
TUGboat, Volume 29 (2008), No. 2 305

LATEX

Good things come in little packages: An
introduction to writing .ins and .dtx files

Scott Pakin

Abstract

LATEX packages made available from CTAN are com-
monly distributed as a pair of files: 〈something〉.ins
and 〈something〉.dtx. The user is then instructed
to run the .ins file through latex to produce the
actual package files. What are these .ins and .dtx
files? How do you, as a class or style-file writer,
create your own? And, why would you want to?
This article answers those questions and elucidates
the mysterious techniques underlying LATEX package
distribution.

1 Introduction

A typical CTAN package comprises a README file,
some PDF documentation, an .ins file, and a .dtx
file. Running the .ins file through latex creates
one or more .sty, .cls, .def, or other files that
the user can install. Few LATEX users and developers
understand the reasoning behind that extra step or
the purpose of the seemingly unnecessary .dtx file.

Before we examine .ins and .dtx files in depth,
let us consider a coding example from outside the
TEX world. Figure 1 presents a function in the C pro-
gramming language for solving a quadratic equation.
Comments at the top of the function are used to
explain what the function does. Although comments
are intended to be human-readable, only simple text
can be used to format comments. Wouldn’t it be
nice if comments and the code they describe could
be typeset using a tool such as LATEX, as in Figure 2?
Even for short programs, including mathematics, fig-
ures, and tables in comments can assist readability.
For longer programs, sectioning commands, cross
references (maybe even with hyperlinks), indexes,
and a table of contents can be quite beneficial for
explaining the program’s purpose and usage to read-
ers. However, having to maintain two versions of a
program—a nicely formatted version with typeset
documentation for human readers and a text-only
version for the compiler— is an approach doomed to
failure as the two versions will inevitably drift apart.

The idea behind a .dtx file is to maintain a
single version of a program yet be able to process it
either as a typeset document or as compilable code.
As far as the latex compiler is concerned, a .dtx file
is an ordinary document; it just happpens to describe

a program. However, when the corresponding .ins
file is processed, the (text-only) program is extracted
from the .dtx file to one or more separate files.

Placing emphasis on providing thorough, type-
set code documentation intertwined with the code
itself is commonly known as literate programming [1].
Literate programming is particularly apropos for doc-
umenting LATEX packages because of the esotericism
of the TEX language and the consequent need for
copious explanation. The mechanisms needed to
implement literate programming in .ins and .dtx
files are provided by two packages that come stan-
dard with all LATEX2ε distributions: Doc [3, 4] for
typesetting, formatting, and indexing LATEX macro
and environment definitions, and, DocStrip [5] for
extracting the code from a literate program while
stripping away all of the commentary.

2 Installer (.ins) files

The first step in preparing a package for distribution
is to write an installer (.ins) file. An installer file
extracts the code from a .dtx file, uses DocStrip to
strip off the comments and documentation, and out-
puts a .sty file. The good news is that a .ins file is
typically fairly short and doesn’t change significantly
from one package to another.

Figure 3 presents a typical .ins file. An .ins
file usually begins with a comment block that states
the package’s copyright notice and license agreement
(lines 1–13). Most of the commands that appear in
an .ins file are provided by the DocStrip package
so that is loaded in line 15. DocStrip is normally
excessively verbose about its operation so Figure 3
includes an invocation of \keepsilent (line 16) to
instruct DocStrip to output only the most important
information.

A package can invoke the \usedir macro (as
on line 18) to specify a preferred installation direc-
tory relative to the root of the TEX directory tree.
In practice, the \usedir call serves primarily as a
comment and is seldom used to automatically place
files in their final destination.

Lines 20–36 of Figure 3 specify a set of comments
to include at the top of every file that the .ins
file generates. Typically, these comments include a
remark that the file is generated plus a repetition of
the package’s copyright notice and license agreement.

The most important line in an .ins file is the
call to \generate. The \generate macro is the
mechanism by which an .ins file instructs DocStrip
how to extract the various package files from an ac-
companying .dtx file. Line 38 of Figure 3 should be
interpreted as the instruction, “Generate a file called
mypackage.sty by extracting all text marked with

306 TUGboat, Volume 29 (2008), No. 2

/* Use the quadratic formula (x=(-b +/- sqrt(b^2-4ac))/2a) to store the two
* roots of ax^2+bx+c=0 in x1 and x2. Return 1 on success, 0 on failure
* (if a=0 or the roots are complex). */
int solve_quadratic (double a, double b, double c, double *x1, double *x2)
{
double discrim = b*b - 4*a*c;

if (a == 0.0 || discrim < 0.0)
return 0;

*x1 = (-b + sqrt(discrim)) / (2*a);
*x2 = (-b - sqrt(discrim)) / (2*a);
return 1;

}

Figure 1: Compiler-readable C code for solving a quadratic equation

solve_quadratic() Use the quadratic formula (x = −b±
√

b2−4ac
2a) to store the two roots of ax2+bx+c = 0

in x1 and x2. Return 1 on success, 0 on failure (if a = 0 or the roots are complex).
1 int solve_quadratic (double a, double b, double c, double *x1, double *x2)
2 {
3 double discrim = b*b − 4*a*c;
4

5 if (a == 0.0 || discrim < 0.0)
6 return 0;
7 *x1 = (−b + sqrt(discrim)) / (2*a);
8 *x2 = (−b − sqrt(discrim)) / (2*a);
9 return 1;

10 }

Figure 2: Typeset C code for solving a quadratic equation

the tag package in the file called mypackage.dtx.”
The \generate command is fairly flexible in

that a file can be generated from multiple tags spread
across multiple files. In fact, blocks of code can
be shared by multiple generated files. As a fairly
complex example, consider the \generate command
used by LATEX2ε’s classes.ins file to generate all
of the standard LATEX2ε class files and their per-
size helper files. As the excerpt from classes.ins
shown in Figure 4 indicates, both size10.clo and
bk10.clo are produced by extracting all text from
classes.dtx that is marked with the 10pt tag. The
bk10.clo file additionally includes all text marked
with the bk tag. The same bk-tagged text is copied
into bk11.clo and bk12.clo as well.

Returning to our complete example of an .ins
file in Figure 3, DocStrip provides a \Msg macro that
outputs a message to the standard output device. It
is helpful to use \Msg to inform the user what files
were extracted and need to be installed. Lines 40–
53 in Figure 3 output a typical end-of-installation
message. Note the use of \obeyspaces in line 40 to

prevent TEX from collapsing multiple spaces into a
single space in the subsequent \Msg invocations.

An .ins file ends with a call to \endbatchfile,
as shown in line 55.

3 Documented LATEX (.dtx) files

A documented LATEX (.dtx) file contains both the
commented source code and the user documentation
for the package. Running a .dtx file through latex
typesets the user documentation, which usually also
includes a nicely typeset version of the commented
source code.

Due to some Doc trickery, latex actually evalu-
ates a .dtx file twice when generating documentation.
On the first pass, only a small piece of latex driver
code is evaluated. The second time, comments in
the .dtx file are evaluated, as if there were no “%”
preceding them. This can lead to a great deal of
confusion when writing .dtx files and occasionally
leads to some awkward constructions. Fortunately,
once the basic structure of a .dtx file is in place,
filling in the code is fairly straightforward.

TUGboat, Volume 29 (2008), No. 2 307

1 %%
2 %% Copyright (C) 2008 by Your Name Here <you@yournamehere.org>
3 %%
4 %% This file may be distributed and/or modified under the conditions of
5 %% the LaTeX Project Public License, either version 1.3c of this license
6 %% or (at your option) any later version. The latest version of this
7 %% license is in:
8 %%
9 %% http://www.latex-project.org/lppl.txt

10 %%
11 %% and version 1.3c or later is part of all distributions of LaTeX
12 %% version 2006/05/20 or later.
13 %%
14

15 \input docstrip.tex
16 \keepsilent
17

18 \usedir{tex/latex/mypackage}
19

20 \preamble
21

22 This is a generated file.
23

24 Copyright (C) 2008 by Your Name Here <you@yournamehere.org>
25

26 This file may be distributed and/or modified under the conditions of
27 the LaTeX Project Public License, either version 1.3c of this license
28 or (at your option) any later version. The latest version of this
29 license is in:
30

31 http://www.latex-project.org/lppl.txt
32

33 and version 1.3c or later is part of all distributions of LaTeX
34 version 2006/05/20 or later.
35

36 \endpreamble
37

38 \generate{\file{mypackage.sty}{\from{mypackage.dtx}{package}}}
39

40 \obeyspaces
41 \Msg{***}
42 \Msg{* *}
43 \Msg{* To finish the installation you have to move the following *}
44 \Msg{* file into a directory searched by TeX: *}
45 \Msg{* *}
46 \Msg{* mypackage.sty *}
47 \Msg{* *}
48 \Msg{* To produce the documentation run the file mypackage.dtx *}
49 \Msg{* through LaTeX. *}
50 \Msg{* *}
51 \Msg{* Happy TeXing! *}
52 \Msg{* *}
53 \Msg{***}
54

55 \endbatchfile

Figure 3: A typical .ins file

308 TUGboat, Volume 29 (2008), No. 2

\generate{\file{article.cls}{\from{classes.dtx}{article}}
\file{report.cls}{\from{classes.dtx}{report}}
\file{book.cls}{\from{classes.dtx}{book}}
\file{size10.clo}{\from{classes.dtx}{10pt}}
\file{size11.clo}{\from{classes.dtx}{11pt}}
\file{size12.clo}{\from{classes.dtx}{12pt}}
\file{bk10.clo}{\from{classes.dtx}{10pt,bk}}
\file{bk11.clo}{\from{classes.dtx}{11pt,bk}}
\file{bk12.clo}{\from{classes.dtx}{12pt,bk}}
}

Figure 4: Excerpt from LATEX2ε’s classes.ins file

1 % \iffalse meta-comment
2 %
3 % Copyright (C) 2008 by Your Name Here <you@yournamehere.org>
4 % ---
5 %
6 % This file may be distributed and/or modified under the conditions of
7 % the LaTeX Project Public License, either version 1.3c of this license
8 % or (at your option) any later version. The latest version of this
9 % license is in:

10 %
11 % http://www.latex-project.org/lppl.txt
12 %
13 % and version 1.3c or later is part of all distributions of LaTeX
14 % version 2006/05/20 or later.
15 %
16 % \fi
17 %

Figure 5: .dtx header comments

3.1 Package identification

A .dtx file traditionally begins with a copyright and
license notice, which are formatted as in Figure 5.
The significance of the \iffalse . . . \fi construct is
that on latex’s second pass through the .dtx file,
commented lines are processed as if they were un-
commented. To prevent the copyright and license
statement from appearing at the beginning of the
typeset document we wrap them within a condi-
tional that will never be true. The meta-comment
after \iffalse is nothing more than a convention
for indicating that the comment is intended to be
read by a human, not by Doc, DocStrip, or latex.

The next block of .dtx code (Figure 6) identi-
fies the package. On latex’s first pass through the
.dtx file, “%” introduces a comment line, as normal.
Hence, latex sees only the \ProvidesFile com-
mand (line 20) and its optional argument (line 25).
The optional argument must be in the format shown:
package date (yyyy/mm/dd), package version, and
package description. The Doc package parses the
optional argument into three macros— \filedate,

18 % \iffalse
19 %<*driver>
20 \ProvidesFile{mypackage.dtx}
21 %</driver>
22 %<package>\NeedsTeXFormat{LaTeX2e}[2003/12/01]
23 %<package>\ProvidesPackage{mypackage}
24 %<*package>
25 [2008/02/18 v1.0 My sample package]
26 %</package>
27 %

Figure 6: .dtx package identification

\fileversion, and \fileinfo—that can be used
to automatically date-stamp and version-stamp the
documentation. On latex’s second pass through
the file, the \iffalse, which is now executed, tells
latex to disregard the entire block of code shown in
Figure 6.

The remaining lines of Figure 6 are ignored
on both the first and second pass through the file.
However, they still have an important purpose. In
addition to the two latex passes over the .dtx file

TUGboat, Volume 29 (2008), No. 2 309

for producing documentation, latex is also run on
the .ins file to extract the various package files
from the .dtx file. The \generate call on line 38
of Figure 3 associated the tag package with the de-
rived file mypackage.sty. Consequently, all lines
either beginning with %<package> or bracketed be-
tween %<*package> and %</package> are written to
mypackage.sty. Thus, the code in Figure 6 writes to
mypackage.sty the \NeedsTeXFormat line (line 22),
the \ProvidesPackage line (line 23), and the op-
tional argument to \ProvidesPackage (line 25)—
which, as we saw, cleverly also serves as the optional
argument to \ProvidesFile when generating the
package documentation.

\NeedsTeXFormat and \ProvidesPackage are
part of the standard LATEX2ε package-identification
mechanism [6]. (Classes use \ProvidesClass in-
stead of \ProvidesPackage, while other file types
use \ProvidesFile.) \NeedsTeXFormat specifies
the earliest date of the LATEX format itself with
which the package is compatible. (From LATEX,
\show\fmtversion displays the current format date.)
The argument to \ProvidesPackage is written to
the .log file associated with any document that uses
the corresponding package.

3.2 Driver code

When producing documentation from a .dtx file,
the driver code is the first block of code that latex
sees. Figure 7 lists typical driver code. Because
mypackage.ins does not supply a \generate rule
for driver, placing the driver between %<*driver>
and %</driver> ensures that it will not be processed
when generating package files from the .ins file.
ltxdoc is a class designed for typesetting LATEX doc-
umentation; it derives from article but additionally
includes the Doc package and defines a few use-
ful commands for documenting classes and pack-
ages. One of those commands, \EnableCrossrefs
(line 30), specifies that the document’s index should
automatically cross-reference the use of every control
sequence (macro or primitive) in the package code.
\CodelineIndex (line 31) indicates that references
to code in the index should point to the correspond-
ing line number instead of to the corresponding page
number. \RecordChanges (line 32) says to create a
file of package changes that can then be incorporated
automatically into the documentation in a “Change
History” section.

Within the document’s body, the \DocInput call
(line 34 of Figure 7) is the critical line. \DocInput
tells the Doc package to input the .dtx file from
within itself. In this second pass through the .dtx
file, percent characters are not treated as comment

28 %<*driver>
29 \documentclass{ltxdoc}
30 \EnableCrossrefs
31 \CodelineIndex
32 \RecordChanges
33 \begin{document}
34 \DocInput{mypackage.dtx}
35 \PrintChanges
36 \PrintIndex
37 \end{document}
38 %</driver>
39 % \fi

Figure 7: The .dtx driver code

characters but are instead ignored. (The sequence
“^^A” can be used instead of “%” to introduce a com-
ment.) After the code is typeset, the \PrintChanges
call (line 35) typesets a Change History section that
informs the reader about the changes that were made
to the source code in each revision. \PrintIndex
(line 36) typesets an index. Finally, the \fi in line 39
matches the \iffalse in line 18 of Figure 6.

3.3 Code verification

The remainder of this section discusses the part of the
.dtx file that is processed recursively by \DocInput:
the documentation proper. In this part of the docu-
ment, lines beginning with a percent sign are treated
as documentation (i.e., the “%” is stripped and the
result is processed as ordinary LATEX code). Lines
not beginning with a percent sign are both processed
as documentation and written to the .sty file. This
rigmarole is the key to using the same code in both
a typeset document and a LATEX package.

The documentation traditionally begins with
a block of code that may be considered slightly
anachronistic: a document checksum and a test for
unexpected variations in character encoding. The
\CheckSum call in line 40 of Figure 8 takes an ar-
gument representing the total number of backslash
characters in the package code (i.e., in lines not be-
ginning with a percent sign). If the tally is correct,
Doc outputs

* Checksum passed *

If the tally is incorrect, Doc issues an error message:

! Package doc Error: Checksum not passed
(〈incorrect〉<>〈correct〉).

If the tally is 0, Doc outputs the correct tally but
does not issue an error message:

310 TUGboat, Volume 29 (2008), No. 2

40 % \CheckSum{0}
41 %
42 % \CharacterTable
43 % {Upper-case \A\B\C\D\E\F\G\H\I\J\K\L\M\N\O\P\Q\R\S\T\U\V\W\X\Y\Z
44 % Lower-case \a\b\c\d\e\f\g\h\i\j\k\l\m\n\o\p\q\r\s\t\u\v\w\x\y\z
45 % Digits \0\1\2\3\4\5\6\7\8\9
46 % Exclamation \! Double quote \" Hash (number) \#
47 % Dollar \$ Percent \% Ampersand \&
48 % Acute accent \’ Left paren \(Right paren \)
49 % Asterisk * Plus \+ Comma \,
50 % Minus \- Point \. Solidus \/
51 % Colon \: Semicolon \; Less than \<
52 % Equals \= Greater than \> Question mark \?
53 % Commercial at \@ Left bracket \[Backslash \\
54 % Right bracket \] Circumflex \^ Underscore _
55 % Grave accent \‘ Left brace \{ Vertical bar \|
56 % Right brace \} Tilde \~}

Figure 8: .dtx verification code

* This macro file has no checksum!
* The checksum should be 〈number〉!

It is convenient to specify \CheckSum{0} when de-
veloping a package and to replace 0 with the correct
checksum only when the package is ready to be re-
leased.

The character table must appear exactly as
shown in Figure 8, lines 42–56. Doc verifies that
the character table has not been corrupted and out-
puts the following success message:

* Character table correct *

If any character differs from that which was expected,
Doc issues the following error message:

! Package doc Error: Character table
corrupted.

3.4 Miscellaneous initialization

Doc can automatically typeset a list of changes made
in each version of the package code. It is customary
to include an entry for the first version of the code,
as shown in line 57 of Figure 9. The first argument
is the version number in which the change was made;
the second argument is the date the change was made;
and, the third argument is a description of the change.
If \changes is called from within the description of a
macro or environment, the change is associated with
that macro or environment. Otherwise, the change
is categorized as “General”.

The \GetFileInfo macro (line 59) reads the
given file and parses its invocation of \ProvidesFile
(lines 20 and 25 of Figure 6). \GetFileInfo makes

57 % \changes{v1.0}{2008/02/18}{Initial version}
58 %
59 % \GetFileInfo{mypackage.dtx}
60 %
61 % \DoNotIndex{\newcommand,\newenvironment}

Figure 9: Miscellaneous initialization commands

the date part of \ProvidesFile’s argument available
as \filedate, the version as \fileversion, and the
package description as \fileinfo. The documenta-
tion can then use those macros when referring to the
package.

One of Doc’s most useful features is the auto-
matic production of a code index. Every control
sequence defined or used by the package is automati-
cally indexed. However, particularly common control
sequences can be distracting and should be omit-
ted from the index. The \DoNotIndex macro takes
a comma-separated list of control sequences that
should not be indexed. (\DoNotIndex can be—and
usually is— invoked repeatedly, with one line’s worth
of control sequences at a time.) Typically, TEX
primitives such as \if /\else /\fi, \begingroup /
\endgroup, and \def / \edef / \gdef / \xdef ap-
pear as arguments to \DoNotIndex, as do common
macros from the LATEX kernel such as \newcommand /
\renewcommand and \newcounter / \newsavebox /
\newlength. However, a package that redefines
\newcounter, for example, probably would want to
index that control sequence. Producing a good in-
dex takes a lot of judgment; think carefully about
what someone reading the code might be interested
in locating.

TUGboat, Volume 29 (2008), No. 2 311

62 % \title{The \textsf{mypackage} package\thanks{This document
63 % corresponds to \textsf{mypackage}~\fileversion, dated \filedate.}}
64 % \author{Your Name Here \\ \texttt{you@yournamehere.org}}
65 %
66 % \maketitle
67 %
68 % \section{Introduction}
69 %
70 ...
71 %
72 % \section{Usage}
73 %
74 ...
75 %
76 % \DescribeMacro{\myMacro}
77 % This macro does nothing.\index{doing nothing|usage} It is merely an example. If this were a
78 % real macro, you would put a paragraph here describing what the macro is supposed to do, what
79 % its mandatory and optional arguments are, and so forth.
80 %
81 % \DescribeEnv{myEnv}
82 % This environment does nothing. It is merely an example. If this were a real environment, you
83 % would put a paragraph here describing what the environment is supposed to do, what its
84 % mandatory and optional arguments are, and so forth.

Figure 10: Prose description of the package

\myMacro This macro does nothing. It is
merely an example. If this were a real
macro, you would put a paragraph
here describing what the macro is
supposed to do, what its mandatory
and optional arguments are, and so
forth.

myEnv This environment does nothing. It
is merely an example. If this were
a real environment, you would put
a paragraph here describing what
the environment is supposed to do,
what its mandatory and optional ar-
guments are, and so forth.

Figure 11: Typeset output of \DescribeMacro and
\DescribeEnv

3.5 User documentation

Package documentation usually begins with a few
sections of documentation for the user of the package,
as shown in Figure 10. The \title specification in
lines 62 and 63 is fairly typical in that it sets the
package name with \textsf and uses \thanks to
include a footnote with the package’s version number
and release date. \date is often omitted from the
title block to distinguish the date the document was
printed (\today) from the date the package was last

modified (\filedate).
There is no \begin{document} in Figure 10 be-

cause the \begin{document} already appeared in
the .dtx driver code (Figure 7); the code in Figure 10
is included through the driver code’s invocation of
\DocInput.

It is common to begin the package documenta-
tion with an introductory section that describes what
the package does and a usage section that explains
how to use the package. The Doc package provides
two macros that help give a uniform look to usage sec-
tions in package documentation: \DescribeMacro
and \DescribeEnv. Figure 11 displays how Doc
typesets lines 76–84 of Figure 10. Notice that the
macro or environment name is placed in the margin,
where it is easy for a reader to find. Furthermore, the
macro/environment name is automatically indexed,
with the corresponding page number appearing in the
so-called usage style (normally italics) in the index.
Line 77 of Figure 10 shows how to index arbitrary
text in the same style, using \index{〈term〉|usage}.

3.6 Package source code

The documented package source code follows the user
documentation. Because the average user is not inter-
ested in the package’s implementation, Doc enables
a user to avoid including the package’s source code
when building the documentation by inserting a call

312 TUGboat, Volume 29 (2008), No. 2

85 % \StopEventually{}
86 %
87 % \section{Implementation}
88 ...
89 % \begin{macro}{\myMacro}
90 % The |\myMacro| macro takes a person’s name
91 % and returns the string ‘‘Hello,
92 % \meta{name}’’.
93 % \begin{macrocode}
94 \newcommand{\myMacro}[1]{%
95 Hello, #1\relax
96 }
97 % \end{macrocode}
98 % \end{macro}
99 ...

100 % \Finale

Figure 12: Sample Implementation section

to \OnlyDescription into the .dtx driver code (be-
tween the \documentclass and \begin{document}
lines in Figure 7).

Figure 12 shows how to document the package’s
source code. The entire code should be bracketed be-
tween a call to \StopEventually (line 85) and a call
to \Finale (line 100). \StopEventually takes an
argument, which is the text for all of the sections that
follow the package source code, for example the list
of references or the package’s copyright and license
information. Because the text appears as an argu-
ment to a command, certain LATEX constructs such
as \verb cannot be used within \StopEventually.
Unfortunately, ordinary document sections cannot
simply be placed after the call to \Finale because
\OnlyDescription would still discard them.

It is good practice to use the standard LATEX
sectioning commands within the implementation sec-
tion to organize the code and clarify its structure; for
example, \subsection{Initialization macros},
\subsection{Helper macros}, \subsection{User-
callable macros and environments}, One
of the beauties of literate programming is that any
LATEX code can be used to document a package: ta-
bles, figures, mathematics—whatever is appropriate
for explaining how the package works.

Lines 89–98 of Figure 12 give a sample macro def-
inition. A macro definition starts with \begin{macro}
and the macro name and ends with \end{macro}.
The Doc package puts the macro name in the margin
and includes an index entry with the source-code line
number set in the main style (normally underlined).

Following the \begin{macro} comes the descrip-
tion of what the macro does. The sample description
in Figure 12 uses two convenient features of the Doc

package. First, “|” toggles verbatim mode, which
is convenient for macro documentation that would
otherwise be cluttered with \verb invocations. (This
shortcut is in fact provided by the shortvrb package,
which is included by Doc.) One caveat is that “|”
cannot then be used in a tabular (or other) envi-
ronment without first disabling its verbatim proper-
ties using \DeleteShortVerb and reenabling them
afterwards with \MakeShortVerb. See the Doc doc-
umentation [4] for more information. The second
useful Doc feature that appears in Figure 12 is \meta,
which typesets its argument in italics and within an-
gle brackets, as in “〈name〉”. This is useful for type-
setting metasyntactic variables such as 〈number〉 or
〈length〉.

The macro source code appears, uncommented,
within a macrocode environment. Because of some
behind-the-scenes trickery in how macrocode is han-
dled, there must be exactly four spaces between the
“%” and the \begin{macrocode} (as shown in line 93)
and between the “%” and the \end{macrocode} (as
shown in line 97). When the documentation is
typeset, the lines between \begin{macrocode} and
\end{macrocode} are automatically numbered, and
all control sequences encountered are automatically
indexed in an unadorned style.

While Figure 12 shows only how to define a
macro, environments are defined analogously, us-
ing \begin{environment} / \end{environment} in-
stead of \begin{macro} / \end{macro} but still us-
ing \begin{macrocode} / \end{macrocode} to de-
lineate blocks of LATEX code. Definitions of things
other than macros and environments— lengths, coun-
ters, boxes, etc.— should be placed within a macro
environment.

The sample macro definition given in Figure 12
is typical of short, simple macros. Longer, more com-
plex macros may benefit from additional commentary
within the macro body. In addition, it is common in
LATEX for macros to define other macros. A .dtx file
can handle both of these cases: Figure 13 shows how.
It may be easier to follow Figure 13 by comparing it
to the typeset output, shown in Figure 14. Notice
how the \begin{macro}{\othermacro} is nested
within the \begin{macro}{\complexdef}. Pack-
ages that include a number of short, related defi-
nitions (e.g., a set of \newlength calls) commonly
specify a sequence of \begin{macro} calls followed
by a description of all the definitions as a whole
(e.g., “These lengths represent the jabberwock’s width,
height, and depth”), followed by a single macrocode
environment that includes all of the related declara-
tions back-to-back.

TUGboat, Volume 29 (2008), No. 2 313

% \begin{macro}{\complexdef}
% This is a more sophisticated use of the |macro| and |macrocode| environments than was used in
% Figure 12. Notice the nested |macro| environments and the repeated |macrocode| environments.
% \changes{v1.1}{2008/02/18}{Changed ‘‘Goodbye’’ to ‘‘Hello’’}
% \begin{macrocode}
\DeclareRobustCommand{\complexdef}[1]{%

Hello, #1.
% \end{macrocode}
% You can insert comments anywhere. Just call |\end{macrocode}|, enter your text, and start a
% new |\begin{macrocode}|.
% \begin{macrocode}

How do you like my macro?%
% \end{macrocode}
% \begin{macro}{\othermacro}
% Here we have the |\othermacro| macro defined within the |\complexdef| macro. |macro|
% environments are allowed to nest.
% \begin{macrocode}

\gdef\othermacro{#1}%
}
% \end{macrocode}
% \end{macro}
% \end{macro}

Figure 13: A more complex macro definition

\complexdef This is a more sophisticated use of the macro and macrocode environments than was
used in Figure 12. Notice the nested macro environments and the repeated macrocode
environments.

1 \DeclareRobustCommand{\complexdef[1]{%
2 Hello, #1.

You can insert comments anywhere. Just call \end{macrocode}, enter your text, and
start a new \begin{macrocode}.

3 How do you like my macro?%

\othermacro Here we have the \othermacro macro defined within the \complexdef macro. macro
environments are allowed to nest.

4 \gdef\othermacro{#1}%
5 }

Figure 14: Typeset version of Figure 13

3.7 The change history and index sections

The \changes call in Figure 13 is not typeset in place
but rather schedules a line to be added to the docu-
ment’s Change History section. Because Figure 13’s
\changes call appears within a macro environment
it is assumed to apply to the surrounding macro
instead of to the document as a whole. Figure 15 il-
lustrates how the Change History section may appear
in the typeset documentation. If \changes appears
outside of a macro or environment environment, the
corresponding line in the Change History section lists
“General” in place of a macro/environment name.

Running the .dtx file through latex produces a

Change History

v1.1
\complexdef: Changed “Goodbye”
to “Hello” . 1

Figure 15: Sample Change History section

corresponding .idx file if \CodelineIndex appears
in the driver code and a corresponding .glo file if
\RecordChanges appears in the driver code. The
makeindex program [2] can be used as shown in

314 TUGboat, Volume 29 (2008), No. 2

makeindex -s gind.ist -o 〈package〉.ind \
〈package〉.idx

makeindex -s gglo.ist -o 〈package〉.gls \
〈package〉.glo

Figure 16: Commands for producing an index and a
change history

Figure 16 to convert the .idx file to a typeset index
(.ind) and the .glo file to a typeset change history
(.gls).

3.8 Additional notes about comments

Program comments should not be written between
\begin{macrocode} and \end{macrocode} because
everything within a macrocode environment is type-
set as code, not as formatted text. (Figure 13 shows
the proper way to include inline code comments.)
However, it is possible to write comments that are
not typeset at all (e.g., for documenting a macro
definition that is part of the user documentation, not
of the package itself), In fact, all combinations of
“visible in the user documentation” and “visible in
the .sty file” are possible. Table 1 summarizes the
techniques for achieving each of these combinations.

Table 1: Comment visibility

Appears Appears Mechanismin docs in .sty

N N % ˆˆA 〈comment〉
N Y % \iffalse

%% 〈comment〉
% \fi

Y N % 〈comment〉
Y Y %% 〈comment〉

4 Concluding remarks

The advantage of using .ins and .dtx files is that
they encapsulate not only the LATEX-readable pack-
age code but also a human-readable description of
the code. Unlike typical, text-only program com-
ments, documentation produced from .ins and .dtx

files can take advantage of all of LATEX’s typesetting
power—sectioning, cross-references, figures, tables,
mathematics, etc.—coupled with automatic index-
ing of all macro and environment definitions and
uses and automatically pretty-printed code listings.
Because of their ability to facilitate the production
of immensely readable package documentation, .ins
and .dtx files are the most popular way to distribute
LATEX packages and represent a technique that all
LATEX package writers should strongly consider using
for their own packages.

References

[1] Donald E. Knuth. Literate programming.
The Computer Journal, 27(2):97–111,
May 1984. Available from http://www.
literateprogramming.com/knuthweb.pdf.

[2] Leslie Lamport. MakeIndex: An Index Processor
for LATEX, February 17, 1987. Available
from http://www.ctan.org/get/indexing/
makeindex/doc/makeindex.pdf.

[3] Frank Mittelbach. The doc—option. TUGboat,
10(2):245–273, July 1989. Available from
http://www.tug.org/TUGboat/Articles/
tb10-2/tb24mitt-doc.pdf.

[4] Frank Mittelbach. The doc and shortvrb
packages. Distributed as part of LATEX2ε,
February 9, 2004. Document source is available
from http://www.ctan.org/get/macros/
latex/base/doc.dtx.

[5] Frank Mittelbach, Denys Duchier, Johannes
Braams, Marcin Woliński, and Mark Wooding.
The DocStrip program. Distributed as part
of LATEX2ε, July 29, 2005. Available from
http://www.ctan.org/get/macros/latex/
base/docstrip.dtx.

[6] The LATEX3 Project. LATEX2ε for class and
package writers. Distributed with LATEX2ε
as clsguide.dvi, February 15, 2006. Also
available from http://www.ctan.org/get/
macros/latex/doc/clsguide.pdf.

� Scott Pakin
4975 S. Sol
Los Alamos, NM 87544-3794
USA
scott+tb (at) pakin dot org
http://www.pakin.org/~scott

	Introduction
	Installer (.ins) files
	Documented LaTeX (.dtx) files
	Package identification
	Driver code
	Code verification
	Miscellaneous initialization
	User documentation
	Package source code
	The change history and index sections
	Additional notes about comments

	Concluding remarks

