

Overview to Integrating CLM APIs
This section provides instruction for integrating the CLM APIs with Jboss-based web
application. The integration is flexible enough to meet the needs for other deployment
scenarios such as stand alone or enterprise applications.

Deployment Steps

Step 1: Create and Prime MySQL
1. Log into the database using an account ID that has permission to create new

databases.
2. If the log database is not already created, then run the CLMSchemaMySQL.sql

script at the database prompt. This creates the CLM database

Step 2: Placing the CLM APIs Jar
1. The CLM application APIs are available as a JAR that must be placed in the

classpath of the application. Along with this JAR, there are many supporting
JARs on which the CLM API depends. These extra JARs are supplied as part of
the CLM distribution and should be added to the folder <application-web-
root>\WEB-INF\lib.
Note: Based on the class loader used in JBoss, the clmwebapp.jar file might
need to be placed in the WEB-INF/lib directory instead of the clm.jar. In
this case the clm.jar should be placed in the lib directory of JBoss so that the
JDBC appender is available to the log4j service of JBoss.

Step 3: Configure ObjectStateLoggerConfig.xml
If the application plans to use the Object State Logger provided by CLM then the
ObjectStateLoggerConfig.xml file needs to be configured.

1. The following entries should be configured based on the application's require-
ments

a. ObjectStateLoggerName: Name of the Logger used in the LoggerCon-
figurationFile. The name of the logger should match with the log4j-

File Description

ObjectStateLogger-
Config.xml

The XML file containing the configuration data for the Object
State Logger. It contains the log level, the object for which the
automated logging should be enabled etc.

log4j.xml The log4j configuration file provided by the JBoss server. It con-
tains the details about configuration for the Event Logger and the
Object State Logger.

mysql_log_table.sql This Structured Query Language (SQL) script is used to create
an instance of the logging database schema that will be used for
the purpose of storing log messages.

Table 9.2 Logging configuration and SQL files

caCORE 3.2 Technical Guide

134

config.xml logger value. That is, log4j-config.xml should have a
logger with ObjectStateLoggerName.

b. LoggerConfigurationFile: This is the log4j configuration file for Audit
Logging. It can be configured to log messages either to a flat text file or
to a database table via a JDBC Appender.

c. LogLevel: This is the log level for Audit Logging. It can be one of those
five levels provided by the log4j framework.

d. LoggingEnabled: This flag indicates whether or not the audit logging is
enabled for the client application. It works with the above domainOb-
jectList context. This flag will take either TRUE or FALSE as input. If the
value for this tag is FALSE, then it will disable the audit logging for all
classes. If it is set to TRUE, then only those classes that are listed in the
domainObjectList will be audited.

e. ObjectStateLoggerMessageFormat:This is the message format for the
log messages. It can be configured to be String or XML. In the case of
String, the log message will be in the string format. In the case of XML,
the log message will be generated in xml files.

f. DomainObjectList: It is the list of DomainObjects whose state changes
are to be logged. This is the context to put a list of fully qualified classes
names to be audited. Each fully qualified class needs to be placed within
the ObjectName name tag within DomainObject.

g. DomainObject: Object whose changes are to be logged.
h. ObjectName: ObjectName of the domain object. Example: sam-

ple.package.ClassName.
i. IdentifierAttribute: IdentifierAttribute is the name of the object property

that is to be used save in logs object ID column. This value will be
matched with query Object ID for retrieval. Example: For object with
attributes: personname, street, zip. < IdentifierAttribute>personname</
IdentifierAttribute>. In this example, the attribute 'personname' will be
used to store logs with ObjectId = Name. Example: For object with
attributes: first, last, street, zip. <IdentifierAttribute>first,last</ Identifier-
Attribute>. In this example, the composite attributes value of 'first+last'
will used to store logs with ObjectID = 'first+last'.

Chapter 9: Common Logging Module

135

Figure 9.3 is an example of the ObjectStateLoggerConfig.xml file for the CSM
APIs integration with CLM.

Figure 9.3 Example ObjectStateLoggerConfig.xml file

2. Place the ObjectStateLoggerConfig.xml in the classpath of the client
application. In case of a web application, the path is the folder WEB-INF/
classes.

Step 4: Configure log4j.xml
1. Modify the log4j configuration file to configure the JDBC Appender provided by

the CLM APIs. If using Jboss, the log4j configuration file is called log4j.xml
and can be found in the conf directory of the JBoss server.

2. An entry for the appender should be made. Set the following properties for the
appender entry:

a. name: The name of the appender.
b. class: The fully qualified path of the CLM's JDBC Appender

gov.nih.nci.logging.api.appender.jdbc.JDBCAppender.
c. application: The name of the application for which the logging is per-

formed.
d. maxBufferSize: The size of the asynchronous buffer before which the

message would be logged into the database.
e. dbDriverClass: The name of the jdbc driver to be used to connect to the

database.
f. dbUrl: The URL of the server where the server is hosted.
g. dbUser: The user id to be used to connect to the database.

<ObjectStateLoggerConfig>
 <ObjectStateLoggerName>CSM.Audit.Logging.ObjectState.Authorization</ObjectStateLoggerName>
 <LoggerConfigurationFile>log4jConfig.xml</LoggerConfigurationFile>
 <LogLevel>info</LogLevel>
 <LoggingEnabled value="true" />
 <ObjectStateLoggerMessageFormat type="string" />
 <DomainObjectList>
 <DomainObject>

 <ObjectName>gov.nih.nci.security.authorization.domainobjects.Application</ObjectName>
 <IdentifierAttribute>applicationDescription</IdentifierAttribute>
 </DomainObject>
 <DomainObject>

 <ObjectName>gov.nih.nci.security.authorization.domainobjects.ApplicationContext</ObjectName>
 <IdentifierAttribute>applicationName</IdentifierAttribute>
 </DomainObject>
 <DomainObject>

 <ObjectName>gov.nih.nci.security.authorization.domainobjects.Group</ObjectName>
 <IdentifierAttribute>groupName</IdentifierAttribute>
 </DomainObject>
 <DomainObject>

 <ObjectName>gov.nih.nci.security.authorization.domainobjects.Privilege</ObjectName>
 <IdentifierAttribute>name</IdentifierAttribute>
 </DomainObject>
 <DomainObject>

 <ObjectName>gov.nih.nci.security.authorization.domainobjects.ProtectionElement</ObjectName>

caCORE 3.2 Technical Guide

136

h. dbPwd: The password to be used to connect to the database.
i. useFilter: Denotes whether the logger should use a filter or not.

3. Once the appender has been configured then the logger should be configured.
Entries made in the log4j.xml file should be based on the logger name used
in the ObjectStateLoggerConfig.xml file for the object state logger and
the logger name used for event logging. For the logger entry in the log4j.xml
file, set the following parameters:

a. name: The name of the logger.
b. level: The minimum log level that this logger should log.
c. appender-ref: The name of the appender invoked for logging. It should

be same as the appender name used in the previous step.
Figure 9.4 is an example of the log4j.xml file for the CSM APIs integration with CLM.

Figure 9.4 Example log4j.xml file

Integrating with the CLMʹs Audit Logging Services

Importing and Using the Audit Logging Classes
To use the Audit Logging service, add the highlighted import statements as shown in
the following:

import org.apache.log4j.Logger;
import org.hibernate.Session;
import org.hibernate.SessionFactory;
import org.hibernate.Transaction;
import
gov.nih.nci.logging.api.logger.hibernate.HibernateSessionF
actoryHelper;
import gov.nih.nci.logging.api.user.UserInfoHelper;

<appender name="JDBC_MySql" class="gov.nih.nci.logging.api.appender.jdbc.JDBCAppender">
 <param name="application" value="csm" />
 <param name="maxBufferSize" value="1" />
 <param name="dbDriverClass" value="com.mysql.jdbc.Driver" />
 <param name="dbUrl" value="jdbc:mysql://<<Database URL>>" />
 <param name="dbUser" value="<<userID>>" />
 <param name="dbPwd" value="<<Password>>" />
 <param name="useFilter" value="true" />
 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value=":: [%d{ISO8601}] %-5p %c{1}.%M() %x - %m%n" />
 </layout>
</appender>

<logger name="CSM.Audit.Logging.Event.Authentication">
 <level value="info" />
 <appender-ref ref="JDBC_MySql" />
</logger>
<logger name="CSM.Audit.Logging.Event.Authorization">
 <level value="info" />
 <appender-ref ref="JDBC_MySql" />
</logger>
<logger name="CSM.Audit.Logging.ObjectState.Authoriaztion">
 <level value="info" />
 <appender-ref ref="JDBC_MySql" />
</logger>

Chapter 9: Common Logging Module

137

Getting a Hibernate Session for Audit Logging
First, obtain a Hibernate session using one of the following methods:

Session session =
HibernateSessionFactoryHelper.getDefaultAuditSession();

Or

Session session =
HibernateSessionFactoryHelper.getAuditSession(SessionFacto
ry sessionFactory)

Use the first line of code if you want to obtain the session using the default session fac-
tory obtained from the default hibernate.cfg.xml file.

If there is already a session factory created in the application, use the existing session
factory to obtain an audit session by using the second method listed above.

By obtaining the Audit Session, the automated object state logger is engaged and
tracks all the object state changes performed using this session.

Note: The CLM object state logger has issues logging if the transaction managers are set in
the hibernate.cfg.xml file when deployed on JBoss server. In this case the trans-
action manager properties should be removed from the hibernate.cfg.xml file
used for CSM APIs to connect to the common authorization schema.

Setting User Information for the Client Application
The Audit Logging service has the capability to log messages that include user informa-
tion. session id and organization. The code to do this needs to be written only once per
a client request thread in the client application as follows:

UserInfoHelper.setUserInfo(new String("NAME"), new
String("sessionId"));

Or

UserInfoHelper.setUserInfo("john", "sessionId,
"organizationA");

Obtaining the Event Logger
Obtain the event logger as you would obtain a regular log4j logger. The logger name
passed is used in the log4j configuration file to enable logging for these messages.

Logging from the Client Application
For event logging, use the log4j logger class in the normal way. Based on the log level
configured in the log4j configuration for the appender these messages are logged.

caCORE 3.2 Technical Guide

138

139

APPENDIX

A
UNIFIED MODELING LANGUAGE

The caCORE team bases its software development primarily on the Unified Modeling
Language (UML). This appendix is designed to familiarize the reader who has not used
UML with its background and notation.

Topics in this appendix include:

UML Modeling on this page
Use-case Documents and Diagrams on page 140
Class Diagrams on page 142
Package Diagrams on page 146
Component Diagrams on page 147
Sequence Diagrams on page 148

Note: Throughout this guide, references to the Unified Modeling Language refer to the
approved version 1.3 of the standard.

UML Modeling

The UML is an international standard notation for specifying, visualizing, and docu-
menting the artifacts of an object-oriented software development system. Defined by
the Object Management Group, the UML emerged as the result of several complementary
systems of software notation and has now become the de facto standard for visual
modeling. For a brief tutorial on UML, refer to http://bdn.borland.com/article/
0,1410,31863,00.html.

The underlying tenet of any object-oriented programming begins with the construction
of a model. In its entirety, the UML version 1.3 is composed of nine different types of
modeling diagrams that form, in essence, a software blueprint.

Only a subset of the diagrams, that used in caCORE development, is described in this
appendix.

http://www.omg.org/
http://bdn.borland.com/article/0,1410,31863,00.html
http://bdn.borland.com/article/0,1410,31863,00.html

caCORE 3.2 Technical Guide

140

Use-case diagrams
Class diagrams
Package diagrams
Component diagrams
Sequence diagrams

The caCORE development team applies use-case analysis in the early design stages
to informally capture high-level system requirements. Later in the design stage, as
classes and their relations to one another begin to emerge, class diagrams help to
define the static attributes, functionalities, and relations that must be implemented. As
design continues to progress, other types of interaction diagrams are used to capture
the dynamic behaviors and cooperative activities the objects must execute. Finally,
additional diagrams, such as the package and sequence diagrams can be used to rep-
resent pragmatic information such as the physical location of source modules and the
allocation of resources.

Each diagram type captures a different view of the system, emphasizing specific
aspects of the design such as the class hierarchy, message-passing behaviors
between objects, the configuration of physical components, and user interface capabili-
ties.

Note: Not all UML artifacts discussed in this appendix are necessary for using caCORE. They
are included in this appendix to provide a more complete overview of UML.

While many good development tools provide support for generating UML diagrams, the
Enterprise Architect (EA) software is used throughout caCORE. The resulting docu-
ments, originally generated during design and development, provide value throughout
the software life cycle as they can rapidly familiarize new users of the system with the
logic and structure of the underlying design elements.

Use‐case Documents and Diagrams

A good starting point for capturing system requirements is to develop a structured tex-
tual description, often called a use-case document, of how users will interact with the
system. While there is no hard and fast predefined structure for this artifact, use-case
documents typically consist of one or more actors, a process, a list of steps, and a set
of pre- and post-conditions. In many cases, it describes the post-conditions associated

Appendix A: Unified Modeling Language

141

with success as well as failure. An example use-case document is represented in Fig-
ure A.1.

Figure A.1 Example use‐case document

Using the use-case document as a model, a use-case diagram is then created to con-
firm the requirements stated in the text-based use-case document.

A use-case diagram, which is language independent and graphically described, uses
simple ball and stick figures with labeled ellipses and arrows to show how users or
other software agents might interact with the system. The emphasis is on what a sys-
tem does rather than how a system works. Each “use-case” (an ellipse) describes a
particular activity that an “actor” (a stick figure) performs or triggers. The “communica-
tions” between actors and use-cases are depicted by connecting lines or arrows.

The example use-case diagram in Figure A.2 can be interpreted as follows:

A caBIO application developer triggers the actions to build a search query, con-
nect to the server, and search the server.
The caBIO application developer receives the output from the search.

Figure A.2 Example use‐case diagram

Find Gene(s) for a given search criteria (keyword)
Usecase ID:100300

Actor

caBIO Application developer

Starting Condition

The actor establishes reference to the caBIO software

Flow of Events

1. The actor sets the search criteria (Use case ID 101300) using one or more key-
words in the criteria.

2. Invoke the search use case (Use case ID 105300) and pass the search criteria
instantiated at step 1.

3. A result set (Use case ID 110300) is returned to the actor.

End Condition

The actor has obtained a collection of Genes needed for his application.

caCORE 3.2 Technical Guide

142

Class Diagrams

The system designer utilizes use-case diagrams to identify the classes that must be
implemented in the system, their attributes and behaviors, and the relationships and
cooperative activities that must be realized. A class diagram is used later in the design
process to give an overview of the system, showing the hierarchy of classes and their
static relationships at varying levels of detail. Figure A.3 shows an abbreviated version
of a UML Class diagram depicting many of the caBIO domain objects.

Figure A.3 Example UML Class diagram depicting the caBIO domain objects

Class objects can have a variety of possible relationships to one another, including “is
derived from,” “contains,” “uses,” “is associated with,” etc. The UML provides specific
notations to designate these different kinds of relations, and enforces a uniform layout
of the objects’ attributes and methods — thus reducing the learning curve involved in
interpreting new software specifications or learning how to navigate in a new program-
ming environment.

Figure A.4 (a) is a schematic for a UML class representation, the fundamental element
of a class diagram. Figure A.4 (b) is an example of how a simple class might be repre-
sented in this scheme. The enclosing box is divided into three sections: The topmost
section provides the name of the class, and is often used as the identifier for the class;
the middle section contains a list of attributes (structures) for the class; (the attribute in

Appendix A: Unified Modeling Language

143

the class diagram maps into a column name in the data model and an attribute within
the Java class); the bottom section lists the object’s operations (methods). Figure A.4
(b) specifies the Gene class as having a single attribute called sequence and a single
operation called getSequence().

Naming Conventions
Naming conventions are important when creating class diagrams. caCORE follows the
formatting convention for Java APIs in that a class starts with an uppercase letter and
an attribute starts with a lowercase letter. Names contain no underscores. If the name
contains two words, then both words are capitalized, with no space between words. If
an attribute contains two words, the second word is capitalized with no space between
words. Boolean terms (has, is) are used as prefixes to words for test cases.

The operations and attributes of an object are called its features. The features, along
with the class name, constitute the signature, or classifier, of the object. The UML pro-
vides explicit notation for the permissions assigned to a feature, and UML tools vary
with respect to how they represent their private, public, and protected notations for their
class diagrams.

The caBIO classes represented in Figure A.3 show only class names and attributes;
the operations are suppressed in that diagram. This is an example of a UML view:
Details are hidden where they might obscure the bigger picture the diagram is intended
to convey. Most UML design tools provide means for selectively suppressing either or
both attributes and operation compartments of the class without removing the informa-
tion from the underlying design model. In Figure A.3, the emphasis is on the relation-
ships and attributes that are defined among the objects, rather than on operations.

The following notations (as shown in Figure A.3 and Figure A.7) are used to indicate
that a feature is public or private:

“-” prefix signifies a private feature
“+” signifies a public feature

In Figure A.4 for example, the Gene object’s sequence attribute is private and can only
be accessed using the public getSequence () method.

Relationships Between Classes

Note: Not all figures used in this chapter appear in the demonstration class diagram, Figure
A.3. They are, however, examples of models that may be found in caCORE.

A quick glance at Figure A.3 demonstrates relationships between some of the classes.
Generally, the relationships occurring among the caBIO objects are of the following
types: association, aggregation, generalization, and multiplicity, described as follows:

Class Gene

-attribute -sequence

+operation() +getSequence()

(a) (b)

Figure A.4 (a) Schematic for a UML class (b) A simple class called Gene

caCORE 3.2 Technical Guide

144

Association — The most primitive of these relationships is association, which repre-
sents the ability of one instance to send a message to another instance. Association is
depicted by a simple solid line connecting the two classes.

Directionality — UML relations can have directionality (sometimes called navigabil-
ity), as in Figure A.5. Here, a Gene object is uniquely associated with a Taxon object,
with an arrow denoting bi-directional navigability. Specifically, the Gene object has
access to the Taxon object (i.e., there is a getTaxon() method), and the Taxon object
has access to the Gene object. (There is a corresponding getGeneCollection()
method.) Role names also display in Figure A.3 and Figure A.5, clarifying the nature of
the association between the two classes. For example, a taxon (rolename identified in
Figure A.5) is a line item of each Gene object. The (+) indicates public accessibility.

Figure A.5 A one‐to‐one association with bi‐directional navigability

Multiplicity — Optionally, a UML relation can have a label providing additional seman-
tic information, as well as numerical ranges such as 1..n at its endpoints, called multi-
plicity. These cardinality constraints indicate that the relationship is one-to-one, one-to-
many, many-to-one, or many-to-many, according to the ranges specified and their
placement. Table A.1 displays the most commonly used multiplicities.

Figure A.6 depicts a bidirectional many-to-one relationship between Sequence objects
and Clone objects. Each Sequence may have at most one Clone associated with it,
while a Clone may be associated with many Sequences. To get information about a
Clone from the Sequence object requires calling the getSequenceClone() method.
Each Clone in turn can return its array of associated Sequence objects using the get-
Sequences() method. This bidirectional relationship is shown using a single undirected
line between the two objects.

Figure A.6 A bidirectional many‐to‐one relation

Multiplicities Interpretation

0..1 Zero or one instance. The notation n..m indicates n to m instances.

0..* or * Zero to many; No limit on the number of instances (including none). An
asterisk (*) is used to represent a multiplicity of many.

1 Exactly one instance

1..* At least one instance to many

Table A.1 Multiplicities table

Appendix A: Unified Modeling Language

145

Aggregation — Another relationship exhibited by caCORE objects is aggregation, in
which the relationship is between a whole and its parts. This relationship is exactly the
same as an association, with the exception that instances cannot have cyclic aggrega-
tion relationships (i.e., a part cannot contain its whole). Aggregation is represented by a
line with a diamond end next to the class representing the whole, as shown in the
Clone-to-Library relation of Figure A.7. As illustrated, a Library can contain Clones but
not vice-versa.

In the UML, the empty diamond of aggregation designates that the whole maintains a
reference to its part. More specifically, this means that while the Library is composed of
Clones, these contained objects may have been created prior to the Library object’s
creation, and so will not be automatically destroyed when the Library goes out of scope.

Figure A.7 Aggregation and multiplicity associations

Additionally, Figure A.7 shows a more complex network of relations. This diagram indi-
cates that:

a. one or more Sequences is associated with a Clone
b. the Clone is contained in a Library, which comprises one or more Clones
c. the Clone may have one or more Traces.

Only the relationship between the Library and the Clone is an aggregation. The others
are simple associations.

Generalization — Generalization is an inheritance link indicating that one class is a
subclass of another. Figure A.8 depicts a generalization relationship between the
SequenceVariant parent class and the Repeat and SNP classes. Classes participating
in generalization relationships form a hierarchy, as depicted here.

In generalization, the more specific element is fully consistent with the more general
element (it has all of its properties, members, and relationships) and may contain addi-
tional information. Both the SNP and Repeat objects follow that definition.

The superclass-to-subclass relationship is represented by a connecting line with an
empty arrowhead at its end pointing to the superclass, as shown in the SequenceVari-
ant-to-Repeat and SequenceVariant-to-SNP relations of Figure A.8.

Figure A.8 Generalization relationship

caCORE 3.2 Technical Guide

146

In summary, class diagrams represent the static structure of a set of classes. Class dia-
grams, along with use-cases, are the starting point when modeling a set of classes.
Recall that an object is an instance of a class. Therefore, when the diagram references
objects, it is representing dynamic behavior, whereas when it is referencing classes, it
is representing the static structure.

Package Diagrams

Large-scale software design is a highly complex activity. As the number of classes
grows to satisfy the evolving requirements of an application, the overall architectural
design can quickly become obscured by this proliferation of design elements. To sim-
plify complex UML diagrams, classes can be organized into packages representing log-
ically related groupings. Packaging can be applied to any type of UML diagram; a
package diagram is any UML diagram composed only of packages.

Most commonly, packaging is used to simplify use-case and class diagrams. The pack-
age diagram is not one of the nine standard UML diagrams, but since it provides a con-
venient way of depicting the organization of software components into packages, it is
described here.

A package is depicted as a labeled rectangle with a small tab attached to its upper left
corner, somewhat resembling a file folder (Figure A.9). This image represents a pack-
age diagram generated in EA. “gov” is the top level package; “+nih” is a sub-package to
gov, with the “+” indicating that sub-packages to nih exist. The dotted arrows connect-
ing packages as displayed in Figure A.10 represent dependencies: one package
depends on another if changes in one could force changes in the other. This figure is
the hierarchical representation of Figure A.9.

Figure A.9 Package diagram generated in EA

Figure A.10 Sub‐package diagram

Appendix A: Unified Modeling Language

147

The concept of a package in a software application is similar but not identical to the
notion of a UML package.

The organization of software components into packages is used to increase reusability
and to minimize compile-time dependencies. It is highly unusual to reuse a single class,
but quite common to reuse a collection of related classes that collaborate to produce
some desired functionality. The UML models of the caCORE software that are available
on the JavaDocs pages approximately reflect the actual Java package structure but do
not have a one-to-one correspondence.

Component Diagrams

A component diagram is a physical analog of a class diagram. Its purpose is to show
the organizations and dependencies among various software components comprising
the system, including source code components, run time components, or executable
components.

In complex systems, the physical implementation of a defined service is provided by a
group of classes rather than a single class. A component is an easy way to represent
the grouping together of such implementation classes.

A Component diagram consists of the following:

Component
Class/Interface/Object
Relation/Association

A generic component diagram's main icon is a rectangle that has two rectangles over-
laid on its left side (Figure A.11). The component name appears inside the icon. If the
component is a member of a package, you can prefix the component's name with the
name of the package.

Figure A.12 represents a component diagram as it is represented in EA.

Component diagrams and class diagrams represent both the static structure and the
dynamic behavior of the system. Component diagrams are optional since they are not
used for code generation.

Figure A.11 Generic component diagram Figure A.12 Component diagram as
represented in EA

caCORE 3.2 Technical Guide

148

Sequence Diagrams

A sequence diagram describes the exchange of messages being passed from object to
object over time. The flow of logic within a system is modeled visually, validating the
logic of a usage scenario. In a sequence diagram, bottlenecks can be detected within
an object-oriented design, and complex classes can be identified.

Figure A.13 is an example of a sequence diagram. The vertical lines in the diagram
with the boxes along the top row represent instantiated objects. The vertical dimension
displays the sequence of messages in the time order that they occur; the horizontal
dimension shows the object instances to which the messages are sent. The diagram is
read from left to right, top to bottom, following the sequential execution of events.

This sequence diagram explains the sequence of execution of the toolkit at runtime.The
User query from the client traverses the following sequence path before reaching the
database.

1. The user uses search() method in ApplicationService and queries the server.
2. This call is picked up at HTTPClient as query() with Request as the input

parameter
3. HTTPClient calls the HTTPServer (Interface Proxy for HTTP Tunneling) and

sends the same Request to BaseDelegate
4. BaseDelegate calls ServiceLocator to find the name of Data Access Object.
5. Using this name BaseDelegate creates the corresponding DAO factory and

passes the Request object.
6. In this scenario the ORMDAO is the right DAO to be called.
7. ORMDAOImpl contains specific implementation about the data source and con-

nects to the data source.

 Note: Sequence diagrams are optional, since they are not used for code generation.

Appendix A: Unified Modeling Language

149

Figure A.13 Example of a sequence diagram

caCORE 3.2 Technical Guide

150

151

APPENDIX

B
REFERENCES

Technical Manuals/Articles

1. National Cancer Institute. caCORE SDK 3.2 Programmer’s Guide
http://ncicb.nci.nih.gov/NCICB/infrastructure/cacoresdk#Documentation

2. Java Bean Specification:
http://java.sun.com/products/javabeans/docs/spec.html

3. Foundations of Object-Relational Mapping:
http://www.chimu.com/publications/objectRelational/

4. Object-Relational Mapping articles and products:
http://www.service-architecture.com/object-relational-mapping/

5. Hibernate Reference Documentation:
http://www.hibernate.org/5.html

6. Basic O/R Mapping:
http://www.hibernate.org/hib_docs/v3/reference/en/html/mapping.html

7. Java Programming: http://java.sun.com/learning/new2java/index.html
8. Jalopy User Manual: http://jalopy.sourceforge.net/existing/manual.html
9. Javadoc tool: http://java.sun.com/j2se/javadoc/
10. JUnit: http://junit.sourceforge.net/
11. Extensible Markup Language: http://www.w3.org/TR/REC-xml/
12. XML Metadata Interchange:

http://www.omg.org/technology/documents/formal/xmi.htm
13. Ehcache: http://ehcache.sourceforge.net/documentation/

http://ncicb.nci.nih.gov/NCICB/infrastructure/cacoresdk#Documentation
http://java.sun.com/products/javabeans/docs/spec.html
http://www.chimu.com/publications/objectRelational/
http://www.service-architecture.com/object-relational-mapping/
http://www.hibernate.org/5.html
http://www.hibernate.org/hib_docs/v3/reference/en/html/mapping.html
http://java.sun.com/learning/new2java/index.html
http://jalopy.sourceforge.net/existing/manual.html
http://java.sun.com/j2se/javadoc/
http://junit.sourceforge.net/
http://www.w3.org/TR/REC-xml/
http://www.omg.org/technology/documents/formal/xmi.htm
http://ehcache.sourceforge.net/documentation/

caCORE 3.2 Technical Guide

152

Scientific Publications

1. Ansher SS and Scharf R (2001). The Cancer Therapy Evaluation Program
(CTEP) at the National Cancer Institute: industry collaborations in new agent
development. Ann N Y Acad Sci 949:333-40.

2. Boon K, Osorio EC, Greenhut SF, Schaefer CF, Shoemaker J, Polyak K, Morin
PJ, Buetow KH, Strausberg RL, De Souza SJ, and Riggins GJ (2002). An anat-
omy of normal and malignant gene expression. Proc Natl Acad Sci U S A 2002
Jul 15.

3. Buetow KH, Klausner RD, Fine H, Kaplan R, Singer DS, and Strausberg RL
(2002). Cancer Molecular Analysis Project: Weaving a rich cancer research tap-
estry. Cancer Cell 1(4):315-8.

4. Boguski & Schuler (1995). ESTablishing a human transcript map. Nature Genet-
ics 10: 369-71.

5. Clifford R, Edmonson M, Hu Y, Nguyen C, Scherpbier T, and Buetow KH (2000).
Expression-based genetic/physical maps of single-nucleotide polymorphisms
identified by the Cancer Genome Anatomy Project. Genome Res 10(8):1259-
65.

6. Covitz P.A., Hartel F., Schaefer C., De Coronado S., Sahni H., Gustafson S.,
Buetow K. H. (2003). caCORE: A common infrastructure for cancer informatics.
Bioinformatics. 19: 2404-2412.

7. Dowell RD, Jokerst RM, Day A, Eddy SR, Stein L. The Distributed Annotation
System. BMC Bioinformatics 2(1):7.

8. The Gene Ontology Consortium. (2000). Gene ontology: tool for the unification
of biology. Nature Genetics 25:25-9.

9. The Gene Ontology Consortium. (2001). Creating the gene ontology resource:
design and implementation. Genome Res 11:1425-33.

10. Golbeck J., Fragoso G., Hartel F., Hendler J., Oberthaler J., Parsia B. (2003).
The National Cancer Institute's thésaurus and ontology. Journal on Web
Semantics. 1:75-80.

11. Hartel FW and de Coronado S (2002). Information standards within NCI. In:
Cancer Informatics: Essential Technologies for Clinical Trials. Silva JS, Ball MJ,
Chute CG, Douglas JV, Langlotz C, Niland J and Scherlis W, eds. Springer-Ver-
lag.

12. Hartel F.W., Coronado S., Dionne R., Fragoso G. and Golbeck J. (2005). Mod-
eling a description logic vocabulary for cancer research. Journal of Biomedical
Informatics, 38, in press. (http://www.sciencedirect.com/)

13. Pruitt KD, Katz KS, Sicotte H, and Maglott DR (2000). Introducing RefSeq and
LocusLink: curated human genome resources at the NCBI. Trends Genet
16(1):44-7.

14. Pruitt KD, and Maglott DR (2001). RefSeq and LocusLink: NCBI gene-centered
resources. Nucleic Acids Res 29(1):137-40.

15. Schuler et al. (1996). A gene map of the human genome. Science 274: 540-6.

http://www.sciencedirect.com/

Appendix B: References

153

16. Schuler (1997). Pieces of the puzzle: expressed sequence tags and the catalog
of human genes. J Mol Med 75(10):694-8.

17. Strausberg RL (1999). The Cancer Genome Anatomy Project: building a new
information and technology platform for cancer research. In: Molecular Pathol-
ogy of Early Cancer (Srivastava S, Henson DE, Gazdar A, eds. IOS Press, 365-
70.

18. Strausberg RL (2001). The Cancer Genome Anatomy Project: new resources
for reading the molecular signatures of cancer. J Pathol 195:31-40.

19. Zhang, Schwartz, Wagner, and Miller (2000). A Greedy algorithm for aligning
DNA sequences. J Comp Biol 7(1-2):203-14.

caBIG Material

1. caBIG: http://cabig.nci.nih.gov/
2. caBIG Compatibility Guidelines:

http://cabig.nci.nih.gov/guidelines_documentation

caCORE Material

1. caCORE: http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview
2. caBIO: http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/caBIO
3. caDSR: http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/cadsr
4. EVS: http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/vocabulary
5. CSM: http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/csm

Modeling Concepts

1. Enterprise Architect Online Manual:
http://www.sparxsystems.com.au/EAUserGuide/index.html

2. OMG Model Driven Architecture (MDA) Guide Version 1.0.1:
http://www.omg.org/docs/omg/03-06-01.pdf

3. Object Management Group: http://www.omg.org/

Applications Currently Using caCORE

1. BIOgopher: http://biogopher.nci.nih.gov/BIOgopher/index.jsp
2. BIO Browser: http://www.jonnywray.com/java/index.html
3. caPathway: http://cgap.nci.nih.gov/Pathways

http://cabig.nci.nih.gov/
http://cabig.nci.nih.gov/guidelines_documentation
http://cabig.nci.nih.gov/guidelines_documentation
http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview
http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/caBIO
http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/cadsr
http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/vocabulary
http://www.omg.org/docs/omg/03-06-01.pdf
http://www.omg.org/
http://cgap.nci.nih.gov/Pathways
http://biogopher.nci.nih.gov/BIOgopher/index.jsp
http://www.jonnywray.com/java/index.html
http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/csm
http://www.sparxsystems.com.au/EAUserGuide/index.html

caCORE 3.2 Technical Guide

154

Software Products

1. Hibernate: http://www.hibernate.org/5.html; http://hibernate.org
2. Tomcat: http://jakarta.apache.org/tomcat/
3. Enterprise Architect: http://www.sparxsystems.com.au/
4. Apache WebServices Axis: http://ws.apache.org/axis/
5. MySQL: http://www.mysql.com/
6. Concurrent Versions System (CVS): https://www.cvshome.org/
7. Ant: http://ant.apache.org/
8. JBoss Application Server: http://www.jboss.com/products/jbossas

http://www.jboss.com/products/jbossas
http://www.hibernate.org/5.html
http://hibernate.org
http://jakarta.apache.org/tomcat/
http://www.sparxsystems.com.au/
http://ws.apache.org/axis/
http://www.mysql.com/
https://www.cvshome.org/
http://ant.apache.org/

155

GLOSSARY
This glossary describes acronyms, objects, tools and other terms referred to in the chapters or
appendixes of this guide.

Term Definition

Apache Axis Open source package that provides SOAP-based web services to users

API Application Programming Interface

Application Service This refers to the CSM interface which exposes all the writeable as well as busi-
ness methods for a particular application

BO Business Object

C3D Cancer Centralized Clinical Database

caBIG cancer Biomedical Informatics Grid

caBIO Cancer Bioinformatics Infrastructure Objects

caCORE Cancer Common Ontologic Representation Environment

caDSR Cancer Data Standards Repository

caMOD Cancer Models Database

cardinality Cardinality describes the minimum and maximum number of associated objects
within a set

CCR Center of Cancer Research

CDE Common Data Element

CGAP Cancer Genome Anatomy Project

CLM Common Logging Module

CMAP Cancer Molecular Analysis Project

CS Classification Scheme

CSI Classification Scheme Item

CLM Common Logging Module

CSM Common Security Module

CTEP Cancer Therapy Evaluation Program

CVS Concurrent Versions System

DAO Data Access Objects

DAS Distributed Annotation System

DCP Division of Cancer Prevention

caCORE 3.2 Technical Guide

156

DDL Data Definition Language

DEC Data Element Concept

DL Description Logic

DOM Document Object Model

DTD Document Type Definition

DTS Distributed Terminology Server

DU Deployment Unit

EA Enterprise Architect

EBI European Bioinformatics Institute

EMF Eclipse Modeling Framework

EVS Enterprise Vocabulary Services

FreeMarker A "template engine"; a generic tool to generate text output (anything from HTML
or RTF to auto generated source code) based on templates

GAI CGAP Genetic Annotation Initiative

GEDP Gene Expression Data Portal

Hibernate A high performance object/relational persistence and query service for JavaPro-
vides the ability to develop persistent classes following common object-oriented
(OO) design methodologies such as association, inheritance, polymorphism,
and composition (http://www.hibernate.org)

HQL Hibernate Query Language is designed as a "minimal" object-oriented exten-
sion to SQL, provides a bridge between the object and relational databases

IDE Integrated Development Environment

ISO International Organization for Standardization

JAR Java Archive

Java Bean Reusable software components that work with Java

Java Servlet Server-side Java programs, that web servers can run to generate content in
response to client requests

Javadoc Tool for generating API documentation in HTML format from doc comments in
source code (http://java.sun.com/j2se/javadoc/)

JBoss J2SE application server used as a a presentation layer in caCORE architecture.
See also Tomcat.

JDBC Java Database Connectivity

JDiff Javadoc doc-let which generates an HTML report of all the packages, classes,
constructors, methods, and fields which have been removed, added or changed
in any way, including their documentation, when two APIs are compared (http://
javadiff.sourceforge.net/)

JET Java Emitter Templates

JMI Java Metadata Interface

JSP Java Server Pages. Web pages with Java embedded in the HTML to incorpo-
rate dynamic content in the page

JUnit A simple framework to write repeatable tests (http://junit.sourceforge.net/)

MDR Metadata Repository

Term Definition

http://junit.sourceforge.net/
http://javadiff.sourceforge.net/
http://javadiff.sourceforge.net/
http://java.sun.com/j2se/javadoc/
http://www.hibernate.org

157

metadata Definitional data that provides information about or documentation of other data.

MMHCC Mouse Models of Human Cancers Consortium

multiplicity Multiplicity of an association end indicates the number of objects of the class on
that end that may be associated with a single object of the class on the other
end

MVC Model-View-Controller, a design pattern

navigability Navigability defines the visibility of an object to its associated source/target
object at the other end of an association.
Navigability is the same as directionality.

NCI National Cancer Institute

NCICB National Cancer Institute Center for Bioinformatics

NSC Nomenclature Standards Committee

OMG Object Management Group

OR Object Relation

ORM Object Relational Mapping

PCDATA Parsed Character DATA

persistence layer Data storage layer, usually in a relational database system

RDBMS Relational Database Management System

RUP Rational Unified Process

SOAP Simple Object Access Protocol. A lightweight XML-based protocol for the
exchange of information in a decentralized, distributed environment

SPORE Specialized Programs of Research

SQL Structured Query Language

Tagged value A UML construct that represents a name-value pair; can be attached to anything
in a UML model. Often used by UML modeling tools to store tool-specific infor-
mation

Tomcat J2SE application server used as a a presentation layer in caCORE architecture.
See also JBoss.

UML Unified Modeling Language

URI Uniform Resource Identifier

URL Uniform Resource Locators

war Web archive file

Writeable API Methods exposed by the CSM to create, update and delete a domain object.
These methods are generated using the code generation component.

WSDL Web Services Description Language

XMI XML Metadata Interchange (http://www.omg.org/technology/documents/formal/
xmi.htm) - The main purpose of XMI is to enable easy interchange of metadata
between modeling tools (based on the OMG-UML) and metadata repositories
(OMG-MOF) in distributed heterogeneous environments

Term Definition

http://www.omg.org/technology/documents/formal/xmi.htm
http://www.omg.org/technology/documents/formal/xmi.htm

caCORE 3.2 Technical Guide

158

XML Extensible Markup Language (http://www.w3.org/TR/REC-xml/) - XML is a sub-
set of Standard Generalized Markup Language (SGML). Its goal is to enable
generic SGML to be served, received, and processed on the Web in the way
that is now possible with HTML. XML has been designed for ease of implemen-
tation and for interoperability with both SGML and HTML

XP Extreme Programming

Term Definition

http://www.w3.org/TR/REC-xml/

159

INDEX
Symbols
.war 9

A
Affymetrix 115
Apache Axis 9, 34, 155
Apelon 54
Application Service layer 8
Architecture 7

client 9
layers 8

Association
described 144

B
BioCarta 115

C
caBIO

API 109
caBIO classes 143
data sources 112
defined 4
description 109
domain objects 92, 110
utilities 117

caCORE 3
service interface 13
system architecture 7

caCOREMarshaller class 122
caCOREUnmarshaller class 122
caDSR 4

API 90
description 79
ISO/IEC 11179 80
modeling metadata 80

Capturing system requirements 140
Castor 122
CGAP 113
Class diagrams

caBIO classes 143
described 142
fundamental elements 142
naming conventions 143
private feature 143
public feature 143

Client
Java 9
Perl 9
SOAP 9

CLM
APIs 132
Common Logging Database 130
Event Logger 129
JDBC Appender 130
logging software 132
Object State Logger 129
User Information 130

CMAP 113
Common

utilities 122
Common package

api 121
description 121
domain objects 121

Component diagrams 147
CTEP 55, 114
CTRM 56

D
Data Source Delegation layer 8
dbSNP 115
Description Logic 58
Description logic 54, 56
Directionality

described 144
Directionality See also Navigability 144

E
ELC2001 55
EVS 4

caCORE 3.2 Technical Guide

160

API 62
data sources 65
description 53
description logic 56
domain object catalog 63
DTS 54
NCI Metaphrase 54
NCI Metathesaurus 53

EVS Service Methods
use 32

G
GAI 114
Gene Ontology 116
Generalization 145

H
Hibernate 8, 18, 25
Hibernate Query Language 8
HomoloGene 114

I
ICD03 56
IMAGE 114
ISO/IEC 11179

components 80
definition 79

J
Java API

configuration 14
description 14
examples 20
installation 14
search types 18

Java Bean 9
Java Server Page 9
Java Servlet 9
JBoss 9

L
LocusLink 114

M
MDBCAC 55
MedDRA 56
MMHCC 56
Multiplicity

described 144

N
Naming conventions

class diagrams 143
UML models 143

Navigability See also Directionality 144
NCICB caCORE infrastructure 3
NCI Distributed Terminology Server 54
NCI Metaphrase 54
NCI Metathesaurus 53
NCIPDQ 55
NCISEER 55
NCI Source 55

O
Object‐Relational Mapping 8

P
Package diagrams

described 146
Packages of software components 147
Perl 9
Perl API

configuration 46
description 45
installation 46
service methods 48
use 49

PIR 116
Private feature 143
Proteomic Pathway Project 115
Public feature 143

R
Relationships in class diagrams

aggregation 145
association 144
directionality 144
generalization 145
multiplicity 144

Role names
defined 144

S
Semantic interoperability 4
Sequence diagrams

described 148
example 148

SNP Consortium 116
SOAP 9, 34
SVG

manipulation utility 33

Index

161

SVG diagrams 117
SVGManipulator class 117

T
Tomcat 9
TrEMBL 116

U
UCSC 116
UML

class diagram 81
UML See also Unified Modeling Language 139
UMLS Metathesaurus 54
Unified Modeling Language

class diagrams 142
component diagrams 147
introduction 139
naming conventions 143
package diagrams 146
sequence diagrams 148
tutorial 139
types of diagrams 139
use‐case diagram 141
use‐case document 140

Unigene 115
UniProt 116
Use‐case

diagram 141
document 140

Utility Methods
SVG Manipulation Utility 33
XML Utility 32

W
Web Services API

configuration 34
description 33
endpoint URL 34
EVS considerations 35
operations 34
use 37
WSDL file 34

X
XML‐HTTP API

description 42
results sets 44
service location 42
syntax 42
use 43

xml‐mapping.xml 122
XML Utility 32
XMLutility class 122

caCORE 3.2 Technical Guide

162

	Credits and Resources
	Table of Contents
	Preface
	Purpose
	Release Schedule
	Audience
	How To Use This Guide
	Additional caCORE Documentation

	Overview to caCORE
	Architecture Overview
	Domain Models in caCORE
	Enterprise Vocabulary Services (EVS)
	Cancer Data Standards Repository (caDSR)
	Cancer Bioinformatics Infrastructure Objects (caBIO)
	Common Security Model (CSM)
	Common Logging Module (CLM)

	caCORE Architecture
	caCORE System Architecture
	Client Technologies
	Major caCORE Domain Packages

	Interacting with caCORE
	caCORE Service Interface Paradigm
	Java API
	Installation and Configuration
	A Simple Example
	Service Methods
	Examples of Use
	EVS Service Methods
	Utility Methods

	Web Services API
	Configuration
	Operations
	EVS Considerations
	Examples of Use
	Limitations

	XML-HTTP API
	Service Location and Syntax
	Examples of Use
	Working With Result Sets
	Limitations

	Perl API
	Language-Specific Considerations
	Installation and Configuration
	Service Methods
	Examples of Use
	Limitations

	Enterprise Vocabulary Services
	Introduction
	The UMLS Metathesaurus
	Knowledge Representations and Description Logic

	Description Logic
	Description Logic in the NCI Thesaurus

	Concept Edit History in the NCI Thesaurus
	caCORE EVS API
	EVS Domain Object Catalog

	EVS Data Sources
	EVS Search Paradigm
	EVSQuery and EVSQueryImpl
	EVSQuery Methods and Parameters
	Examples of Use

	Downloading the NCI Thesaurus
	OWL Encoding of the NCI Thesaurus

	Ontylog Mappings
	Mapping of Gene Ontology to Ontylog
	Mapping of MedDRA to Ontylog
	Mapping of MGED Ontology to Ontylog

	Cancer Data Standards Repository
	Introduction
	Modeling Metadata: The ISO/IEC 11179 Standard
	caDSR Metamodel
	caDSR API
	caDSR Domain Object Catalog

	Downloading the caDSR
	caDSR API Examples
	Using the caDSR Java API
	Using the caDSR Web Services API
	UML Project API Examples

	Cancer Bioinformatics Infrastructure Objects
	Introduction
	caBIO API
	Data Sources in the caBIO Database
	caGrid Identifiers
	caBIO Specific Utilities
	Manipulating SVG Diagrams

	Common Package
	Introduction
	Common Package API
	Common Package Specific Utilities
	XMLUtility

	Common Security Module
	Common Logging Module
	Introduction
	CLM Overview
	Explanation

	Workflow for CLM Integration
	Deployment Models
	CLM APIs
	Overview to Integrating CLM APIs
	Integrating with the CLM's Audit Logging Services

	Unified Modeling Language
	UML Modeling
	Use-case Documents and Diagrams
	Class Diagrams
	Naming Conventions
	Relationships Between Classes

	Package Diagrams
	Component Diagrams
	Sequence Diagrams

	References
	Technical Manuals/Articles
	Scientific Publications
	caBIG Material
	caCORE Material
	Modeling Concepts
	Applications Currently Using caCORE
	Software Products

	Glossary
	Index

