
The CÆSAR Code:

Software Design Issues

Michael L. Hall

Radiation Transport Methods Group (XTM)

Los Alamos National Laboratory

Email: hall@lanl.gov

X-Division External

Review Committee Presentation

3 / 10 / 99

Available on-line at

http://www.lanl.gov/Caesar/



Outline

• Background

– Cæsar Description

– Diffusion Discretization References

• Documentation

– Why Document A Program?

– Levels of Documentation

– Literate Programming

– Simplified Approach: Document

– A Simple Example

– Cæsar Documentation Features

• Unit Testing / Levelized Design

– Basic Ideas

– Preliminary Cæsar Levelized Design

– Unit Testing Implementation

• Design By Contract / Verification

• Summary

2 of 16



Cæsar Description

• 3-T Photonics Diffusion (P1) Code

• Multiple Dimensionality (1-D, 2-D, 3-D)

• Unstructured Hexahedral Cells in 3-D

• Second-Order Convergent Diffusion Discretizations

• Parallel, written in Fortran 90

• Based on earlier Augustus (P-1) and Spartan (SPN )

codes

• Future: Polyhedral Meshes, Multigroup, Tensor Diffu-

sion, Mixed Cells, Transport

3 of 16



Diffusion Discretization References

• Morel-Hall Asymmetric Method

– Described in

Michael L. Hall, and Jim E. Morel. A Second-Order Cell-
Centered Diffusion Differencing Scheme for Unstructured Hex-
ahedral Lagrangian Meshes. In Proceedings of the 1996
Nuclear Explosives Code Developers Conference (NECDC),
UCRL-MI-124790, pages 359–375, San Diego, CA, Octo-
ber 21–25 1996. LA-UR-97-8.

which is an extension of

J. E. Morel, J. E. Dendy, Jr., Michael L. Hall, and Stephen W.
White. A Cell-Centered Lagrangian-Mesh Diffusion Differenc-
ing Scheme. Journal of Computational Physics, 103(2):286-
299, December 1992.

to 3-D unstructured meshes, with an alternate derivation.

• Support Operator Symmetric Method:

– Described in

Michael L. Hall, and Jim E. Morel. Diffusion Discretization
Schemes in Augustus: A New Hexahedral Symmetric Support
Operator Method. In Proceedings of the 1998 Nuclear Explo-
sives Code Developers Conference (NECDC), Las Vegas, NV,
October 26–30 1998. LA-UR-98-3146.

which is an extension of

Mikhail Shashkov and Stanly Steinberg. Solving Diffusion
Equations with Rough Coefficients in Rough Grids. Journal
of Computational Physics, 129:383-405, 1996.

to 3-D unstructured meshes, with an alternate derivation.

4 of 16



Why Document A Program?

For Others:

• To Demonstrate Progress in Coding

• To Encourage Use of the Package

• To Reduce “Hit-By-A-Bus” Syndrome

• To Facilitate Technical Review

For Yourself:

• To Understand Global Logical Code Structure

• To Facilitate Computer Code “Re-Entry” For Debug-

ging, Maintenance, and Enhancement

• To Explain Things Once, not Multiple Times, to Users

• To Allow Quick Code Access via Hypertext

• To Be Proud of Your Work

5 of 16



Levels of Documentation

A code can be rated according to where it falls on this sequential list:

0. Layout

0-a. Consistency

0-b. Logical Block Structure (Few or No Branches)

0-c. Indentation to Show Logical Structure

0-d. Blank Lines and Spaces for Readability

0-e. Statements Grouped Semantically

1. Descriptive Variable and Routine Names

2. Comments throughout the Code

3. Routine Headers with

3-a. Purpose

3-b. Input/Output Variable Descriptions

3-c. Internal Variable Descriptions

3-d. Methods Employed

6 of 16



Levels of Documentation (cont)

4. Hardcopy Documentation

4-a. Code Listing

4-b. Code Manual

4-c. User’s Manual

4-d. Method Discussion

5. Hypertext Documentation

5-a. Code Listing

5-b. Code Manual

5-c. User’s Manual

5-d. Method Discussion

5-e. External Links

6. Literate Programming:

Source Code and Documentation are Generated from

the Same File

7 of 16



Literate Programming

• Basic Idea: Combine Documentation and Source Code

• Original: WEB (Donald Knuth, of TEX fame)

– Weave: web file −→ documentation (TEX)

– Tangle: web file −→ source code (Pascal)

• Many WEB-related packages exist — my opinion:

most are too complex or don’t support my situation

(F90, LATEX, Unix)

8 of 16



The Document Package:

A Simplified Approach to Literate Programming

• Eliminate “tangle” step – files are compilable source

• Documentation is included in comments

• Small set of commands to direct output

• Formatting language independent

• Source code language independent (almost — just need

to know comment characters)

• Implementation via a short perl script: Document

• Source and documentation for the Document Package

are available online at:

http://www.lanl.gov/Document

9 of 16



A Simple Example

This input file:

! Begin_Doc
! Some documentation for standard out.
! End_Doc
!
! This line doesn’t get output by Document.
! Begin_Doc file.tex
! This output goes to the file named file.tex.
! Comment characters are stripped by default.
!
! Begin_Verbatim
! Comment characters are included in verbatim
! environments, which are often used for code:

do i = 1, 100
j = j+1

end do
! End_Verbatim
! End_Doc

when processed by Document, outputs this to standard out:

Some documentation for standard out.

and this to file.tex:

This output goes to the file named file.tex.
Comment characters are stripped by default.

! Comment characters are included in verbatim
! environments, which are often used for code:

do i = 1, 100
j = j+1

end do

10 of 16



Cæsar Documentation

Making use of the capabilities of Document, LATEX and

LATEX2HTML, the Cæsar Code documentation has these

features:

• Hardcopy and HTML versions from a single source,

which is collocated with the source code

• Graphics, equations, code listings easily included

• Automatic table of contents and semi-automatic index-

ing (hyperlinked in HTML)

• Automatic navigation tools for HTML (Next, Up,

Previous, Contents, and Index links on every page)

• Hyper references and external HTML links

Bottom Line: This satisfies Level 6 Documentation require-

ments — User’s Manual, Code Manual, Methods Discussion

and Code Listing in Hardcopy and Hyperlinked HTML via

Literate Programming

11 of 16



Unit Testing / Levelized Design

Basic Idea of Unit Testing:

Each component is tested in isolation – only components

that have been previously tested may be included.

Basic Idea of Levelized Design:

Each component depends only on components that are at a

lower level – no feedback or circular designs.

Example:

Level 0:

Level 1:

Level 2:

Level 3: A

B E

C D

F

GNot 
Allowed

Bottom Line: Levelized Design is desirable because it makes

Unit Testing possible.

12 of 16



Preliminary Levelized Design for Cæsar

Level 0:

Level 1:

Level 2:

Level 3:

Level 4:

Communication 
Library

Linear 
Solver 
Package

Material 
Properties

Term 
Library

Intrinsic 
Library

Problem 
Solution

Matrix

Equation

Problem 
Definition

Timestep 
Control

Boundary 
and Initial 
Conditions

Mesh

Host Code 
or Driver

13 of 16



Unit Testing Implementation

• Every component contains its own specific driver rou-

tine for unit testing.

• Unit test driver routine is only compiled in when cer-

tain gm4 macro preprocessor flags are set.

• Cæsar uses Document to extract and run a unit test

script imbedded in each component.

14 of 16



Design By Contract / Verification

Basic Idea of Verification:

Statements that verify that specified conditions are true are

conditionally compiled into the code, allowing error checking

that can be turned off completely for fast execution.

In Cæsar, verification is implemented via gm4 macros.

Basic Idea of Design by Contract:

Routines satisfy a contract when they are called – input

requirements are verified upon entry and output guarantees

are verified prior to exit.

Design by Contract does nothing more than specify where

and what to verify.

15 of 16



Summary

The Cæsar 3-T photonics package employs many of the

latest ideas in software design:

• Literate Programming — source and documentation

stored together.

• The Document Package is used to extract documenta-

tion from code source, which is processed by LATEX into

hardcopy and LATEX2HTML into hyperlinked HTML.

• A Levelized Design is used to facilitate Unit Testing,

which is accomplished using the gm4 preprocessor and

the self-test feature of the Document Package.

• Verification gm4 macros are used to implement Design

By Contract.

16 of 16


